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1. Introduction

Throughout this paper, N, N0, Z, R, and C will denote the set of natural numbers,
the set of non-negative integers, the set of integers, the set of real numbers, and the set of
complex numbers, respectively. Let n ∈ N, ω ∈ C, and let x be a variable. The Apostol–
Bernoulli polynomials Bn(x; ω) and the Apostol–Euler polynomials En(x; ω) are usually
defined by the following generating functions (see, e.g., [1,2]):

text

ωet − 1
=

∞

∑
n=0
Bn(x; ω)

tn

n!
(|t + log ω| < 2π), (1)

and
2ext

ωet + 1
=

∞

∑
n=0
En(x; ω)

tn

n!
(|t + log ω| < π). (2)

In particular, Bn(x) = Bn(x; 1) and En(x) = En(x; 1) are called the Bernoulli polynomials
and the Euler polynomials, respectively. It is well known that the Apostol–Bernoulli
numbers Bn(ω) and the Apostol–Euler numbers En(ω) are given by Bn(ω) = Bn(0; ω)
and En(ω) = 2nEn(1/2; ω), which are the corresponding generalizations of the Bernoulli
numbers Bn = Bn(0) and the Euler numbers En = 2nEn(1/2). We here mention that the
Apostol–Bernoulli polynomials can be used to evaluate the values of the Lerch zeta function
at zero and negative integers, see the paper of Apostol [3] for details. For the values of
the Apostol–Bernoulli polynomials and the Lerch zeta function at rational numbers, the
interested reader may consult the paper of Srivastava [4].

In the present paper, we will be concerned with some identities for the above-mentioned
polynomials. Perhaps the best known results are the following multiplication formulas for
the Bernoulli polynomials and the Euler polynomials (see, e.g., [5–7]):

an−1
a−1

∑
j=0

Bn

(
x +

j
a

)
= Bn(ax) (a ∈ N, n ∈ N0), (3)
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an
a−1

∑
j=0

(−1)jEn

(
x +

j
a

)
= En(ax) (a ∈ N, 2 - a, n ∈ N0), (4)

− 2an−1

n

a−1

∑
j=0

(−1)jBn

(
x +

j
a

)
= En−1(ax) (a, n ∈ N, 2 | a). (5)

We remark that Formula (3) is usually called Raabe’s [8] multiplication formula for the
Bernoulli polynomials. In particular, Howard [9] used (3) to obtain this for a, n ∈ N with
a ≥ 2,

Bn =
1

a(1− an)

n−1

∑
j=0

(
n
j

)
ajBj

a−1

∑
l=1

ln−j, (6)

from which he showed that the famous Staudt–Clausen theorem, Carlitz’s congruence,
Frobenius’s congruence, and Ramanujan’s congruence are deduced as easy consequences
of (6). In the year 2001, Tuenter [10] found that (6) is a special case of the following sym-
metric identity for the Bernoulli numbers:

n

∑
j=0

(
n
j

)
aj−1Bjbn−jSn−j(a− 1) =

n

∑
j=0

(
n
j

)
bj−1Bjan−jSn−j(b− 1), (7)

where a, b ∈ N, n ∈ N0, Sk(n) is the power sum given for k, n ∈ N0 by

Sk(n) = 0k + 1k + 2k + · · ·+ nk. (8)

Yang [11], in 2008, used the method of generating functions to establish two identities of
symmetry for the higher-order Bernoulli polynomials, by virtue of which he extended (7)
to the situation for the Bernoulli polynomials

n

∑
j=0

(
n
j

)
aj−1Bj(bx)bn−jSn−j(a− 1) =

n

∑
j=0

(
n
j

)
bj−1Bj(ax)an−jSn−j(b− 1), (9)

and obtained the general form of (3):

an−1
a−1

∑
j=0

Bn

(
bx +

bj
a

)
= bn−1

b−1

∑
j=0

Bn

(
ax +

aj
b

)
, (10)

where a, b ∈ N, n ∈ N0, Sk(n) is as in (8). In the same year, Kim [12] used the properties of
symmetry for p-adic invariant integrals on Zp to prove (9) and (10), demonstrating that for
a, b ∈ N, n ∈ N0 with a ≡ b (mod 2),

n

∑
j=0

(
n
j

)
ajEj(bx)bn−jTn−j(a− 1) =

n

∑
j=0

(
n
j

)
bjEj(ax)an−jTn−j(b− 1), (11)

and

an
a−1

∑
j=0

(−1)jEn

(
bx +

bj
a

)
= bn

b−1

∑
j=0

(−1)jEn

(
ax +

aj
b

)
, (12)

where Tk(n) is the alternate power sum given for k, n ∈ N0 by

Tk(n) = 0k − 1k + 2k − · · ·+ (−1)nnk. (13)

After that, Liu and Wang [13] developed the method of generating functions used in [11],
and established various identities for the higher-order Bernoulli polynomials, the higher-
order Euler polynomials, and the higher-order degenerate Bernoulli polynomials, some
of which extend (9)–(12). Further, Wang and Wang [14] obtained various identities be-
tween the Apostol–Bernoulli polynomials, the Apostol–Euler polynomials, and the power
sums with respect to ω, showing that Yang’s [11], Liu and Wang’s [13], and Zhang and
Yang’s [15] results are deduced as special cases. The author and Zhang [16,17] in 2013
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explored the identities of symmetry for the q-zeta functions and the q-Lerch Euler zeta
functions, and gave the corresponding q-extensions of (9)–(12). It should be noted that the
identities (10) and (12) can easily lead to the identities (9) and (11) when using the familiar
addition theorems for the Bernoulli polynomials and the Euler polynomials described
in [5,6]. For some new developments of identities of symmetry on these topics, one is
referred to [18–24].

In this paper, we perform further investigation on the Apostol–Bernoulli functions
Bn(x; ω) and the Apostol–Euler functions En(x; ω) introduced by Luo ([25] Equations
(2.15) and (2.17)), which are defined for n ∈ N, x ∈ R, ω ∈ C \ {0} by

Bn(x; ω) = ω−[x]Bn({x}; ω), (14)

and
En(x; ω) = (−1)[x]ω−[x]En({x}; ω), (15)

where [x] is the floor function (also called the greatest integer function), {x} denotes the
fractional part of x satisfying that for x ∈ R,

{x} = x− [x]. (16)

By using the Fourier expansions of the Apostol–Bernoulli polynomials and the Apostol–
Euler polynomials shown in [25,26], we establish some symmetric identities for the Apostol–
Bernoulli functions and the Apostol–Euler functions. It turns out that some known results,
for example, Raabe’s [8] multiplication formula for the Bernoulli functions, Bayad’s [27]
multiplication formula for the Euler functions, and Hermite’s [28] identity for the floor
function, are obtained as special cases. Moreover, we also show that a relation for the num-
ber of lattice points in the case of triangles, a symmetric identity for the sums considered
by Cetin et al. [29], are established as easy consequences.

2. An Auxiliary Lemma

Before giving our main results, we first present the following auxiliary lemma.

Lemma 1. Let a, b ∈ N. Then, for x ∈ R,

a−1

∑
j=0

δZ

(
bx +

bj
a

)
=

b−1

∑
j=0

δZ

(
ax +

aj
b

)
, (17)

where δZ(x) = 1 or 0 according to x ∈ Z or x ∈ R \Z.

Proof. We write a = a1d and b = b1d, where d = (a, b), we have (a1, b1) = 1. Hence,
we obtain from the familiar division algorithm stated in ([30] Theorem 1.14) that for each
j ∈ {0, 1, . . . , a1 − 1}, there exists qj ∈ Z and unique rj ∈ {0, 1, . . . , a1 − 1} such that

b1 j = a1qj + rj. (18)

It follows from (18) that
a−1

∑
j=0

δZ

(
bx +

bj
a

)
= d

a1−1

∑
j=0

δZ

(
b1dx +

b1 j
a1

)

= d
a1−1

∑
j=0

δZ

(
b1dx +

j
a1

)

=

{
d, a1b1dx ∈ Z,
0, a1b1dx ∈ R \Z.

(19)
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Similarly, we have
b−1

∑
j=0

δZ

(
ax +

aj
b

)
=

{
d, a1b1dx ∈ Z,
0, a1b1dx ∈ R \Z.

(20)

Thus, by equating (19) and (20), we obtain (17) immediately.

3. Statement of Main Results

For convenience, in the following we always denote by i the square root of −1 such
that i2 = −1. For the sake of convergence, the sum

+∞

∑
k=−∞

1
k + a

(a 6∈ Z)

is interpreted as

lim
N→∞

N

∑
k=−N

1
k + a

.

We now give the symmetric identity for the Apostol–Bernoulli functions as follows.

Theorem 1. Let a, b, n ∈ N, ω ∈ C \ {0}. Then, for x ∈ R,

an−1
a−1

∑
j=0

ωbjBn

(
bx +

bj
a

; ωa
)
= bn−1

b−1

∑
j=0

ωajBn

(
ax +

aj
b

; ωb
)

. (21)

Proof. We know from (14) and the Fourier expansions of the Apostol–Bernoulli polynomi-
als shown in ([25] Theorem 2.1) or ([26] Theorem 1.1) that the Apostol–Bernoulli functions
can be defined for n ∈ N, x ∈ R, ω ∈ C \ {0} by

Bn(x; ω) = − n!
ωx(2πi)n

∗
∑
k∈Z

e2πikx

(k− log ω
2πi )

n
, (22)

where ∑∗k∈Z = ∑k∈Z\{0} if ω = 1, and ∑∗k∈Z = ∑k∈Z if ω 6= 1. By replacing x with bx + bj
a

and ω by ωa in (22), we have

Bn

(
bx +

bj
a

; ωa
)
= − n!

ωabx+bj(2πi)n

∗
∑
k∈Z

e2πibkx · e
2πibkj

a

(k− a log ω
2πi )

n
. (23)

It follows from (23) and the familiar geometric sums stated in ([30] Theorem 8.1) that

an−1
a−1

∑
j=0

ωbjBn

(
bx +

bj
a

; ωa
)

= − n! · an−1

ωabx(2πi)n

∗
∑
k∈Z

e2πibkx

(k− a log ω
2πi )

n

a−1

∑
j=0

e
2πibkj

a

= − n! · an

ωabx(2πi)n

∗
∑
k∈Z
a|bk

e2πibkx

(k− a log ω
2πi )

n
. (24)

Let d = (a, b). If we write a = a1d and b = b1d, then we can rewrite (24) as



Symmetry 2023, 15, 1384 5 of 11

an−1
a−1

∑
j=0

ωbjBn

(
bx +

bj
a

; ωa
)

= − n! · an

ωabx(2πi)n

∗
∑
k∈Z
a1|k

e2πibkx

(k− a log ω
2πi )

n

= − n! · an

ωabx(2πi)n

∗
∑
k∈Z

e2πia1bkx

(a1k− a1d log ω
2πi )

n

= − n! · (a, b)n

ωabx(2πi)n

∗
∑
k∈Z

e
2πiabkx
(a,b)

(k− (a, b) log ω
2πi )

n
. (25)

Replacing a with b and b with a in (25), we have

bn−1
b−1

∑
j=0

ωajBn

(
ax +

aj
b

; ωb
)
= − n! · (a, b)n

ωabx(2πi)n

∗
∑
k∈Z

e
2πiabkx
(a,b)

(k− (a, b) log ω
2πi )

n
. (26)

Therefore, we obtain (21) immediately when equating (25) and (26). This completes the
proof of Theorem 1.

It follows that we show some special cases of Theorem 1. We have the following results.

Corollary 1. Let a, n ∈ N, ω ∈ C \ {0}. Then, for x ∈ R,

an−1
a−1

∑
j=0

ω jBn

(
x +

j
a

; ωa
)
= Bn(ax; ω). (27)

Proof. Taking b = 1 in Theorem 1, we obtain the desired result.

In particular, the case ω = 1 in Corollary 1 gives Raabe’s [8] multiplication formula
for the Bernoulli functions, namely,

an−1
a−1

∑
j=0

Bn

(
x +

j
a

)
= Bn(ax), (28)

where a, n ∈ N, x ∈ R, Bn(x) is the n-th Bernoulli function given for n ∈ N, x ∈ R by

B1(x) =

{
0, x ∈ Z,
B1({x}), x ∈ R \Z,

Bn(x) = Bn({x}) (n ≥ 2, x ∈ R). (29)

We note that Carlitz [31] and Bayad and Raouj [32] used Raabe’s multiplication Formula
(28) to establish some reciprocity formulas for the generalized Dedekind sums.

Corollary 2. Let a, b, n ∈ N. Then, for x ∈ R,

an−1
a−1

∑
j=0

Bn

(
bx +

bj
a

)
= bn−1

b−1

∑
j=0

Bn

(
ax +

aj
b

)
. (30)

Proof. By setting ω = 1 in Theorem 1, the desired result follows immediately.

It becomes obvious that the case b = 1 in Corollary 2 leads to Raabe’s multiplication
Formula (28). We next use Corollary 2 to deduce the following result.

Corollary 3. Let a, b ∈ N. Then, for x ∈ R,

a−1

∑
j=0

[
bx +

bj
a

]
=

b−1

∑
j=0

[
ax +

aj
b

]
. (31)
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Proof. Denote by δl,k the Kronecker delta function given for l, k ∈ N∪ {0} by δl,k = 1 or 0
according to l = k or l 6= k. It is easy to see from (29) that for n ∈ N, x ∈ R,

Bn(x) = Bn({x}) +
1
2

δ1,nδZ(x), (32)

where δZ(x) is as in (17). Since B1(x) = x− 1
2 , by taking n = 1 in Corollary 2, in light of (16)

and Lemma 1, we prove Corollary 3.

If we take b = 1 in Corollary 3, then we obtain Hermite’s [28] identity for the floor
function, namely,

a−1

∑
j=0

[
x +

j
a

]
= [ax], (33)

where a ∈ N, x ∈ R. For another generalizations of Hermite’s identity (33), the interested
reader may consult [33]. As another application of Corollary 3, we here give the following
relation for the number of lattice points in the case of triangles.

Corollary 4. Let a, b ∈ N, c ∈ R. Assume that T1(a, b, c) represents the triangle in R2 with vertices

(−a{c}, 0), (a, 0), (a, b + b{c}),

T2(a, b, c) represents the triangle in R2 with vertices

(−b{c}, 0), (b, 0), (b, a + a{c}).

Then,
#(T1(a, b, c) ∩Z2) = #(T2(a, b, c) ∩Z2), (34)

where # denotes the cardinality of a set S.

Proof. Since the number of lattice points on the acute angles of T1(a, b, c) is

[b + b{c}] + a + 1 + [a{c}] = a + b + 1 + [a{c}] + [b{c}], (35)

the number of lattice points on the acute angles of T2(a, b, c) is

[a + a{c}] + b + 1 + [b{c}] = a + b + 1 + [a{c}] + [b{c}], (36)

by taking x = 0 in Corollary 3, in view of (35) and (36), we see that Corollary 4 holds true
in the case when c = 0. We now consider the case c 6= 0. Let T3(a, b, c) be the triangle in R2

with vertices
(−a{c}, 0), (0, 0), (0, b{c}),

and T4(a, b, c) be the triangle in R2 with vertices

(−b{c}, 0), (0, 0), (0, a{c}).

Obviously, the graph of T3(a, b, c) and the graph of T4(a, b, c) are symmetric about the line
y = −x. This indicates that the number of lattice points in the interior of T3(a, b, c) is equal
to the number of lattice points in the interior of T4(a, b, c), and the number of lattice points
on the hypotenuse of T3(a, b, c) is equal to the number of lattice points on the hypotenuse
of T4(a, b, c). Therefore, by taking x = {c} in Corollary 3, we say from (35) and (36) that
Corollary 4 holds true in the case when c 6= 0. This completes the proof of Corollary 4.

We next present the symmetric identity for the Apostol–Euler functions, as follows.
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Theorem 2. Let a, b, n ∈ N, ω ∈ C \ {0} with a ≡ b (mod 2). Then, for x ∈ R,

an
a−1

∑
j=0

(−1)jωbjEn

(
bx +

bj
a

; ωa
)
= bn

b−1

∑
j=0

(−1)jωajEn

(
ax +

aj
b

; ωb
)

. (37)

Proof. We see from (15) and the Fourier expansions of the Apostol–Euler polynomials
shown in ([25] Theorem 2.2) or ([26] Theorem 1.2) that the Apostol–Euler functions can be
defined for n ∈ N, x ∈ R, ω ∈ C \ {0} by

En(x; ω) =
2 · n!

ωx(2πi)n+1

∗∗
∑
k∈Z

e2πi(k− 1
2 )x

(k− 1
2 −

log ω
2πi )

n+1
, (38)

where ∑∗∗k∈Z = ∑k∈Z\{0} if ω = −1, and ∑∗∗k∈Z = ∑k∈Z if ω 6= −1. If we replace x with

bx + bj
a and ω with ωa in (38), then we have

En

(
bx +

bj
a

; ωa
)
=

2 · n!
ωabx+bj(2πi)n+1

∗∗
∑
k∈Z

e2πi(k− 1
2 )bx · e

2πi(bk− b
2 )j

a

(k− 1
2 − a log ω

2πi )
n+1

. (39)

Hence, we discover from (39) and the geometric sums stated in ([30] Theorem 8.1) that

an
a−1

∑
j=0

(−1)jωbjEn

(
bx +

bj
a

; ωa
)

=
2 · n! · an

ωabx(2πi)n+1

∗∗
∑
k∈Z

e2πi(k− 1
2 )bx

(k− 1
2 − a log ω

2πi )
n+1

a−1

∑
j=0

e
2πi(bk− b−a

2 )j
a

=
2 · n! · an+1

ωabx(2πi)n+1

∗∗
∑
k∈Z

a|(bk− b−a
2 )

e2πi(k− 1
2 )bx

(k− 1
2 − a log ω

2πi )
n+1

. (40)

It is easily seen from a | (bk− b−a
2 ) for k ∈ Z that there exists q ∈ Z such that

b(2k− 1) = a(2q− 1). (41)

If we write a = a1d and b = b1d, where d = (a, b), then we conclude from (41) that

a1 | (2k− 1) (k ∈ Z). (42)

It follows from (42) that (40) can be rewritten as

an
a−1

∑
j=0

(−1)jωbjEn

(
bx +

bj
a

; ωa
)

=
2 · n! · an+1

ωabx(2πi)n+1

∗∗
∑
k∈Z

a1|(2k−1)

e2πi(k− 1
2 )bx

(k− 1
2 − a log ω

2πi )
n+1

=
2 · n! · an+1

ωabx(2πi)n+1

∗∗
∑
k∈Z

eπia1bkx

( a1k
2 − a log ω

2πi )
n+1

=
2 · n! · (a, b)n+1

ωabx(2πi)n+1

∗∗
∑
k∈Z

e
πiabkx
(a,b)

( k
2 − (a, b) log ω

2πi )
n+1

. (43)
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Replacing a with b and b with a in (43) gives

bn
b−1

∑
j=0

(−1)jωajEn

(
ax +

aj
b

; ωb
)

=
2 · n! · (a, b)n+1

ωabx(2πi)n+1

∗∗
∑
k∈Z

e
πiabkx
(a,b)

( k
2 − (a, b) log ω

2πi )
n+1

. (44)

Thus, by equating (43) and (44), we obtain (37) immediately and finish the proof of Theorem 2.

We next discuss some special cases of Theorem 2. We have the following results.

Corollary 5. Let a, n ∈ N, ω ∈ C \ {0} with 2 - a. Then, for x ∈ R,

an
a−1

∑
j=0

(−ω)jEn

(
x +

j
a

; ωa
)
= En(ax; ω). (45)

Proof. Setting b = 1 in Theorem 2, we obtain the desired result.

Trivially, the case ω = 1 in Corollary 5 gives that for a, n ∈ N, x ∈ R with 2 - a,

an
a−1

∑
j=0

(−1)jEn

(
x +

j
a

)
= En(ax), (46)

where En(x) is the n-th quasi-periodic Euler function given for n ∈ N, x ∈ R by

En(x) = (−1)[x]En({x}). (47)

It is worth mentioning that Formula (46) was also discovered by Bayad ([27] Equation
(1.2.13)), and has been used by Kim and Son [34] and Hu, Kim, and Kim [35] to establish
some reciprocity formulas for the generalized Dedekind sums involving quasi-periodic
Euler functions.

Corollary 6. Let a, b, n ∈ N with a ≡ b (mod 2). Then, for x ∈ R,

an
a−1

∑
j=0

(−1)jEn

(
bx +

bj
a

)
= bn

b−1

∑
j=0

(−1)jEn

(
ax +

aj
b

)
. (48)

Proof. Taking ω = 1 in Theorem 2 gives the desired result.

It is clear that the case b = 1 in Corollary 6 gives Bayad’s multiplication formula (46).
In fact, we can use Corollary 6 to yield the following result.

Corollary 7. Let a, b ∈ N with a ≡ b (mod 2). Then, for x ∈ R,

a
a−1

∑
j=0

(−1)j+[bx+ bj
a ]

(
bx +

bj
a
−
[

bx +
bj
a

]
−1

2

)

= b
b−1

∑
j=0

(−1)j+[ax+ aj
b ]

(
ax +

aj
b
−
[

ax +
aj
b

]
−1

2

)
. (49)

Proof. Since E1(x) = x− 1
2 , by taking n = 1 in Corollary 6, in view of (16) and (47), we

obtain the desired result.

Obviously, the case b = 1 in Corollary 7 gives for a ∈ N, x ∈ R with 2 - a that

a
a−1

∑
j=0

(−1)j+[x+ j
a ]

(
x +

j
a
−
[

x +
j
a

]
−1

2

)
= (−1)[ax]

(
ax− [ax]− 1

2

)
, (50)



Symmetry 2023, 15, 1384 9 of 11

which can be thought of as the complement of Hermite’s identity (33). It is interesting to
point out that Corollary 7 can be used to establish a symmetric identity for the sums (52)
considered by Cetin et al. [29], as follows.

Corollary 8. Let a, b ∈ N with a ≡ b (mod 2) and (a, b) = 1. Then

aC1(b, a) = bC1(a, b) +
a− b

2
, (51)

where C1(b, a) is defined for a, b ∈ N by

C1(b, a) =
a−1

∑
j=0

(−1)j+[
bj
a ]B1

(
bj
a

)
. (52)

Proof. Taking x = 0 in Corollary 7, it then follows from (16) and (32) that

a
a−1

∑
j=0

(−1)j+[
bj
a ]

(
B1

(
bj
a

)
−1

2
δZ

(
bj
a

))

= b
b−1

∑
j=0

(−1)j+[
aj
b ]

(
B1

(
aj
b

)
−1

2
δZ

(
aj
b

))
. (53)

Since a and b are relatively prime, we know from ([30] Theorem 3.8) that two lattice points
(a, b) and (0, 0) (two lattice points (b, a) and (0, 0)) are mutually visible. Hence, from (53)
we have

aC1(b, a)− a
2
= bC1(a, b)− b

2
,

as desired. This concludes the proof of Corollary 8.

We here mention that Cetin [36] has shown that the sum in (52) is closely related to the
Hardy sums. For some reciprocity formulas of the Hardy sums, one is referred to [37–41].

4. Conclusions

In this paper, we have used the Fourier expansions of the Apostol–Bernoulli poly-
nomials and the Apostol–Euler polynomials to establish some symmetric identities for
the Apostol–Bernoulli functions and the Apostol–Euler functions. The results presented
here are the corresponding generalizations of Raabe’s [8], Bayad’s [27], and Hermite’s [28]
results. We also point out that a relation for the number of lattice points in the case of
triangles, a symmetric identity for the sums considered by Cetin et al. [29], can be easily
deduced. As shown in the third section, the topics explored in this paper are closely related
to the generalized Dedekind sums and the Hardy sums. We will study some properties for
the products of the Apostol–Bernoulli functions and the Apostol–Euler functions, and give
some new reciprocity formulas for the generalized Dedekind sums and the Hardy sums in
another papers.
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