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Abstract: A fuzzy set is a powerful tool to handle uncertainty and ambiguity, and generally, the
notions of symmetry and similarity are also exhibited in the fuzzy set theory. The class of (m, n)-rung
orthopair fuzzy sets through two universes are more flexible and efficient than the q-rung orthopair
fuzzy sets when discussing the symmetry and similarity between multiple objects. This research arti-
cle comprehensively investigates ten similarity measures that employ cosine and cotangent functions
for comparing (m, n)-rung orthopair fuzzy sets, which are a superclass of q-rung orthopair fuzzy
sets. Moreover, the proposed weighted similarity measures are applied to real-world problems in
building material analysis. A comparative analysis is conducted between the proposed measures and
the existing cosine and cotangent measures of q-rung orthopair fuzzy sets, showing that the proposed
measures are more efficient than existing ones. Additionally, a numerical example demonstrates the
practical and scientific applications of these similarity measures in classifying plant leaf diseases.
The sensitivity analysis shows that the existing measures cannot be applied to (m, n)-fuzzy data for
distinct values of m and n. The results are supported by graphical interpretations, further illustrating
the efficacy of the proposed measures.

Keywords: (m, n)-rung orthopair fuzzy sets; cosine similarity measure; pattern recognition; plant
leaf disease

1. Introduction

The concept of symmetry holds tremendous significance in science and engineering
and is widely observed in nature, fine arts, and various human creative pursuits. Its founda-
tions are rooted in mathematics, while its artistic expression and communication medium
can be traced back to early human endeavors. Symmetry can be defined as an object’s
property that identifies two or more parts as identical concerning a point, line, or plane. In
geometry, symmetry is formally defined as the invariance of a configuration of elements
under a group of automorphic transformations [1–3]. Recent research has emphasized
the versatility of symmetry as a tool for establishing connections across a wide range of
disciplines, encompassing mathematics, physics, chemistry, biology, archaeology, geology,
and pattern recognition. By integrating the deep theoretical foundations of symmetry and
similarity with its practical applications in various domains, this research aims to advance
our understanding and utilization of this fundamental concept. This interdisciplinary
exploration will contribute to the comprehension of symmetry and its implications for
diverse fields, opening the path to novel discoveries and practical advancements.

The fusion of technology and generalized forms of classical sets is instrumental in
solving many real-world complex problems, which involve incomplete and uncertain
information. A classical set is defined by its characteristic function from a universe of
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discourse to two point sets {0, 1}. The classical set theory falls short when dealing with
intricate issues that encompass vague and uncertain information. To handle the vagueness
and impreciseness in complex problems, fuzzy sets (FSs) were created by Zadeh [4] as a
generalization of classical sets. The application of the Fuzzy set theory extends to multiple
fields, including control theory, artificial intelligence, pattern recognition, database system,
and medical diagnosis. In 1986, Atanassov [5] created intuitionistic fuzzy sets (IFSs), a
superclass of FSs. After the occurrence of the Atanassov [5] paper, several generalizations of
IFSs have appeared in the literature. In 2013, Yager [6] presented a superclass of IFSs called
Pythagorean fuzzy sets (PFSs). PFSs are more extensive than the IFSs and can describe
more imprecise and vague information in the decision-making process. In 2017, Yager
introduced the q-rung ortho-pair fuzzy sets (q-ROFSs) [7]. This innovative approach offers
a highly effective and powerful tool to manage imprecise and uncertain information across
various real-world applications and problems. In 2019, Senapati and Yager [8] developed
and introduced the concept of Fermatean fuzzy sets (FFSs), a specific instance of q-ROFSs
when q = 3. Recently, Ibrahim and Alshamari [9] initiated the study of (m, n)-rung orthopair
fuzzy sets ((m, n)-ROFSs) as a superclass of q-ROFSs. They discuss the applications of these
fuzzy sets in the context of multi-criteria decision-making methods. This concept is also
independently investigated by Jun and hur [10] and AI-Shami [11] with the name of (m,
n)-fuzzy sets. The (m, n)-ROFSs are more flexible and effective as compared to q-ROFSs in
handling the uncertainty and vagueness in MADM and MCDM.

Symmetry plays a fundamental role in shape analysis and object recognition, as it is
considered a pre-attentive feature that enhances object recognition and reconstruction. After
the invention of fuzzy sets, several authors have proposed methods and algorithms based
on fuzzy measures of symmetry and similarity for pattern recognition and classification of
fuzzy objects. Helgason and Jobe [12] investigated fuzzy measures of symmetry breaking,
similarity, and comparison within the context of non-statistical information pertaining to a
single patient. This research may be relevant to healthcare and medical decision-making.
Zainuddin and Pauline [13] presented an effective fuzzy C-means algorithm based on a
symmetry–similarity approach. The algorithm aims to improve the performance of fuzzy
C-means clustering in handling symmetric patterns in data. Miranda and Grabisch [14]
created p-symmetric fuzzy measures and explored the properties and applications of these
measures in uncertainty, fuzziness, and knowledge-based systems. Saha and Bandyopad-
hyay [15] presented a new point symmetry-based fuzzy genetic clustering technique for
automatically evolving clusters. This technique combines symmetry principles and genetic
algorithms to improve the clustering process. Colliota and Tuzikovb [16] studied approxi-
mate reflectional symmetries of fuzzy objects and their application in model-based object
recognition. This research focused on developing fuzzy models to recognize and analyze
objects based on their approximate reflectional symmetries and similarities.

The similarity measure is a crucial metric that can evaluate the degree of similarity
between two objects, making it an essential tool for distinguishing diverse patterns in
practical applications. Adlassnig [17], Zwick et al. [18], Pappis and Karacapilidis [19],
Chen et al. [20], Zeng and Li [21], Mitchel [22], and others, have extensively studied
the similarity measures between fuzzy sets. Their research explored the potential of
fuzzy sets to facilitate the development of corresponding applications in areas such as
image processing, medical diagnosis, pattern recognition, and decision-making. Since the
emergence of interval type-2 fuzzy sets (IFSs), several similarity measures between IFSs
have appeared in this literature [23–36]. Some researchers have investigated and studied
these similarity measures between IFSs based on cosine functions, including Ye [37–39],
Shi and Ye [40], Zhau et al. [41], and Liu et al. [42,43]. Tian [44] and Rajarajeswari and
Uma [45] proposed similarity measures between IFSs based on cotangent functions and
demonstrated their applications in medical diagnoses. Recently, Garg et al. [46] proposed
Choquet integral-based cosine similarity measures for interval-valued IFSs and presented
their applications in pattern recognition.
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PFS is a powerful tool for depicting vagueness and impreciseness in MADM and
MCDM. Recently, many researchers, such as Garg [47], Zeng, Li, and Yin [48], Peng,
Yuan, and Yang [49], Husain, and Yang [50], Wei and Wei [51], Ejeiwa et al. [52–54], and
others, presented different similarity measures between PFSs for solving MADM problems.
Recently, different similarity measures between FFSs and their applications in MADM
and MCDM have appeared in the literature [55–60]. q-ROFSs are powerful mathematical
tools for handling uncertain, imprecise, and vague information in real-world problems,
surpassing PFS and FFS regarding capability. In 2019, Peng and Dai [61] introduced a
similarity measure between q-ROFSs that assessed the quality of classroom teaching. Jan
et al. [62] considered the generalized dice similarity between ROFSs. Farhadinia et al.
explored a range of similarity measures for q-ROFSs. Peng and Liu [63] investigated
information measures for q-ROFSs. Liu, Chen, and Peng [64], as well as Wang et al. [65],
introduced several similarity measures between q-ROFSs based on cosine and cotangent
functions and explored their properties and applications.

The existing generalizations of PFSs, FSSs, and q-ROFSs of IFSs exhibit symmetry
between the powers of MD and NMD of an attribute within the universe of discourse. In
decision-making, it is not flexible in prioritizing different powers of the MD or NMD of
an attribute in these extensions of IFSs. The motivations for writing this research are to
consider a new class of IFSs, called (m, n)-round orthopair fuzzy sets((m, n)-ROFSs) for
creating cosine and cotangent similarity measures, which helps to expand the MD and
NMD more than all types of q-ROFSs. Classes with distinct powers enable us to evaluate
the input data with different levels of significance for MD and NMD, which is appropriate
in MADM problems. This matter does not apply to the other generalizations of IFSs because
they give equal significance to MD and NMD viz 1 in IFSs, 2 in PFSs, 3 in FFSs, and q in
q-ROFSs. In (m, n)-orthopair fuzzy sets, different power function scales are utilized to
widen the scope of the decision-making problems.(m, n)-rung orthopair fuzzy sets can be
applied to more diverse scenarios than FFSs, PFSs, and IFSs sets, due to their wider range
in depicting membership grades. The main advantage of(m, n)-rung orthopair fuzzy sets
is that they can describe more uncertainties than q-ROFSs, which can be applied to many
decision-making problems. The (m, n)-ROFSs through double universes are more flexible
and efficient than m-ROFS and n-ROFS when discussing the similarity between multiple
objects. In other words, (m, n)-ROFSs can more effectively address MADM problems,
including all q-ROFS decision-making problems as a special case.

The structure of this article is as follows. Section two presents a review of generalized
fuzzy structures along with their cosine and cotangent similarity measures. Section three
establishes similarity and weighted similarity measures between (m, n)-ROFSs based on
cosine and cotangent functions. Section four compares the newly established similarity
measures for (m, n)-ROFSs with existing q-ROFSs, PFSs, and IFSs based on cosine and
cotangent functions. The comparison is made by considering pattern recognition, medical
diagnosis, and building material problems discussed in the literature. In section five,
the established similarity measures are utilized to classify plant leaf disease, and the
effectiveness and reasonableness of the proposed measures are demonstrated. Finally,
section six concludes the article with some closing remarks.

All the abbreviations and their description used in the paper are presented in Table 1.
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Table 1. Abbreviations and their description.

Abbreviation Description

FS Fuzzy set
IFS Intuitionistic fuzzy set
PFS Pythagorean fuzzy set
FFS Fermatean fuzzy set

q-ROFS q-rung orthopair fuzzy set
(m, n)-ROFS (m, n)-rung orthopair fuzzy set

(m, n)− ROFS(P) The family of all (m, n)-ROFSs defined over P
MD Membership degree

NMD Non-membership degree
IMD Indeterminacy membership degree

ϑE(p) MD of p to E
ςE(p) NMD of p to E
πE(p) IMD of p to E

2. Preliminaries

In this section, we will examine different types of generalized fuzzy structures and
the cosine and cotangent similarity measures currently used for these structures. In the
remainder of the paper, we will assume that P is a finite, discrete, and non-empty discourse
set consisting of r elements, denoted as p1, p2, . . . , pr.

2.1. Generalized Fuzzy Structures

Definition 1. Let us consider that P is a fixed set. A structure E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P},
where ϑE : P→ [0, 1] and ςE : P→ [0, 1] denotes the membership and non-membership functions
of E, called:

(a) Intuitionistic fuzzy set [5] in P if 0 ≤ ϑE(p) + ςE(p) ≤ 1, ∀ p ∈ P.
(b) Pythagorean fuzzy set [6] in P if 0 ≤ (ϑE(p))2 + (ςE(p))2 ≤ 1, ∀ p ∈ P.
(c) Fermatean fuzzy set [8] in P if 0 ≤ (ϑE(p))3 + (ςE(p))3 ≤ 1, ∀ p ∈ P.
(d) q-rung orthopair fuzzy set [7] in P if 0 ≤ (ϑE(p))q + (ςE(p))q ≤ 1, ∀ p ∈ P and q ∈ N.

Definition 2 ([9–11]). A(m, n)-rung orthopair fuzzy set E in a universe of discourse P is a
structure defined as follows:

E = {〈p, (ϑE(p), ςE(p))〉 : p ∈ P}

where ϑE : P→ [0, 1] and ςE : P→ [0, 1] denote the membership and non-membership functions
of E, which satisfies the following condition:

0 ≤ (ϑE(p))m + (ςE(p))n ≤ 1

∀ p∈ P and m, n ∈ N.

Remark 1 ([9–11]). A (m, n)-ROFS E in P coincides with IFS (resp., PFS, FFS, q-ROFS ) if m =
n = 1 (resp., m = n = 2, m = n = 3, m = n = q).

Proposition 1 ([11]). For any universe of discourse P:

(a) Every IFS is an (m, n)-ROFS.
(b) If m ≥ 2 and n ≥ 2 then a PFS is an (m, n)-ROFS.
(c) If m ≥ 3 and n ≥ 3 then a FFS is an (m, n)-ROFS.
(d) If m ≥ q and n ≥ q then a q-ROFS is an (m, n)-ROFS.

Remark 2. The converse of the relationships presented in Proposition 1 is false.
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Definition 3 ([9–11]). For any (m, n)-ROFSs E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P}, E1 =
{〈p, ϑE1(p), ςE1(p)〉 : p ∈ P}, and E2 = {〈p, ϑE2(p), ςE2(p)〉 : p ∈ P} in P.

The subset, equality, union, intersection, and complement operations over (m, n)− ROFS(P)
are defined as follows:

(a) E1 b E2 ⇔ ϑE1(p) ≤ ϑE2(p) and ςE1(p) ≥ ςE2(p) ∀ p ∈ P.
(b) E1 = E2 ⇔ ϑE1 = ϑE2 and ςE1 = ςE2 .

(c) E1 dE2 =

{
〈p, ϑE1(p)

∨
ϑE2(p),

ςE1(p)
∧

ςE2(p)〉 : p ∈ P

}
.

(d) E1 eE2 =

{
〈p, ϑE1(p)

∧
ϑE2(p),

ςE1(p)
∨

ςE2(p)〉 : p ∈ P

}
.

(e) Ec = {〈p, (ςE(p))
n
m , (ϑE(p))

m
n : p ∈ P}.

Proposition 2 ([9–11]). Let E1 = {〈p, ϑE1(p), ςE1(p)〉 : p ∈ P} and E2 = {〈p, ϑE2(p), ςE2
(p)〉 : p ∈ P} be two (m, n)-ROFS on P. Then,

(a) E1 dE2 = E2 dE1.
(b) E1 eE2 = E2 eE1.
(c) (Ec

1)
c = E1.

(d) (E1 dE2)
c = Ec

1 eEc
2.

(e) (P1 eE2)
c = Ec

1 dEc
2.

Definition 4 ([5–8]). Let P be a universe of discourse. Then, for any

(a) IFS E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P} in P, the expression

πE(p) = (1− ϑE(p) + ςE(p))

is called the IMD of p ∈ P.
(b) PFS E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P}, in P, the expression

πE(p) =
√
(1− ϑE(p))2 + (ςE(p))2

is called the IMD of p ∈ P.
(c) FFS E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P}, in P, the expression

πE(p) = 3
√
(1− ϑE(p))3 + (ςE(p))3

is called the IMD of p ∈ P.
(d) q-ROFS E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P} in P, the expression

πE(p) = q
√
(1− ϑE(p))q + (ςE(p))q

is called the IMD of p ∈ P.

Definition 5. For any (m, n)-ROFS E = {〈p, ϑE(p), ςE(p)〉 : p ∈ P} over P, the expression

πE(p) =
m+n

2

√
(1− ϑE(p))m + (ςE(p))n

is called the IMD of p ∈ P.

Remark 3. The IMD πE(p) of p ∈ P to IFS (resp., PFS, FFS, q-ROFS) E is a special case of IMD
πE(p) of p to (m, n)-ROFS E for m = n = 1 (resp., m = n = 2 m = n = 3, m = n = q).
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Remark 4. Clearly, for each (m, n)-ROFS E in P,

π
m+n

2
E (p) + (ϑE(p))m + (ςE(p))n = 1,

∀ p ∈ P.

2.2. Cosine and Cotangent Similarity Measures for Generalized Fuzzy Structures

The cosine and cotangent similarity measures have been applied in numerous MADM
and MCDM methods to calculate the degree of proximity between any two objects. The
study of the cosine measure between two IFSs E and F was initiated by Ye [37] in 2011.
In 2013, Shi and Ye [40] created new cosine similarity measures for IFSs, which extend
the measures proposed by Ye [37] and are applied to the fault diagnosis of turbines. In
2016, Ye [38] created two cosine similarity measures for IFSs based on cosine functions
and applied them to MADM. The cotangent function-based similarity measures for IFSs
were created by Tian [44] and Rajeshwari and Uma [45] in 2013. The weighted cosine
and cotangent similarity measures between IFSs were defined by Ye [37], Shi and Ye [40],
Tian [44], and Rajarajeshwari and Uma [45]. In 2018, Wei and Wei [51] proposed cosine and
cotangent measures and weighted cosine and cotangent measures between PFSs. In 2019,
Wang et al. [65] extended cosine and cotangent measures of similarity for q-ROFSs, which
are shown in Tables 2 and 3. The cosine and cotangent similarity and weighted similarity
measures for IFSs and PFSs are exceptional cases of corresponding similarity measures
defined by Wang et al. [65]. Recently, Kirisci [58] created some cosine similarity measures
for Fermatean fuzzy sets, which is a particular case of q-ROFS for q = 3.

Table 2. Cosine and cotangent-based measures of similarity between q-ROFSs [51].

S. N. Similarity Measure

1 q− ROFC1(E,F) =
1
r ∑r

j=1
ϑ

q
E(pj)ϑ

q
F(pj) + ς

q
E(pj)ς

q
F(pj)√

(ϑ
q
E(pj))2 + (ς

q
E(pj))2

√
(ϑ

q
F(pj))2 + (ς

q
F(pj))2

2 q− ROFC2(E,F) =
1
r ∑r

j=1[
(ϑ

q
E(pj)ϑ

q
F(pj) + ς

q
E(pj)ς

q
F(pj) + π

q
E(pj)π

q
F(pj))√

(ϑ
q
E(pj))2 + (ς

q
E(pj))2 + (π

q
E(pj))2

√
(ϑ

q
F(pj))2 + (ς

q
F(pj))2 + (π

q
F(pj))2

]

3 q− ROFCS1 (E,F) =
1
r ∑r

j=1 cos[
π

2
(max(|ϑq

E(pj)− ϑ
q
F(pj)|, |ς

q
E(pj)− ς

q
F(pj)|))]

4 q− ROFCS2 (E,F) =
1
r ∑r

j=1 cos[
π

4
(|ϑq

E(pj)− ϑ
q
F(pj)|+ |ς

q
E(pj)− ς

q
F(pj)|)]

5 q− ROFCS3 (E,F) =
1
r ∑r

j=1 cos[
π

2
(max(|ϑq

E(pj)− ϑ
q
F(pj)|, |ς

q
E(pj)− ς

q
F(pj)|, |π

q
E(pj)− π

q
F(pj)|))]

6 q− ROFCS4 (E,F) =
1
r ∑r

j=1 cos[
π

4
(|ϑq

E(pj)− ϑ
q
F(pj)|+ |ς

q
E(pj)− ς

q
F(pj)|+ |π

q
E(pj)− π

q
F(pj)|)]

7 q− ROFCot1(E,F) =
1
r ∑r

j=1 cot[
π

4
+

π

4
(max(|ϑq

E(pj)− ϑ
q
F(pj)|, |ς

q
E(pj)− ς

q
F(pj)|))]

8 q− ROFCot2(E,F) =
1
r ∑r

j=1 cot[
π

4
+

π

8
(|ϑq

E(pj)− ϑ
q
F(pj)|+ |ς

q
E(pj)− ς

q
F(pj)|)]

9 q− ROFCot3(E,F)=
1
r ∑r

j=1 cot[
π

4
+

π

4
(max(|ϑq

E(pj)− ϑ
q
F(pj)|, |ς

q
E(pj)− ς

q
F(pj)|, |π

q
E(pj)− π

q
F(pj)|))]

10 q− ROFCot4 (E,F) =
1
r ∑r

j=1 cot[
π

4
+

π

8
(|ϑq

E(pj)− ϑ
q
F(pj)|+ |ς

q
E(pj)− ς

q
F(pj)|+ |π

q
E(pj)− π

q
F(pj)|))]
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Table 3. Cosine and cotangent-based weighted similarity measures between q-ROFSs [65].

S. N. Similarity Measure

1 q− ROFWC1(E,F) = ∑r
j=1 ωj[

(ϑ
q
E(pj)ϑ

q
F(pj) + ς

q
E(pj)ς

q
F(pj))√

(ϑ
q
E(pj))2 + (ς

q
E(pj))2

√
(ϑ

q
F(pj))2 + (ς

q
F(pj))2

]

2 q− ROFWC2(E,F) = ∑r
j=1 ωj[

(ϑ
q
E(pj)ϑ

q
F(pj) + ς

q
E(pj)ς

q
F(pj) + π

q
E(pj)π

q
F(pj))√

(ϑ
q
E(pj))2 + (ς

q
E(pj))2 + (π

q
E(pj))2

√
(ϑ

q
F(pj))2 + (ς

q
F(pj))2 + (π

q
F(pj))2

]

3 q− ROFWCS1 (E,F) = ∑r
j=1 ωjcos[

π

2
(max(|ϑq

E(pj)− ϑ
q
F(pj)|, |ς

q
E(pj)− ς

q
F(pj)|))]

4 q− ROFWCS2 (E,F) = ∑r
j=1 ωjcos[

π

4
(|ϑq

E(pj)− ϑ
q
F(pj)|+ |ς

q
E(pj)− ς

q
F(pj)|)]

5 q− ROFWCS3 (E,F) = ∑r
j=1 ωjcos[

π

2
(max(|ϑq

E(pj)− ϑ
q
F(pj)|, |ς

q
E(pj)− ς

q
F(pj)|, |π

q
E(pj)− π

q
F(pj)|))]

6 q− ROFWCS4 (E,F) = ∑r
j=1 ωjcos[

π

4
(|ϑq

E(pj)− ϑ
q
F(pj)|+ |ς

q
E(pj)− ς

q
F(pj)|+ |π

q
E(pj)− π

q
F(pj)|)]

7 q− ROFWCot1(E,F) = ∑r
j=1 ωjcot[

π

4
+

π

4
(max(|ϑq

E(pj)− ϑ
q
F(pj)|, |ς

q
E(pj)− ς

q
F(pj)|))]

8 q− ROFWCot2(E,F) = ∑r
j=1 ωjcot[

π

4
+

π

8
(|ϑq

E(pj)− ϑ
q
F(pj)|+ |ς

q
E(pj)− ς

q
F(pj)|)]

9 q− ROFWCot3 (E,F) = ∑r
j=1 ωjcot[

π

4
+

π

4
(max(|ϑq

E(pj)− ϑ
q
F(pj)|, |ς

q
E(pj)− ς

q
F(pj)|, |π

q
E(pj)− π

q
F(pj)|))]

10 q− ROFWCot4 (E,F) = ∑r
j=1 ωjcot[

π

4
+

π

8
(|ϑq

E(pj)− ϑ
q
F(pj)|+ |ς

q
E(pj)− ς

q
F(pj)|+ |π

q
E(pj)− π

q
F(pj)|)]

3. Cosine and Cotangent Similarity Measures for (m, n)-ROFSs

The (m, n)-ROFSs described by the degrees of membership and non-membership, for
which the sum of the n-th power of the membership degree and the n-th power of the
non-membership degree lies between 0 and 1, are more general than the IFSs, PFSs, and
q-ROFSs, and can describe more vague and imprecise information. In other words, the (m,
n)-ROFSs can deal with the MADM and MCDM problems, which IFSs, PFSs, and q-ROFSs
cannot, and it is clear that IFSs, PFSs, and q-ROFSs are the special (m, n)-ROFSs, which
indicates that (m, n)-ROFSs can be a more effective and powerful tool to deal with the
vagueness and impreciseness involved in MADM and MCDM problems. In this section, we
shall propose the(m, n)-rung ortho-pair fuzzy cosine similarity measures and (m, n)-rung
orthopair fuzzy cotangent similarity measures under the (m, n)-ROFSs environment, which
are new extensions of the similarity measures of IFSs, PFSs, and q-ROFSs.

3.1. Cosine Similarity Measures for (m, n)-ROFSs

This section introduces a cosine similarity measure and a weighted cosine similarity
measure using (m, n)-ROFSs information in a manner analogous to the cosine similarity
measure and weighted cosine similarity measure for IFSs, PFSs, and q-ROFSs.

Definition 6. LetP = {p1, p2, . . . , pr} be a fixed set. Assume thatE = {〈pj, ϑE(pj), ςE(pj)〉|pj ∈
P} and F = {〈pj, ϑF(pj), ςF(pj)〉|pj ∈ P} are two (m, n)-ROFSs of P, then the (m, n)-ROFSs
cosine measure (m, n)− ROFC1 between E and F is defined as follows:

(m, n)− ROFC1(E,F) = 1
r

r

∑
j=1

ϑm
E (pj)ϑ

m
F (pj) + ςn

E(pj)ς
n
F(pj)√

(ϑm
E (pj))2 + (ςn

E(pj))2
√
(ϑm

F (pj))2 + (ςn
F(pj))2

(1)

Remark 5. The cosine measures IFC1(E,F) (resp., PFC1(E,F), q − ROFC1(E,F)) for IFSs
(resp., PFSs, q-ROFSs) are special cases of cosine similarity measures of (m, n)− ROFC1(E,F) of
(m, n)-ROFSs for m = n = 1 (resp., m = n = 2, m = n = q).
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Proposition 3. Let P = {p1, p2, . . . , pr} and E,F ∈ (m, n)− ROFS(P), then the cosine similar-
ity measure of (m, n)− ROFC1(E,F) satisfies the following conditions:

(i) 0 ≤ (m, n)− ROFC1(E,F) ≤ 1.
(ii) (m, n)− ROFC1(E,F) = (m, n)− ROFC1(F,E).
(iii) E = F⇒ (m, n)− ROFC1(E,F) = 1.

Proof.

(i) It is true because of the cosine values within the closed interval [0,1].
(ii) It follows, noting that:

(m, n)− ROFC1(E,F) = 1
r

r

∑
j=1

ϑm
E (pj)ϑ

m
F (pj) + ςn

E(pj)ς
n
F(pj)√

(ϑm
E (pj))2 + (ςn

E(pj))2
√
(ϑm

F (pj))2 + (ςn
F(pj))2

=
1
r

r

∑
j=1

ϑm
F (pj)ϑ

m
E (pj) + ςn

F(pj)ς
n
E(pj)√

(ϑm
F (pj))2 + (ςn

F(pj))2
√
(ϑm

E (pj))2 + (ςn
E(pj))2

= (m, n)− ROFC1(F,E).

(iii) If E = F, then ϑE(pj) = ϑF(pj) and ςE(pj) = ςF(pj) for j = 1, 2, . . . , n. Thus, from
Equation (1), we have the following: (m, n)− ROFC1(E,F) = 1

Proposition 4. Let P = {p1, p2, . . . , pr} and E,F ∈ (m, n)− ROFS(P). The distance measure
of angle is defined as follows:

d(E,F) = arccos((m, n)− ROFC1(E,F))

meeting the specified conditions:

(i) 0 ≤ d(E,F) ≤ 1.
(ii) E = F⇒ d(E,F)=0.
(iii) d(E,F) = d(F,E).
(iv) d(E,G) ≤ d(E,F) + d(F,G) if E b F b G for any G ∈ (m, n)− ROFS(P).

Proof. Proof of conditions (i), (ii), and (iii) follows from Proposition 3.

(iv) Suppose that E ⊆ F ⊆ G for any (m, n)-ROFS G = {〈pj, ϑT(pj), ςT(pj)〉|pj ∈ P} over
P. Since Equation (1) is a sum of terms, it is appropriate to examine the distance
measures based on the angle between the vectors:

dj(E(pj),F(pj)) = arccos((m, n)− ROFC1
j (E(pj),F(pj))),

dj(E(pj),G(pj)) = arccos((m, n)− ROFC1
j (E(pj),G(pj))),

dj(F(pj),G(pj)) = arccos((m, n)− ROFC1
j (F(pj),G(pj))),

(j = 1, 2, . . . r), where,

(m, n)− ROFC1
j (E(pj),F(pj) =

ϑm
E (pj)ϑ

m
F (pj) + ςn

E(pj)ς
n
F(pj)√

(ϑm
E (pj))2 + (ςn

E(pj))2
√
(ϑm

F (pj))2 + (ςn
F(pj))2

(m, n)− ROFC1
j (E(pj),G(pj) =

ϑm
E (pj)ϑ

m
G(pj) + ςn

E(pj)ς
n
G(pj)√

(ϑm
E (pj))2 + (ςn

E(pj))2
√
(ϑm

G(pj))2 + (ςn
G(pj))2

(m, n)− ROFC1
j (F(pj),G(pj) =

ϑm
F (pj)ϑ

m
G(pj) + ςn

F(pj)ς
n
G(pj)√

(ϑm
F (pj))2 + (ςn

F(pj))2
√
(ϑm

G(pj))2 + (ςn
G(pj))2
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For three vectors, E(pj) = 〈ϑE(pj), ςE(pj)〉, F(pj) = 〈ϑF(pj), ςF(pj)〉, G(pj) = 〈ϑG(pj),
ςG(pj)〉 in one plane, if the E(pj) ⊆ F(pj) ⊆ G(pj), j = 1, 2, . . . , r, then by the triangle
inequality, we have the following: dj(E(pj),G(pj)) ≤ dj(E(pj),F(pj)) + dj(F(pj),G(pj)).
Combining the inequality with Equation (1), we can obtain d(E,G) ≤ d(E,F) + d(F,G).
Hence, the distance measure of angle d(E,F) satisfies the property (iv).

Now, we define the (m, n)-ROFS cosine measure by considering three terms, i.e.; MD,
NMD, and IMD of (m, n)-ROFSs.

Definition 7. Let E = {〈pj, ϑE(pj), ςE(pj)〉|pj ∈ P}, and F = {〈pj, ϑF(pj), ςF(pj)〉|pj ∈ P} be
two (m, n)-ROFSs in P, then the (m, n)-rung orthopair fuzzy cosine measure ((m, n)− ROFC2)
between E and F can be expressed as follows:

(m, n)− ROFC2(E,F)=

1
r

r

∑
j=1

(
ϑm
E (pj)ϑ

m
F (pj) + ςn

E(pj)ς
n
F(pj) + π

m+n
2

E (pj)π
m+n

2
F (pj)

)
(
(

√
(ϑm

E (pj))2 + (ςn
E(pj))2 + (π

m+n
2

E (pj))2)(

√
(ϑm

F (pj))2 + (ςn
F(pj))2 + (π

m+n
2

F (pj))2)

) (2)

Proposition 5. Consider two (m, n)-ROFSs, denoted by E and F, defined over P, the cosine
similarity measure (m, n)− ROFC2(E,F) satisfies the following conditions:

(i) 0 ≤ (m, n)− ROFC2(E,F) ≤ 1.
(ii) (m, n)− ROFC2(E,F) = (m, n)− ROFC2(F,E).
(iii) E = F⇒ (m, n)− ROFC2(E,F) = 1.

Remark 6. The cosine measures IFC2(E,F) (resp., PFC2(E,F), q − ROFC2(E,F)) for IFSs
(resp., PFSs, q-ROFSs) are special cases of cosine similarity measures (m, n)− ROFC2(E,F) of
(m, n)-ROFSs for m = n = 1 (resp., m = n = 2, m = n = q).

Now, we define the (m, n)-ROFS-weighted cosine measures between two (m, n)-ROFSs,
E and F, by considering the weighting vector of the elements in (m, n)-ROFSs.

Definition 8. Let P = {p1, p2, . . . , pr} be a fixed set and E,F ∈ (m, n)− ROFS(P). Assume
ω = (ω1, ω2, . . . , ωn)T is the weighting vector of the elements pj (j = 1, 2, . . . , r), satisfying
the condition ∑r

j=1 ωj = 1, ∀ ωj ∈ [0, 1] and j = 1, 2, . . . , r. Then, the (m, n)-rung orthopair
fuzzy-weighted cosine measures, i.e., (m, n)− ROFWC1 and (m, n)− ROFWC2, between E and
F, can be expressed as follows:

(m, n)− ROFWC1(E,F)=

r

∑
j=1

ωj

(
ϑm
E (pj)ϑ

m
F (pj) + ςn

E(pj)ς
n
F(pj)

)(
(
√
(ϑm

E (pj))2 + (ςn
E(pj))2)(

√
(ϑm

F (pj))2 + (ςn
F(pj))2)

) (3)

(m, n)− ROFWC2(E,F) =

r

∑
j=1

ωj

(
ϑm
E (pj)ϑ

m
F (pj) + ςn

E(pj)ς
n
F(pj) + π

m+n
2

E (pj)π
m+n

2
F (pj)

)
(
(

√
(ϑm

E (pj))2 + (ςn
E(pj))2 + (π

m+n
2

E (pj))2)(

√
(ϑm

F (pj))2 + (ςn
F(pj))2 + (π

m+n
2

F (pj))2)

) (4)

When we take the weighting vector ω = ( 1
r , 1

r , . . . , 1
r )

T , then the weighted cosine
similarity measures (m, n)− ROFWC1(E,F), and (m, n)− ROFWC2(E,F) will reduce to
cosine similarity measures (m, n)− ROFC1(E,F) and (m, n)− ROFC2(E,F), respectively.

Remark 7. The weighted cosine similarity measures WIFCk(E,F) (resp., WPFCk(E,F),
q − ROFWCk(E,F)) for IFSs (resp., PFSs, q-ROFSs) are special cases of the weighted cosine
similarity measures (m, n)− ROFWCk(E,F) (k = 1, 2) of (m, n)-ROFSs for m = n = 1 (resp.,
m = n = 2, m = n = q).
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Example 1. Let P = {p1, p2, p3} and

E = {(p1, 0.5, 0.8), (p2, 0.6, 0.4), (p3, 0.8, 0.3)}
F = {(p1, 0.7, 0.6), (p2, 0.8, 0.2), (p3, 0.4, 0.3)}

be two (m, n)-ROFSs over P. Assuming m = 4, n = 3, and ω = (0.20, 0.45, 0.35)T is a weight-
ing vector of the elements p1, p2, p3, then, (m, n) − ROFWC1(E,F) = 0.8150 and (m, n) −
ROFWC2(E,F) = 0.8610.

Proposition 6. Let E and F be two (m, n)-ROFSs over a fixed set P = {p1, p2, . . . , pr}. Assuming
ω = (ω1, ω2, . . . , ωn)T is the weighting vector of the elements pj (j = 1, 2, . . . , r), satisfying the
conditions ∑r

j=1 ωj = 1, ∀ ωj ∈ [0, 1] and j = 1, 2, . . . , r, then the weighted cosine similarity
measures (m, n)− ROFWCk(E,F) (k = 1, 2) meet the following conditions:

(a) 0 ≤ (m, n)− ROFWCk(E,F) ≤ 1.
(b) (m, n)− ROFWCk(E,F) = (m, n)− ROFWCk(F,E).
(c) E = F⇒ (m, n)− ROFWCk(E,F) = 1.

3.2. Similarity Measures of (m, n)-ROFSs Based on the Cosine Function

This section introduces several (m, n)-ROFS cosine similarity measures between (m,
n)-ROFSs, which are based on the cosine function, and examines their properties.

Definition 9. Let P = {pj : j = 1, 2, . . . , r} and

E = {〈pj, (ϑE(pj), ςE(pj))〉|pj ∈ P}
F = {〈pj, (ϑF(pj), ςF(pj))〉|pj ∈ P}

be two (m, n)-ROFSs over P, then two (m, n)-ROFS cosine similarity measures (m, n)− ROFCSk

(k = 1, 2) between E and F can be expressed as follows:
(m, n)− ROFCS1(E,F)=

1
r

r

∑
j=1

cos

[
π

2
(
|ϑm

E (pj)− ϑm
F (pj)| ∨ |ςn

E(pj)− ςn
F(pj)|

)]
(5)

(m, n)− ROFCS2(E,F)=

1
r

r

∑
j=1

cos

[
π

4
(
|ϑm

E (pj)− ϑm
F (pj)|+ |ςn

E(pj)− ςn
F(pj)|

)]
(6)

Proposition 7. Let P = {p1, p2, . . . , pr} and E,F ∈ (m, n)− ROFS(P), then the (m, n)-rung
orthopair fuzzy cosine similarity measures (m, n)− ROFCSk(E,F) (k = 1, 2) meet the following
properties:

(a) 0 ≤ (m, n)− ROFCSk(E,F) ≤ 1.
(b) (m, n)− ROFCSk(E,F) = 1⇔ E = F.
(c) (m, n)− ROFCSk(E,F) = (m, n)− ROFCSk(F,E).
(d) If E ⊆ F ⊆ G, ∀ G ∈ (m, n)− ROFS(P). Then, (m, n)− ROFCSk(E,G) ≤ (m, n)−

ROFCSk(E,F) and (m, n)− ROFCSk(E,G) ≤ (m, n)− ROFCSk(F,G).

Proof.

(a) The values of cosine functions lie between 0 and 1, which makes it evident.
(b) If E = F for any two (m, n)-ROFSs E and F in P = {p1, p2, . . . , pr}, then for each j = 1,

2, . . . , r, ϑm
E (pj) = ϑm

F (pj) and ςn
E(pj) = ςn

F(pj). It implies that | ϑm
E (pj)− ϑm

F (pj) | = 0
and | ςn

E(pj)− ςn
F(pj) | = 0. Hence, (m, n)−ROFCSk(E,F) = 1 for k = 1, 2. Suppose that
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(m, n)− ROFCSk(E,F) = 1, k = 1, 2, then | ϑm
E (pj)− ϑm

F (pj) | = 0 and | ςn
E(pj)− ςn

F(pj)
| = 0, for all j= 1, 2, . . . , r. Since cos(0) = 1, there are ϑm

E (pj) = ϑm
F (pj),ςn

E(pj) = ςn
F(pj)

(j = 1, 2, . . . , r). Hence, E = F.
(c) Obvious.
(d) If E(pj) ⊆ F(pj) ⊆ G(pj), ∀ j = 1, 2, . . . , r, then ϑE(pj) ≤ ϑF(pj) ≤ ϑG(pj) and

ςE(pj) ≥ ςF(pj) ≥ ςG(pj), j = 1, 2, . . . , r. It follows that ϑm
E (pj) ≤ ϑm

F (pj) ≤ ϑm
G(pj)

and ςn
E(pj) ≥ ςn

F(pj) ≥ ςn
G(pj). Thus, we obtain the following:

| ϑm
E (pj)− ϑm

F (pj) | ≤ | ϑm
E (pj)− ϑm

G(pj) |,
| ϑm

F (pj)− ϑm
G(pj) | ≤ | ϑm

E (pj)− ϑm
G(pj) |,

| ςn
E(pj)− ςn

F(pj) | ≤ | ςn
E(pj)− ςn

G(pj) |,
| ςn

F(pj)− ςn
G(pj) | ≤ | ςn

E(pj)− ςn
G(pj) |.

The cosine function is a decreasing function with the interval [0, π
2 ]; therefore, we

obtain that (m, n) − ROFCSk(E,G) ≤ (m, n) − ROFCSk(E,F), (m, n) − ROFCSk(E,G)
≤ (m, n)− ROFCSk(F,G) for k = 1, 2.

Next, we introduce (m, n)-rung orthopair fuzzy cosine measures based on the cosine
function. These measures are obtained by considering MD, NMD, and IMD for two (m,
n)-ROFSs, i.e., E and F of P.

Definition 10. Let P = {pj : j = 1, 2, . . . , r} and

E = {〈pj, (ϑE(pj), ςE(pj))〉|pj ∈ P}
F = {〈pj, (ϑF(pj), ςF(pj))〉|pj ∈ P}

be the two (m, n)-ROFSs over P, then two (m, n)-ROFS cosine similarity measures, i.e., (m, n)−
ROFCSk) (k = 3, 4) between E and F, by considering MD, NMD, and IMD, can be expressed as
follows:

(m, n)− ROFCS3(E,F)=

1
r

r

∑
j=1

cos

[
π

2

(
|ϑm

E (pj)− ϑm
F (pj)|,∨|ςn

E(pj)− ςn
F(pj)|,∨|π

m+n
2

E (pj)− |π
m+n

2
F (pj)|

)]
(7)

(m, n)− ROFCS4(E,F)=

1
r

r

∑
j=1

cos

[
π

4

(
|ϑm

E (pj)− ϑm
F (pj)|+ |ςn

E(pj)− ςn
F(pj)|+ |π

m+n
2

E (pj)− |π
m+n

2
F (pj)|

)]
(8)

Remark 8. The cosine measures IFCSk(E,F) (resp., PFCSk(E,F), q− ROFWCSk(E,F)) for
IFSs (resp., PFSs, q-ROFSs) are special cases of cosine measures (m, n)− ROFCSk(E,F) (k = 1, 2,
3, 4) of (m, n)-ROFSs for m = n = 1 (resp., m = n = 2, m = n = q).

We will now introduce the (m, n)-ROFS weighted cosine measures between two (m, n)-
ROFSs, which are based on cosine functions E and F, by taking into account the weighting
vector associated with the elements in (m, n)-ROFSs.

Definition 11. Let E = {〈pj, ϑE(pj), ςE(pj)〉|pj ∈ P} and F = {〈pj, ϑF(pj), ςF(pj)〉|pj ∈ P}
be two (m, n)-ROFSs in P and let ω = (ω1, ω2, . . . , ωr)T be the weighting vector of the elements
pj (j = 1, 2, . . . , r) that satisfies the condition ∑r

j=1 ω = 1, ∀ ωj ∈ [0, 1] and j = 1, 2, . . . , r. The
(m, n)-ROFS weighted cosine measures (m, n)− ROFWCSk, (k = 1, 2, 3, 4) between E and F on
the bases of cosine functions can be presented as follows:



Symmetry 2023, 15, 1385 12 of 23

(m, n)− ROFWCS1(E,F)=

1
r

r

∑
j=1

ωjcos

[
π

2
(
|ϑm

E (pj)− ϑm
F (pj)| ∨ |ςn

E(pj)− ςn
F(pj)|

)]
(9)

(m, n)− ROFWCS2(E,F)=

1
r

r

∑
j=1

ωjcos

[
π

4
(
|ϑm

E (pj)− ϑm
F (pj)|+ |ςn

E(pj)− ςn
F(pj)|

)]
(10)

(m, n)−−ROFWCS3 (E,F) =

1
r

r

∑
j=1

ωjcos

[
π

2

(
|ϑm

E (pj)− ϑm
F (pj)| ∨ |ςn

E(pj)− ςn
F(pj)| ∨ |π

m+n
2

E (pj)− π
m+n

2
F (pj)|

)]
(11)

(m, n)− ROFWCS4(E,F)=

1
r

r

∑
j=1

ωjcos

[
π

4

(
|ϑm

E (pj)− ϑm
F (pj)|+ |ςn

E(pj)− ςn
F(pj)|+ |π

m+n
2

E (pj)− π
m+n

2
F (pj)|

)]
(12)

When the weighting vector ωj =
1
r , j = 1, 2, . . . r, then for k = 1, 2, 3, 4, we have

(m, n)-ROFWCS k(E,F) = (m, n)-ROFCSk(E,F).

Remark 9. The weighted cosine similarity measures WIFCSk(E,F) (resp., WPFCSk(E,F), q−
ROFWCSk(E,F)) for IFSs (resp., PFSs, q-ROFSs) are special cases of weighted cosine measures
(m, n) − ROFWCSk(E,F)(k = 1, 2, 3, 4) of (m, n)-ROFSs for m = n = 1 (resp., m = n = 2,
m = n = q).

Example 2. Let P = {p1, p2, p3} and

E = {(p1, 0.8, 0.5), (p2, 0.4, 0.6), (p3, 0.3, 0.8)}
F = {(p1, 0.6, 0.7), (p2, 0.2, 0.8), (p3, 0.4, 0.3)}

be two (m, n)-ROFSs over P. Assuming m = 4, n = 6 and ω = (0.25, 0.55, 0.20)T are the weights
for the elements p1, p2, p3, then:

(m, n)− ROFWCS1(E,F) = 0.9283.

(m, n)− ROFWCS2(E,F) = 0.9743.

(m, n)− ROFWCS3(E,F) = 0.9283.

(m, n)− ROFWCS4(E,F) = 0.9283.

Proposition 8. Assuming that there are any two (m, n)-ROFSs, E and F in P = {p1, p2, . . . , pr},
the (m, n)-ROFS weighted cosine similarity measures (m, n)-ROFWCSk (E,F)(k = 1, 2, 3, 4)
should satisfy properties (a)–(b):

(a) 0 ≤ (m, n)− ROFWCSk(E,F) ≤ 1.
(b) (m, n)− ROFWCSk(E,F) = 1⇔ E = F.
(c) (m, n)− ROFWCSk(E,F)

= (m, n)− ROFWCSk(F,E).
(d) If E ⊆ F ⊆ G, ∀ G ∈ (m, n) − ROFS(P). Then (m, n)-ROFWCSk (E,G) ≤(m, n)-

ROFWCSk (E,F), (m, n)-ROFWCSk (E,G) ≤ (m, n)-ROFWCSk (F,G).
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3.3. Cotangent-Based Similarity Measures for (m, n)-ROFSs

Definition 12. Let P = {p1, p2, . . . , pr} and
E= {〈pj, (ϑE(pj), ςE(pj))〉|pj ∈ P},
Let F= {〈pj, (ϑF(pj), ςF(pj))〉|pj ∈ P} be two (m, n)-ROFSs; the (m, n)-ROFS cotangent

measures (m, n)− ROFCot1 and (m, n)− ROFCot2 between E and F are defined as follows:
(m, n)− ROFCot1(E,F)=

1
r

r

∑
j=1

cot

[
π

4
+

π

4
(
|ϑm

E (pj)− ϑm
F (pj)| ∨ |ςn

E(pj)− ςn
F(pj)|

)]
(13)

(m, n)− ROFCot2(E,F)=

1
r

r

∑
j=1

cot

[
π

4
+

π

8
(
|ϑm

E (pj)− ϑm
F (pj)|+ |ςn

E(pj)− ςn
F(pj)|

)]
(14)

We will now incorporate MD, NMD, and IMD, all of which are components of (m, n)-
ROFSs, to define two additional cotangent similarity measures between two (m, n)-ROFSs.

Definition 13. Let P = {pj : j = 1, 2, . . . , r} and

E = {〈pj, (ϑE(pj), ςE(pj)〉 : pj ∈ P}
F = {〈pj, (ϑF(pj), ςF(pj))〉 : pj ∈ P}.

be two (m, n)-ROFSs in P, then the (m, n)-ROFSs cotangent similarity measures (m, n) −
ROFCot3 and (m, n)− ROFCot4 between E and F can be expressed as follows:

(m, n)− ROFCot3(E,F) =

1
r

r

∑
j=1

cot

[
π

4
+

π

4

(
|ϑm

E (pj)− ϑm
F (pj)| ∨ |ςn

E(pj)− ςn
F(pj)| ∨ |π

m+n
2

E (pj)− π
m+n

2
F (pj)|

)]
(15)

(m, n)− ROFCot4 (E,F) =

1
r

r

∑
j=1

cot

[
π

4
+

π

8

(
|ϑm

E (pj)− ϑm
F (pj)|+ |ςn

E(pj)− ςn
F(pj)|+ |π

m+n
2

E (pj)− π
m+n

2
F (pj)|

)]
(16)

Remark 10. The cotangent measures IFCTk(E,F) (resp., PFCTk(E,F), q− ROFCotk(E,F))
for IFSs (resp., PFSs, q-ROFSs) are special cases of cotangent measures (m, n)− ROFCotk(E,F)
(k = 1, 2, 3, 4) of (m, n)-ROFSs for m = n = 1 (resp., m = n = 2, m = n = q).

We will now introduce the (m, n)-ROFS weighted cotangent measures between two
(m, n)-ROFSs, E and F, by taking into account the weighting vector associated with the
elements in (m, n)-ROFSs.

Definition 14. Let P = {p1, p2, . . . , pr} be a fixed set and E = {〈pj, ϑE(pj), ςE(pj)〉|pj ∈ P}, F
= {〈pj, ϑF(pj), ςF(pj)〉|pj ∈ P} be two (m, n)-ROFSs in P. Assume that ω = (ω1, ω2, . . . , ωr)T

is the weighting vector of the elements pj (j = 1, 2, . . . , r) that satisfies the condition ∑r
j=1 ωj = 1,

∀ ωj ∈ [0,1] and j = 1, 2, . . . , r.
The (m, n)-ROFS weighted cotangent measures (m, n)− ROFWCotk (k = 1, 2, 3, 4) between

E and F are expressed as follows:
(m, n)− ROFWCot1(E,F) =

r

∑
j=1

ωjcot

[
π

4
+

π

4
(
|ϑm

E (pj)− ϑm
F (pj)| ∨ |ςn

E(pj)− ςn
F(pj)|

)]
(17)
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(m, n)− ROFWCot2(E,F) =

r

∑
j=1

ωjcot

[
π

4
+

π

8
(
|ϑm

E (pj)− ϑm
F (pj)|+ |ςn

E(pj)− ςn
F(pj)|

)]
(18)

(m, n)− ROFWCot3(E,F) =

r

∑
j=1

ωjcot

[
π

4
+

π

4

(
|ϑm

E (pj)− ϑm
F (pj)| ∨ |ςn

E(pj)− ςn
F(pj)| ∨ |π

m+n
2

E (pj)− π
m+n

2
F (pj)|

)]
(19)

(m, n)− ROFWCot4(E,F) =

r

∑
j=1

ωjcot

[
π

4
+

π

8

(
|ϑm

E (pj)− ϑm
F (pj)|+ |ςn

E(pj)− ςn
F(pj)|+ |π

m+n
2

E (pj)− π
m+n

2
F (pj)|

)]
(20)

When we let the weighting vector ω = ( 1
r , 1

r , . . . 1
r )

T , then (m, n)− ROFWCotk(E,F)
coincides with (m, n)− ROFCotk(E,F), for k = 1, 2, 3, 4.

Example 3. Let X = {p1, p2, p3} and

E = {(p1, 0.4, 0.9), (p2, 0.9, 0.3), (p3, 0.9, 0.6)}
F = {(p1, 0.3, 0.7), (p2, 0.8, 0.3), (p3, 0.7, 0.4)}

be two (m, n)-ROFSs over P. Assuming that m = 5, n = 7 and ω1 = 0.25, ω2 = 0.35 and ω1 =0.40
are the weights for the elements p1, p2, p3, then

(m, n)− ROFWCot1(E,F) = 0.5290.

(m, n)− ROFWCot2(E,F) = 0.7206.

(m, n)− ROFWCot3(E,F) = 0.5253.

(m, n)− ROFWCot4(E,F) = 0.5253.

Remark 11. The weighted cotangent similarity measures WIFCTk(E,F) (resp., WPFCTk(E,F),
q− ROFWCotk(E,F) for IFSs (resp., PFSs, q-ROFSs) are special cases of weighted cotangent
measures (m, n) − ROFWCotk(E,F) (k = 1, 2, 3, 4) of (m, n)-ROFSs for m = n = 1 (resp.,
m = n = 2, m = n = q).

4. Comparisons of Existing Similarity Measures and Proposed Similarity Measures

The following section presents a comparison between the cosine and cotangent sim-
ilarity measures for q-ROFSs and the newly introduced cosine and cotangent similarity
measures for (m, n)-ROFSs. The evaluation is based on the example of the building material
classification by Wang et al. [65].

Example 4 ([65]). Let us consider a scenario where there are five known building construction
materials, represented by q-ROFSs Zi (i = 1, 2, 3, 4, 5), in the feature space P = {p1, p2, p3, p4, p5},
as shown in Table 4. We also have an unknown building material Z that needs to be classified into
one of the following classes: Z1, Z2, Z3, Z4, Z5. Assuming that the weights w = (0.15, 0.20, 0.25,
0.10, 0.30)T , we aim to determine the degree of similarity between Z3 and Z.

According to the findings presented in Table 5, the degree of weighted similarity
between Z3 and Z is the highest among all ten weighted similarity measures from Table 3
for most building materials, except for q− ROFWC1 and q− ROFWC2. As a result, based
on the principle of maximum weighted q-ROFWS similarity, the unknown building material



Symmetry 2023, 15, 1385 15 of 23

Z can be classified as similar to the known building material Z2 using these ten similarity
measures.

Table 4. q-Orthopair fuzzy data for the material pattern (for q = 3) [65].

Feature Z1 Z2 Z3 Z4 Z5 Z

p1 (0.5, 0.8) (0.6, 0.7) (0.3, 0.4) (0.5, 0.3) (0.4, 0.7) (0.7, 0.6)
p2 (0.6, 0.4) (0.7, 0.3) (0.7, 0.5) (0.4, 0.4) (0.2, 0.6) (0.8, 0.2)
p3 (0.8, 0.3) (0.6, 0.2) (0.9, 0.3) (0.6, 0.2) (0.5, 0.4) (0.4, 0.3)
p4 (0.6, 0.9) (0.8, 0.6) (0.4, 0.8) (0.4, 0.7) (0.5, 0.3) (0.7, 0.8)
p5 (0.1, 0.4) (0.3, 0.5) (0.2, 0.3) (0.2, 0.6) (0.4, 0.2) (0.4, 0.2)

Table 5. q-ROF weighted similarity measures for the data presented in Table 4 for q = 3.

Weighted Similarity Measures (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

q− ROFWC1 0.6728 0.7515 0.7553 0.6584 0.7336 Z3 > Z2 > Z5 > Z1 > Z4
q− ROFWC2 0.8457 0.8901 0.8937 0.8406 0.8735 Z3 > Z2 > Z5 > Z1 > Z4
q− ROFWCS1 0.8962 0.9673 0.8398 0.9114 0.8976 Z2 > Z4 > Z5 > Z1 > Z3
q− ROFWCS2 0.9601 0.9838 0.9487 0.9621 0.9464 Z2 > Z4 > Z1 > Z3 > Z5
q− ROFWCS3 0.8962 0.9673 0.8299 0.8986 0.8910 Z2 > Z4 > Z1 > Z5 > Z3
q− ROFWCS4 0.8961 0.9693 0.8830 0.8883 0.8830 Z2 > Z1 > Z4 > Z3 = Z3
q− ROFWCot1 0.6740 0.7831 0.6478 0.6735 0.7474 Z2 > Z5 > Z1 > Z4 > Z3
q− ROFWCot2 0.7740 0.8482 0.7700 0.7733 0.8065 Z2 > Z5 > Z1 > Z4 > Z3
q− ROFWCot3 0.6740 0.7831 0.6356 0.6522 0.7324 Z2 > Z5 > Z1 > Z4 > Z3
q− ROFWCot4 0.6727 0.7866 0.6356 0.6389 0.7284 Z2 > Z5 > Z1 > Z4 > Z3

Table 6 shows the results obtained by the proposed weighted similarity measures
(m, n)− ROFWSs for m = 4 and n = 3. Based on these results, it is evident in Table 6
that all ten similarity measures allocate unknown building material Z to building material
Z2, with the degree of weighted similarity between Z and E2 being the largest. This
result suggests that the proposed weighted (m, n)− ROFWSs method accurately allocates
unknown building materials to known building materials.

Table 6. Weighted (m, n)-ROFSs for the data presented in Table 4 for m = 4, n = 3.

Weighted Similarity Measures (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)− ROFWC1 0.7353 0.7620 0.7334 0.5957 0.6426 Z2 > Z1 > Z3 > Z5 > Z4
(m, n)− ROFWC2 0.9008 0.9527 0.8244 0.8947 0.8481 Z2 > Z1 > Z4 > Z5 > Z3
(m, n)− ROFWCS1 0.9073 0.9648 0.8614 0.9203 0.8930 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)− ROFWCS2 0.9661 0.9828 0.9557 0.9669 0.9417 Z2 > Z4 > Z1 > Z3 > Z5
(m, n)− ROFWCS3 0.9073 0.9648 0.8503 0.8906 0.8590 Z2 > Z1 > Z4 > Z5 > Z3
(m, n)− ROFWCS4 0.9073 0.9648 0.8503 0.8906 0.8590 Z2 > Z1 > Z4 > Z5 > Z3
(m, n)− ROFWCot1 0.6726 0.7819 0.6717 0.6936 0.7215 Z2 > Z5 > Z4 > Z1 > Z3
(m, n)− ROFWCot2 0.7853 0.8515 0.7818 0.7895 0.7803 Z2 > Z4 > Z1 > Z3 > Z5
(m, n)− ROFWCot3 0.6497 0.7664 0.6277 0.6119 0.6500 Z2 > Z5 > Z1 > Z3 > Z4
(m, n)− ROFWCot4 0.6530 0.7704 0.6372 0.6183 0.6603 Z2 > Z5 > Z1 > Z3 > Z4

By comparing the results presented in Tables 5 and 6, it is clear that the proposed
weighted (m, n) − ROFWSs method is more accurate than the method proposed by
Wang et al. [65] for assigning unknown building materials to the consistent class (Z2, Z).
Therefore, our results are more reliable and accurate.

Figure 1 shows that for the weighted q-ROFWS values of all building materials, except
for q− ROFWC1 and q− ROFWC2, the degree of weighted similarity between (Z3, Z) is
the largest among the ten weighted similarity measures, and the proposed weighted (m,
n)-ROFWSs for m = 4, n = 3 show that Z3 has the most significant and consistent value.
This result indicates that the unknown pattern Z is the most similar to Z3.
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Figure 1. Comparison graph between weighted q-ROFWSs and the proposed weighted (m, n)-ROFWSs.

5. Applications of Proposed Similarity Measures in the Classification of Plant
Leaf Disease

Plants are integral components of our ecosystem that provide us with vital resources
such as oxygen and food. However, these crucial organisms are vulnerable to diseases that
can significantly impact their growth and survival. One of the most prevalent problems
plants face is leaf disease, which can considerably reduce crop yield and quality, signif-
icantly affecting farmers’ livelihoods and the economy. This section aims to explore the
issue of plant leaf disease and the measures that can be taken to prevent and manage it.

Several factors, such as bacteria, fungi, viruses, and other pathogens, can cause plant
leaf diseases. Common types of leaf diseases include powdery mildew, downy mildew, leaf
spot, and rust. These diseases can affect various parts of plants, including leaves, stems,
and fruits, leading to discoloration, distortion, and wilting. The leaves may fall off in severe
cases, leading to stunted growth and reduced yield. Several factors can facilitate the spread
of plant leaf diseases, such as high humidity, poor air circulation, and contaminated soil or
water. Additionally, using infected planting materials and inadequate crop management
practices can contribute to the spreading of these diseases.

Plant leaf diseases pose significant problems that can adversely affect crop yield and
quality, ultimately impacting farmers’ livelihoods and the economy. Preventing and managing
these diseases require a combination of preventive and curative measures, including disease-
resistant plant varieties, good agricultural practices, and judicious chemical treatments. By
taking these measures, we can ensure that our plants remain healthy and continue to provide
us with the essential resources that we need for our survival.

Tomato plants are susceptible to various leaf diseases that can negatively impact their
growth and yield. These diseases can be prevented by planting disease-resistant tomato varieties,
keeping the soil well-drained, and avoiding overhead watering. Additionally, it is essential to
remove any infected plant parts and keep the garden clean to prevent the spread of disease.

In the following illustrative example, we proposed a method to classify the plant
leaf disease using the proposed cosine and cotangent similarity and weighted similarity
measures for the study of the leaf disease classification that we generated Table 7 after
carefully studying the dataset (the plant village dataset) [66] containing the different
diseases and their symptoms.
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Example 5. Let us consider a set of five symptoms q = {q1, q2, q3, q4, q5}, where q1 = dark brown
leaf, q2 = brown leaf, q3 = yellow leaf, q4 = patches, q5 = spots and five diagnoses Zi(i = 1, 2, 3, 4, 5),
which are presented by (m, n)-ROFSs, Z1(Gray leaf spot), Z2 (Bacterial Canker), Z3 (Bacterial
Speck), Z4 (Bacterial Spot), and Z5 (Early Blight), defined in Table 7; let us also consider a sample
pattern Z that will be recognized.

Table 7. (m, n)-orthopair fuzzy data for the pattern of plant leaf diseases.

Symptom Z1 Z2 Z3 Z4 Z5 Z

q1 (0.45, 0.95) (0.25, 0.75) (0.95, 0.55) (0.85, 0.45) (0.15, 0.95) (0.35, 0.70)
q2 (0.95, 0.35) (0.85, 0.25) (0.35, 0.85) (0.65, 0.45) (0.25, 0.65) (0.80, 0.30)
q3 (0.95, 0.65) (0.75, 0.35) (0.95, 0.45) (0.15, 0.95) (0.95, 0.15) (0.70, 0.40)
q4 (0.45, 0.65) (0.15, 0.95) (0.85, 0.15) (0.45, 0.75) (0.95, 0.55) (0.20, 0.90)
q5 (0.55, 0.95) (0.15, 0.85) (0.55, 0.35) (0.95, 0.15) (0.55, 0.95) (0.25, 0.80)

For the given plant leaf disease example, the proposed cosine and cotangent similarity
measures for (m, n)− ROFSs for the values m = 5, n = 7, and m = 6, n = 10, and m = 10,
n = 100, and m = 100, n = 10 are shown in Tables 8–11. The results show consistent and
accurate results, indicating that all ten proposed similarity measures show Z2 as having
the largest value, suggesting that sample Z is the most similar to Z2.

For the given plant leaf disease example, the cosine and cotangent similarity measures
q− ROFSs for the values q = 100 and q = 50 are shown in Tables 12 and 13. The similarity
measures for q = 100 and q = 50, respectively, show inconsistent results, indicating that the
six q− ROFSs similarity measures of Table 2, given by Wang et al [65], failed to classify.

Table 8. (m, n)-ROF similarity measures for the data presented in Table 7 for m = 7, n = 5.

Similarity
Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)-ROFC1 0.9897 0.9993 0.2821 0.4250 0.6132 Z2 > Z1 > Z5 > Z4 > Z3
(m, n)-ROFC2 0.5495 0.9802 0.5954 0.6602 0.5617 Z2 > Z4 > Z3 > Z5 > Z1
(m, n)-ROFCS1 0.6733 0.9836 0.6536 0.7028 0.6630 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFCS2 0.9047 0.9958 0.8552 0.8728 0.8472 Z2 > Z1 > Z4 > Z3 > Z5
(m, n)-ROFCS3 0.6400 0.9836 0.6515 0.7028 0.6598 Z2 > Z4 > Z5 > Z3 > Z1
(m, n)-ROFCS4 0.6400 0.9836 0.6515 0.7028 0.6598 Z2 > Z4 > Z5 > Z3 > Z1
(m, n)-ROFCot1 0.3917 0.8477 0.3889 0.4705 0.4105 Z2 > Z4 > Z5 > Z1 > Z3
(m, n)-ROFCot2 0.6402 0.9194 0.5816 0.6395 0.5958 Z2 > Z1 > Z4 > Z5 > Z3
(m, n)-ROFCot3 0.3699 0.8477 0.3875 0.4705 0.4076 Z2 > Z4 > Z5 > Z3 > Z1
(m, n)-ROFCot4 0.3699 0.8477 0.3875 0.4705 0.4076 Z2 > Z4 > Z5 > Z3 > Z1

Table 9. (m, n)-ROF similarity measures for the data presented in Table 7 for m = 6, n = 10.

Similarity
Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)-ROFC1 0.9698 0.9996 0.2162 0.4117 0.6037 Z2 > Z1 > Z5 > Z4 > Z3
(m, n)-ROFC2 0.6335 0.9703 0.6921 0.7239 0.5816 Z2 > Z4 > Z3 > Z1 > Z5
(m, n)-ROFCS1 0.7015 0.9784 0.7411 0.7358 0.6455 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCS2 0.9185 0.9946 0.8969 0.9093 0.8682 Z2 > Z1 > Z4 > Z3 > Z5
(m, n)-ROFCS3 0.6903 0.9784 0.7410 0.7358 0.6394 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCS4 0.6903 0.9784 0.7410 0.7358 0.6394 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCot1 0.4195 0.8474 0.5111 0.4871 0.3897 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCot2 0.6648 0.9193 0.6545 0.6832 0.6141 Z2 > Z4 > Z1 > Z3 > Z5
(m, n)-ROFCot3 0.4110 0.8474 0.5111 0.4871 0.3847 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCot4 0.4110 0.8474 0.5111 0.4871 0.3847 Z2 > Z3 > Z4 > Z1 > Z5
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Table 10. (m, n)-ROF similarity measures for the data presented in Table 7 for m = 10, n = 100.

Similarity
Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)-ROFC1 0.4910 0.8132 0.8008 0.6008 0.4795 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFC2 0.8465 0.9984 0.8203 0.9044 0.8260 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFCS1 0.8682 0.9978 0.8305 0.9060 0.8400 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFCS2 0.9655 0.9995 0.9555 0.9753 0.9578 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFCS3 0.8682 0.9978 0.8305 0.9060 0.8399 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFCS4 0.8682 0.9978 0.8305 0.9060 0.8399 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFCot1 0.7508 0.9632 0.6495 0.7750 0.7005 Z2 > Z5 > Z1 > Z5 > Z3
(m, n)-ROFCot2 0.8580 0.9811 0.8031 0.8744 0.8300 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFCot3 0.7499 0.9632 0.6495 0.7750 0.6997 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFCot4 0.7499 0.9632 0.6495 0.7750 0.6997 Z2 > Z4 > Z1 > Z5 > Z3

Table 11. (m, n)-ROF similarity measures for the data presented in Table 7 for m = 100, n = 10.

Similarity
Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)-ROFC1 0.7840 0.9992 0.5033 0.8000 0.6787 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFC2 0.8241 0.9750 0.9691 0.8915 0.8231 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCS1 0.8411 0.9826 0.9582 0.8942 0.8394 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCS2 0.9586 0.9956 0.9894 0.9722 0.9579 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCS3 0.8411 0.9826 0.9582 0.8942 0.8394 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCS4 0.8411 0.9826 0.9582 0.8942 0.8394 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCot1 0.6637 0.8987 0.8174 0.7496 0.6614 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCot2 0.8097 0.9462 0.9007 0.8599 0.8085 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCot3 0.6618 0.8987 0.8173 0.7496 0.6614 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFCot4 0.6618 0.8987 0.8173 0.7496 0.6614 Z2 > Z3 > Z4 > Z1 > Z5

Table 12. q-ROF similarity measures for the data presented in Table 7 for q = 100.

Similarity
Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

q-ROFC1 1.0000 1.0000 0.2000 0.4000 0.6000 cannot be classified
q-ROFC2 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFCS1 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFCS2 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFCS3 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFCS4 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFCot1 0.9926 0.9982 0.9963 0.9963 0.9926 Z2 > Z3 = Z4 > Z5 = Z1
q-ROFCot2 0.9963 0.9991 0.9981 0.9981 0.9963 Z2 > Z3 = Z4 > Z5 = Z1
q-ROFCot3 0.9926 0.9982 0.9963 0.9963 0.9926 Z2 > Z3 = Z4 > Z5 = Z1
q-ROFCot4 0.9926 0.9982 0.9963 0.9963 0.9926 Z2 > Z3 = Z4 > Z5 = Z1

If we consider the weights of w = (0.10, 0.30, 0.25, 0.15, 0.20)T , the proposed weighted
cosine and cotangent similarity measures for (m, n)-ROFWSs with values of m = 5, n = 7,
m = 6, n = 10, m = 10, n = 100, and m = 100, n = 10 are presented in Tables 14–17, respectively.
The accurate and consistent results indicate that all ten proposed weighted similarity
measures show Z2 as having the largest value, suggesting that the sample Z is the most
similar to Z2.
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Table 13. q-ROF similarity measures for the data presented in Table 7 for q = 50.

Similarity
Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

q-ROFC1 1.0000 1.0000 0.2000 0.4000 0.6000 cannot be classified
q-ROFC2 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFCS1 0.9900 1.0000 1.0000 1.0000 0.9900 cannot be classified
q-ROFCS2 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFCS3 0.9900 1.0000 1.0000 1.0000 0.9900 cannot be classified
q-ROFCS4 0.9900 1.0000 1.0000 1.0000 0.9900 cannot be classified
q-ROFCot1 0.9100 0.9800 0.9500 0.9500 0.9100 Z2 > Z3 = Z4 > Z5 = Z1
q-ROFCot2 0.9500 0.9900 0.9800 0.9800 0.9500 Z2 > Z3 = Z4 > Z5 = Z1
q-ROFCot3 0.9100 0.9800 0.9500 0.9500 0.9100 Z2 > Z3 = Z4 > Z5 = Z1
q-ROFCot4 0.9100 0.9800 0.9500 0.9500 0.9100 Z2 > Z3 = Z4 > Z5 = Z1

Table 14. Weighted (m, n)-ROFSs for the data presented in Table 7 for m = 7, n = 5.

Weighted Similarity Measures (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)-ROFWC1 0.9897 0.9991 0.3256 0.4690 0.5595 Z2 > Z1 > Z5 > Z4 > Z3
(m, n)-ROFWC2 0.5483 0.9815 0.6338 0.6444 0.6225 Z2 > Z4 > Z3 > Z5 > Z1
(m, n)-ROFWCS1 0.6789 0.9846 0.6832 0.6876 0.7051 Z2 > Z5 > Z4 > Z3 > Z1
(m, n)-ROFWCS2 0.9042 0.9961 0.8687 0.8699 0.8710 Z2 > Z1 > Z5 > Z4 > Z3
(m, n)-ROFWCS3 0.6384 0.9846 0.6805 0.6876 0.7020 Z2 > Z5 > Z4 > Z3 > Z1
(m, n)-ROFWCS4 0.6384 0.9846 0.6805 0.6876 0.7020 Z2 > Z5 > Z4 > Z3 > Z1
(m, n)-ROFWCot1 0.3958 0.8507 0.4105 0.4704 0.4534 Z2 > Z4 > Z5 > Z3 > Z1
(m, n)-ROFWCot2 0.6401 0.9209 0.5972 0.6447 0.6266 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFWCot3 0.3696 0.8507 0.4088 0.4704 0.4506 Z2 > Z4 > Z5 > Z3 > Z1
(m, n)-ROFWCot4 0.3696 0.8507 0.4088 0.4704 0.4506 Z2 > Z4 > Z5 > Z3 > Z1

Table 15. Weighted (m, n)-ROF similarity measures for the data presented in Table 7 for m = 6, n = 10.

Weighted Similarity Measures (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)-ROFWC1 0.9773 0.9998 0.2603 0.4557 0.5556 Z2 > Z1 > Z5 > Z4 > Z3
(m, n)-ROFWC2 0.6175 0.9740 0.7352 0.7171 0.6258 Z2 > Z3 > Z4 > Z5 > Z1
(m, n)-ROFWCS1 0.6978 0.9805 0.7789 0.7331 0.6828 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFWCS2 0.9176 0.9951 0.9099 0.9069 0.8870 Z2 > Z1 > Z3 > Z4 > Z5
(m, n)-ROFWCS3 0.6865 0.9805 0.7788 0.7331 0.6766 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFWCS4 0.6865 0.9805 0.7788 0.7331 0.6766 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFWCot1 0.4151 0.8471 0.5444 0.4931 0.4251 Z2 > Z3 > Z4 > Z5 > Z1
(m, n)-ROFWCot2 0.6624 0.9196 0.6736 0.6852 0.6430 Z2 > Z4 > Z3 > Z1 > Z5
(m, n)-ROFWCot3 0.4066 0.8471 0.5443 0.4931 0.4200 Z2 > Z3 > Z4 > Z5 > Z1
(m, n)-ROFWCot4 0.4066 0.8471 0.5443 0.4931 0.4200 Z2 > Z3 > Z4 > Z5 > Z1

Table 16. Weighted (m, n)-ROF similarity measures for the data presented in Table 7 for m = 10,
n = 100.

Weighted Similarity Measures (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)-ROFWC1 0.6350 0.8506 0.8132 0.6006 0.6293 Z2 > Z3 > Z1 > Z5 > Z4
(m, n)-ROFWC2 0.7907 0.9977 0.8444 0.9067 0.8265 Z2 > Z4 > Z3 > Z5 > Z1
(m, n)-ROFWCS1 0.8211 0.9968 0.8537 0.9096 0.8403 Z2 > Z4 > Z3 > Z5 > Z1
(m, n)-ROFWCS2 0.9533 0.9992 0.9616 0.9762 0.9580 Z2 > Z4 > Z3 > Z5 > Z1
(m, n)-ROFWCS3 0.8211 0.9968 0.8537 0.9096 0.8403 Z2 > Z4 > Z3 > Z5 > Z1
(m, n)-ROFWCS4 0.8211 0.9968 0.8537 0.9096 0.8403 Z2 > Z4 > Z3 > Z5 > Z1
(m, n)-ROFWCot1 0.6615 0.9484 0.6823 0.7860 0.6870 Z2 > Z4 > Z5 > Z3 > Z1
(m, n)-ROFWCot2 0.8073 0.9735 0.8223 0.8803 0.8232 Z2 > Z4 > Z5 > Z3 > Z1
(m, n)-ROFWCot3 0.6606 0.9484 0.6823 0.7860 0.6863 Z2 > Z4 > Z5 > Z3 > Z1
(m, n)-ROFWCot4 0.6606 0.9484 0.6823 0.7860 0.6863 Z2 > Z4 > Z5 > Z3 > Z1
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Table 17. Weighted (m, n)-ROF similarity measures for the data presented in Table 7 for m = 100,
n = 10.

Weighted Similarity Measures (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

(m, n)-ROFWC1 0.6803 0.9987 0.5636 0.8000 0.6590 Z2 > Z4 > Z1 > Z5 > Z3
(m, n)-ROFWC2 0.8716 0.9809 0.9721 0.8739 0.8708 Z2 > Z3 > Z4 > Z1 > Z5
(m, n)-ROFWCS1 0.8854 0.9865 0.9609 0.8789 0.8841 Z2 > Z3 > Z1 > Z5 > Z4
(m, n)-ROFWCS2 0.9702 0.9966 0.9901 0.9681 0.9697 Z2 > Z3 > Z1 > Z5 > Z4
(m, n)-ROFWCS3 0.8853 0.9865 0.9609 0.8789 0.8841 Z2 > Z3 > Z1 > Z5 > Z4
(m, n)-ROFWCS4 0.8853 0.9865 0.9609 0.8789 0.8841 Z2 > Z3 > Z1 > Z5 > Z4
(m, n)-ROFWCot1 0.7478 0.9196 0.8159 0.7391 0.7455 Z2 > Z3 > Z1 > Z5 > Z4
(m, n)-ROFWCot2 0.8573 0.9573 0.9007 0.8531 0.8565 Z2 > Z3 > Z1 > Z5 > Z4
(m, n)-ROFWCot3 0.7456 0.9196 0.8158 0.7391 0.7455 Z2 > Z3 > Z1 > Z5 > Z4
(m, n)-ROFWCot4 0.7456 0.9196 0.8158 0.7391 0.7455 Z2 > Z3 > Z1 > Z5 > Z4

The q− ROFWs weighted similarity measures in Table 3, given by Wang et al. [65],
for the values q = 100 and q = 50 with same weighted values, and the results presented in
Tables 18 and 19, shows that six weighted similarity measures failed to classify.

Table 18. Weighted (m, n)-ROF similarity measures for the data presented in Table 7 for q = 100.

Weighted Similarity Measures (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

q-ROFWC1 1.0000 1.0000 0.2500 0.4500 0.5500 cannot be classified
q-ROFWC2 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFWCS1 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFWCS2 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFWCS3 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFWCS4 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFWCot1 0.9921 0.9986 0.9968 0.9958 0.9935 Z2 > Z3 > Z4 > Z5 > Z1
q-ROFWCot2 0.9961 0.9993 0.9984 0.9979 0.9967 Z2 > Z3 > Z4 > Z5 > Z1
q-ROFWCot3 0.9921 0.9986 0.9968 0.9958 0.9935 Z2 > Z3 > Z4 > Z5 > Z1
q-ROFWCot4 0.9921 0.9986 0.9968 0.9958 0.9935 Z2 > Z3 > Z4 > Z5 > Z1

Table 19. Weighted (m, n)-ROF similarity measures for the data presented in Table 7 for q = 50.

Weighted Similarity Measure (Z1,Z) (Z2,Z) (Z3,Z) (Z4,Z) (Z5,Z) Ranking

q-ROFWC1 1.0000 1.0000 0.2500 0.4500 0.5500 cannot be classified
q-ROFWC2 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFWCS1 0.9900 1.0000 1.0000 1.0000 0.9900 cannot be classified
q-ROFWCS2 1.0000 1.0000 1.0000 1.0000 1.0000 cannot be classified
q-ROFWCS3 0.9900 1.0000 1.0000 1.0000 0.9900 cannot be classified
q-ROFWCS4 0.9900 1.0000 1.0000 1.0000 0.9900 cannot be classified
q-ROFWCot1 0.9000 0.9800 0.9600 0.9500 0.9200 Z2 > Z3 > Z4 > Z5 > Z1
q-ROFWCot2 0.9500 0.9900 0.9800 0.9700 0.9600 Z2 > Z3 > Z4 > Z5 > Z1
q-ROFWCot3 0.9000 0.9800 0.9600 0.9500 0.9200 Z2 > Z3 > Z4 > Z5 > Z1
q-ROFWCot4 0.9000 0.9800 0.9600 0.9500 0.9200 Z2 > Z3 > Z4 > Z5 > Z1

6. Discussion

The existing cosine and cotangent similarity measures for IFS, PFS, and q-ROFs are
special cases of the proposed (m, n)-ROFS similarity measure in the paper. The flexibility of
the power of the MD and NMD attributes represents the uncertainty of attributes reflecting
better performances for different values of m and n, compared to the other cases where
the powers of the MD and NMD attributes are the same. The results of different values of
m and n show consistent and accurate results for higher values of m and n in this paper.
In q-ROFS, the similarity measure failed to classify the sets for the higher values of q, as
shown in the paper.



Symmetry 2023, 15, 1385 21 of 23

After analyzing the data presented in several tables, it is clear that the most reliable
classification of the plant leaf sample disease Z can be achieved using (m, n)-ROFSs and
(m, n)-ROFWs. As a result, the plant leaf can be identified as disease Z2, a bacterial canker.
However, other tables show that q-ROFSs and q-ROFWs are ineffective at classifying plant
leaf diseases. These findings highlight the significance of the (m, n) condition for precise
results and accurate disease classification. Overall, this analysis emphasizes the importance
of selecting appropriate similarity measures for the specific type of fuzzy information to
achieve accurate disease classification.

7. Conclusions

This research article demonstrates the effectiveness of (m, n)-ROFS, a generalized
fuzzy structure, in addressing uncertainty and imprecision in decision-making problems.
The (m, n)-ROFS framework surpasses other fuzzy structures, such as IFS, PFS, FFS, and
q-ROFS (for q > 3), by accommodating a wider range of information. Our study introduces
cosine, cotangent, and weighted similarity measures specifically designed for (m, n)-ROFSs,
including measures for q-ROFSs information in special cases. We applied these similarity
measures to evaluate their performances in building material problems. We compared
the q-ROFSs cosine and cotangent measures with the existing ones. We also presented a
numerical example to demonstrate the practical applications of these similarity measures
in plant leaf disease classification.

The findings of our study indicate that the defined similarity measures are more
suitable and applicable to real-world problems than existing measures. This research
significantly contributes to decision-making under uncertainty and imprecision, providing
improved tools for measuring similarity within the (m, n)-ROFSs framework. These
findings have broad implications in domains such as medicine, pattern recognition, and
material engineering, where robust decision-making techniques are essential. Future
research can build upon this work by further exploring and expanding the (m, n)-ROFS
framework and its similarity measures to address complex decision-making problems in
diverse applications, by continually advancing the (m, n)-ROFS methodology, we can foster
the innovation and improve the decision-making processes in various domains.
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59. Kirişci, M. New cosine similarity, and distance measures for Fermatean fuzzy sets, and TOPSIS approach. Knowledge, Inf. Syst.
2023, 65, 855–868. [CrossRef]

60. Rahim, M.; Garg, H.; Amin, F.; Perez-Dominguez, L.; Alkhayyat, A. Improved cosine similarity and distance measures-based
TOPSIS method for cubic Fermatean fuzzy sets. Alex. Eng. J. 2023, 73, 309–319. [CrossRef]

61. Peng, X.; Dai, J. Research on the assessment of classroom teaching quality with q-rung orthopair fuzzy information based on
multiparametric similarity measure, and combinative distance-based assessment. Int. J. Intell. Syst. 2019, 34, 1543–1555. [CrossRef]

62. Zedam, N.J.L.; Mahmood, T.; Rak, E.; Ali, Z. Generalized dice similarity measures for q-rung orthopair fuzzy sets with applications.
Complex, Intell. Syst. 2020, 6, 545–558. [CrossRef]

63. Peng, X.; Liu, L. Information measures for q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2019, 34, 1795–1834. [CrossRef]
64. Liu, D.; Chen, X.; Peng, D. Some cosine similarity measures, and distance measures between q-rung orthopair fuzzy sets. Int. J.

Intell. Syst. 2019, 34, 2454–2469. [CrossRef]
65. Wang, P.; Wang, J.; Wei, G.; Wei, C. Similarity measures of q-Rung orthopair fuzzy sets based on cosine function, and their

applications. Mathematics 2019, 7, 1037. [CrossRef]
66. Plant Village Dataset. Available online: https://www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset (accessed on 25

June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2018/9073597
http://dx.doi.org/10.1134/S1995080222120113
http://dx.doi.org/10.1002/int.21827
http://dx.doi.org/10.1002/int.22027
http://dx.doi.org/10.1002/int.21880
http://dx.doi.org/10.1002/int.22169
http://dx.doi.org/10.1002/int.21965
http://dx.doi.org/10.1007/s41066-020-00248-w
http://dx.doi.org/10.1007/s00521-022-07679-3
http://dx.doi.org/10.1142/S021962202150019X
http://dx.doi.org/10.1504/IJFCM.2022.124368
http://dx.doi.org/10.5267/j.dsl.2021.11.003
http://dx.doi.org/10.18778/0138-0680.2022.08
http://dx.doi.org/10.1007/s10115-022-01776-4
http://dx.doi.org/10.1016/j.aej.2023.04.057
http://dx.doi.org/10.1002/int.22109
http://dx.doi.org/10.1007/s40747-020-00145-4
http://dx.doi.org/10.1002/int.22115
http://dx.doi.org/10.1002/int.22108
http://dx.doi.org/10.3390/math7111037
https://www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset

	Introduction
	Preliminaries
	Generalized Fuzzy Structures
	Cosine and Cotangent Similarity Measures for Generalized Fuzzy Structures

	Cosine and Cotangent Similarity Measures for (m, n)-ROFSs
	Cosine Similarity Measures for (m, n)-ROFSs
	Similarity Measures of (m, n)-ROFSs Based on the Cosine Function
	Cotangent-Based Similarity Measures for (m, n)-ROFSs

	Comparisons of Existing Similarity Measures and Proposed Similarity Measures
	Applications of Proposed Similarity Measures in the Classification of Plant Leaf Disease
	Discussion
	Conclusions
	References

