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Abstract: Issues in daily life, where making the best decisions is crucial, are frequently encountered.
But, in the majority of these situations, the best course of action is uncertain. We must take into
account a number of parameters in order to find the best possible solution to these difficulties. The
best mathematical instrument for this is fuzzy soft set FSS theory in decision making. Nutrition is
the process of supplying cells and organisms with the nutrients they need to grow and thrive and to
sustain life. A healthy diet has the potential to prevent or mitigate numerous prevalent health issues.
The purpose of this paper is to select a burning problem for the nutrition of students and successfully
apply the FSS theory in decision making. We aim to prove that the approach to decision-making
problems with imprecise data via FSSs is more accurate than other types of approaches, and we
present a new approach to the FSS model and its applications in decision-making problems.

Keywords: soft set; fuzzy soft set; information system; rough set; decision making
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1. Introduction and Preliminaries

The attainment of a healthy body and maintenance of a sound physique are contingent
upon the presence of a healthy nutrition and diet. People in good physical and mental
health are physically and mentally active, including their stamina, body, and mental and
physical activity levels. They are resilient, full of vim and vitality, and have a pleasant
disposition to boot. They are strong, vivacious, and endowed with an excellent nature.
There are six primary categories of nutrients, which include carbs (Cs), fats, minerals (Ms),
proteins (Ps), and vitamins (Vs), with water being one of the most important of these.
Each nutrient is responsible for one or more of the general functions that are listed below.
Vitamin C and lipids are sources of heat, energy, and power. P, M, and V are responsible for
the construction and promotion of growth, the renewal of body tissues, and the regulation
of body processes. The recommended dietary allowances for each day are broken down
into the following fundamental food groups, which are reflected in Table 1 and the food
pyramid, which both contain representations of the basic food groups that are used to
categorize the recommended daily dietary allowances [1]. These classifications are made for
the purpose of making the recommended daily dietary allowances more easily applicable.

Several contemporary theories have been proposed to address the challenges associ-
ated with imprecise data, including probability theory, fuzzy sets, intuitionistic fuzzy sets,
and rough sets, among others.
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Table 1. Basic food groups.

Group Food Stuff Main Nutrient Constitution

1 Vegetables and fruits V, C and M

2 Milk and milk products C, P and fats

3 Meat, poultry and fish P and fats

4 Pulses and cereals C, P and M

5 Oil, ghee and butter P and fats

Molodtsov [2] showed that each of the above topics has some built-in limitations,
for which they do not have a parametrization tool. He also presented a soft set theory
with parametrization tools that can be used to deal with a wide range of uncertainties.
This fuzzification of soft set theory has seen significant contributions from researchers in
the last few years. After that, Maji et al. [3] extended the soft set theory of Molodtsov
and introduced FSSs in decision-making problems. The first real-world use of soft sets
in problem solving came from Maji et al. [4,5]. They presented and developed the FSS,
a notion that combines fuzzy and soft sets and is more widely applicable. Furthermore,
Chaudhuriet et al. [6] deployed a few applications of FSSs with the help of the method
in [4,5] and compared them with the probability distribution. Also, Çağman et al. [7]
developed the case study of the decision-making approach using the fuzzy parametrized
FSSs aggregation operator. In 2011, Neog et al. [8] used fuzzy soft matrices, a fuzzy soft
complement and a fuzzy matrix operation to solve a decision-making problem.

The objective of this study is to utilize FSSs in a multi-observer multi-criteria decision-
making problem as a means of enhancing the approach proposed in [1,9,10]. This paper
presents an overview of the fundamental findings regarding soft sets and FSSs stated
in [11–14]. In recent years, there have been many applications for soft sets, general topology,
and their related topics with applications [15–17]. Moreover, Nasef et al. [18,19] presented
some applications of soft sets in decision-making problems.

To solve the reduction issue, Kong et al. [20] defined and developed the heuristic
technique for normal parameter reductions (NPRs) in FSS. The NPR soft set algorithm,
as proposed in [20], was complex to grasp, required numerous computations, and de-
pended on the dispensability. To lessen its computational complexity, this approach was
further investigated by several authors; see [21–24]. A proximity normal parameter reduc-
tion (PNPR) of the FSS was proposed by Kong et al. in [25]. Using three-way decision
criteria, Khameneh and Kilicman [26] presented an adaptable method for parameteriz-
ing FSS. In order to address the issue of FSS parameter reduction based on the score
criteria, Kong et al. [27] developed a brand-new NPR method. A distance-based param-
eter reduction (DBPR) approach for FSS was introduced by Ma and Qin [28]. Its use in
decision-making issues was covered, and a problem arose with it because similarity and
reduction are different and cannot depend on each other. For more information about
the prarametrization reduction in FSS, see [29–34]. Most reduction methods depend on
one function.

Throughout this paper, the issue of decision making in the presence of imprecise data
holds particular importance when addressing real-life problems. In this example, a multi-
observer, multi-criteria decision-making issue is addressed by employing the notion of FSS,
which always come equipped with parametrization tools. Also, we give some applications
using soft sets and FSSs. By the given results, we prove that the approach to decision-
making problems with imprecise data via FSSs is more accurate than other approaches.

Let U1 be a initial universe set, S be a set of parameters of attributes with respect to
U1, and P(U1) denote the power set of U1.
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Definition 1 ([2]). A pair (F, S) is called a soft set over U if and only if F is a mapping of S into
the set of all subsets of U. In other words, a soft set over U is a function from a set of parameters
to P(U). We can notice that a soft set is not a set in the usual sense but a parameterized family of
subsets of U.

Definition 2 ([35]). For a set A1 ⊆ X1, its indicator function µA1 is defined as

µA1(x1) =

{
1, if x1 ∈ A1;
0, if x1 /∈ A1.

A fuzzy set F is described by its membership function µA. For every x1 ∈ X1, this function
associates a real number µF(x1) interpreted for the point as a degree of belonging of x1 to the fuzzy
set F, written as F = {(x1, µA1) : x1 ∈ X1}.

Definition 3 ([3]). Let P̃(U1) be all fuzzy subsets of U1. A pair (F̃, S) is called FSS over U1 such
that F̃ is a function given by F̃ : S→ P̃(U1), where S is a set of parameters.

Similarly, definitions of FSS, null FSS, intersection and union operations [3] are similar
to those defined for crisp soft sets (soft sets) [2].

2. Soft Sets through Pawlak Rough Sets

Molodtsov [2] explored various applications of the soft set theory across multiple
domains, including the examination of function smoothness, game theory, operations
research, probability, etc. In this part, we demonstrate how the rough technique can be
utilized to apply soft set theory to a decision-making problem [36,37]. What we will look
at is outlined in the following. The information system with set values is outlined in the
table that may be found above, where U = {z1, z2, z3, z4, z5, z6} are a set of six students.
V = {v1 = Food containing preservatives, v2 = C, v3 = P, v4 = V, v5 = Fat, v6 = M, v7 =
Junk food, v8 = Icecream } is a group of parameters that students can use to visualize the
nutrients found in food.

Consider the soft set (F,V), which describes the attractiveness of the students given
by (F,V) = Students consume foods with Foods with added preservatives = φ; Students
eat food containing C = {z1, z2, z3, z4, z5, z6}; Students eat food containing P = {z1, z2, z3, z4,
z6}; Students eat food containing V = {z1, z2, z3, z4, z5, z6}; Students eat food containing Fat
= {z1, z3, z6}; Students eat food containing M = {z1, z2, z6}; Students eat Junk food = {z2,
z4, z5}; and Students eat Icecream = {z1, z3, z6}.

Assume that Mr. X possesses an inclination to procure food items based on specific
parameters aligned with his personal preferences {v1, v2, v3, v4, v5, v6, v7, v8}, which
constitute the subset P = {v2 = C, v3 = P, v4 = V, v5 = Fat, v6 = M} of the set V. This
implies that the individual must choose from the set of available food items, denoted as U,
the food item(s) that satisfy all or the highest number of parameters specified by the soft
set. The objective is to identify the food item that aligns with the predetermined selection
criteria established by Mr. X.

First, let us build a tabular representation of the problem so we can better understand
it. Take into consideration the soft set (F,P), where P is the decision parameter of Mr. X
(see Table 2 for further information). In this case, (F, P) can be considered a soft subset of
(F, V).



Symmetry 2023, 15, 1523 4 of 10

Table 2. Food information system.

Students v2 v3 v4 v5 v6

z1 1 1 1 1 1

z2 1 1 1 0 1

z3 1 1 1 1 0

z4 1 1 1 0 0

z5 1 0 1 0 0

z6 1 1 1 1 1

Assume that a hypothetical customer, Mr. Y, intends to make a food purchase based
on a predefined set of choice parameters Q ⊂ P. So (F, Q) is a soft subset of (F,P) and
called the reduct soft set of the soft set (F,P). The choice value of an object zi ∈ U is pi,
where pi = Σzij such that zij is the entries in the table for reducing the soft set as shown in
Table 3.

Table 3. Reduct soft set.

Students v2 v3 v5 v6 Choice Value

z1 1 1 1 1 p1 = 4

z2 1 1 0 1 p2 = 3

z3 1 1 1 0 p3 = 3

z4 1 1 0 0 p4 = 2

z5 1 0 0 0 p5 = 1

z6 1 1 1 1 p6 = 4

So, Mr. Y can choose the food of students {z1, z6}. The theory of a weighted soft set, or
W-soft set, was first presented by Lin [36]. The weighted choice value of an object zi ∈ U is
Wpi since Wpi = Σdij such that dij = wj × cij. The following Algorithm 1 is for the selection
of students.

Algorithm 1 Decision making for food system.

Step 1: Input the soft set (F,V).
Step 2: Enter the set P of choice parameter for Mr. X and P ⊆ V.
Step 3: Reduct soft set of (F,P).
Step 4: Choose one reduct soft set (F, Q).
Step 5: Get weighted table of the soft set (F, Q) according to the weights decided by
Mr. Y.
Step 6: Compute k for which Wpi = max wpi .

The optional choice object is denoted as “ck”. If there are multiple values for k, Mr.
Y has the option to choose any one of them. We attempt to resolve the initial problem
by employing a modified algorithm. Assume that the weights for the parameter are
determined by Mr. Y as presented in Table 4.

Table 4. Weightage for parameters.

w2 w3 w4 w5 w6

0.9 0.8 0.7 0.6 0.5

Using these weights, the reduct soft set can be tabulated as in Table 5.
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Table 5. Reduct using weightage.

Students w2× v2 w3× v3 w5× v5 w6× v6 Choice Value (wpi )

z1 0.9 0.8 0.6 0.5 p1 = 2.8

z2 0.9 0.8 0 0.5 p2 = 2.2

z3 0.9 0.8 0.6 0 p3 = 2.3

z4 0.9 0.8 0 0 p4 = 1.7

z5 0.9 0 0 0 p5 = 0.9

z6 0.9 0.8 0.6 0.5 p6 = 2.8

Therefore, max wpi = {wp1 , wp6}. The reduct is that Mr. Y chooses the food of
students z1 and z6 among the available food. He seeks counsel from five different counseling
agencies v2, v3, v4, v5, v6. The five agencies provide the information about food considering
parameters C, P, V, Fat and M of the students z1,z2,z3,z4, z5 and z6, respectively.

3. Best Nutrition in Terms of Soft Sets

To address the issues raised above, the following Algorithm 2 is proposed:

Algorithm 2 Decision making for proposed problem.

Step 1: Input the performance evaluation of the similar food for different students as
tables.
Step 2: Determine the average value of each relevant entry in each table, and then
calculate that average.
Step 3: To obtain the comprehensive decision table, we multiply the weightage of the
selection criteria of director (or Mr. Y) to the corresponding entries of each column.
Step 4: Calculate the comparison table.
Step 5: Calculate the column sums and row sums of the comparison table.
Step 6: Obtain the score for every student. The student with maximum score is recom-
mended as the best choice with the best food. So, he has good nutrition.

Suppose Mr. Y is interested in choosing food for students from among the set of
students U = {z1, z2, z3, z4, and z5} on the basis of the set P = {p1 (C), p2 (M), p3 (P), p4 (fat),
p5 (Junk food), p6(V)} of the selection criteria called the parameters, and assume that Mr. Y
wants to choose food for pupils based on his personal preference weightage of the selection
criterion. Now to obtain the recent the performance evaluation data, we construct the FSSs
(F1, P), (F2, P), (F3, P), (F4, and P) over U, where F1, F2, F3, and F4 are mappings from
P into IU given by four performance evaluation data.
Suppose F1(p1) = {(z1, 0.50), (z2, 0.60), (z3, 0.50), (z4, 0.80), (z5, 0.90)},
F1(p2) = {(z1, 0.80), (z2, 0.70), (z3, 0.60), (z4, 0.40), (z5, 0.30)},
F1(p3) = {(z1, 0.10), (z2, 0.20), (z3, 0.30), (z4, 0.60), (z5, 0.80)},
F1(p4) = {(z1, 0.30), (z2, 0.40), (z3, 0.50), (z4, 0.40), (z5, 0.80)},
F1(p5) = {(z1, 0.90), (z2, 0.80), (z3, 0.70), (z4, 0.60), (z5, 0.20)},
F1(p6) = {(z1, 0.10), (z2, 0.20), (z3, 0.30), (z4, 0.50), (z5, 0.80)},
F2(p1) = {(z1, 0.52), (z2, 0.59), (z3, 0.60), (z4, 0.85), (z5, 0.91)},
F2(p2) = {(z1, 0.79), (z2, 0.75), (z3, 0.65), (z4, 0.43), (z5, 0.25)},
F2(p3) = {(z1, 0.15), (z2, 0.22), (z3, 0.40), (z4, 0.70), (z5, 0.90)},
F2(p4) = {(z1, 0.25), (z2, 0.35), (z3, 0.45), (z4, 0.50), (z5, 0.75)},
F2(p5) = {(z1, 0.87), (z2, 0.88), (z3, 0.75), (z4, 0.65), (z5, 0.30)},
F2(p6) = {(z1, 0.13), (z2, 0.22), (z3, 0.35), (z4, 0.49), (z5, 0.85)},
F3(p1) = {(z1, 0.55), (z2, 0.63), (z3, 0.54), (z4, 0.75), (z5, 0.91)},
F3(p2) = {(z1, 0.88), (z2, 0.86), (z3, 0.70), (z4, 0.50), (z5, 0.40)},
F3(p3) = {(z1, 0.20), (z2, 0.30), (z3, 0.50), (z4, 0.70), (z5, 0.90)},
F3(p4) = {(z1, 0.29), (z2, 0.33), (z3, 0.48), (z4, 0.52), (z5, 0.85)},
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F3(p5) = {(z1, 0.85), (z2, 0.84), (z3, 0.78), (z4, 0.65), (z5, 0.23)},
F3(p6) = {(z1, 0.12), (z2, 0.25), (z3, 0.30), (z4, 0.57), (z5, 0.85)},
F4(p1) = {(z1, 0.58), (z2, 0.67), (z3, 0.56), (z4, 0.86), (z5, 0.95)},
F4(p2) = {(z1, 0.89), (z2, 0.87), (z3, 0.69), (z4, 0.45), (z5, 0.36)},
F4(p3) = {(z1, 0.19), (z2, 0.27), (z3, 0.34), (z4, 0.57), (z5, 0.89)},
F4(p4) = {(z1, 0.32), (z2, 0.35), (z3, 0.40), (z4, 0.45), (z5, 0.70)},
F4(p5) = {(z1, 0.85), (z2, 0.87), (z3, 0.73), (z4, 0.61), (z5, 0.23)},
F4(p6) = {(z1, 0.18), (z2, 0.24), (z3, 0.37), (z4, 0.56), (z5, 0.78)}.
The following is a table that represents the aforementioned FSSs (F1,P), (F2,P), (F3,P),
(F4,P) organized into Tables 6–9.

Table 6. FSS for (F1,P).

P \U z1 z2 z3 z4 z5

p1 0.50 0.60 0.50 0.80 0.90

p2 0.80 0.70 0.60 0.40 0.30

p3 0.10 0.20 0.30 0.60 0.80

p4 0.30 0.40 0.50 0.40 0.80

p5 0.90 0.80 0.70 0.60 0.20

p6 0.10 0.20 0.30 0.50 0.80

Table 7. FSS for (F2, P).

P \U z1 z2 z3 z4 z5

p1 0.52 0.59 0.60 0.85 0.91

p2 0.79 0.75 0.65 0.43 0.25

p3 0.15 0.22 0.40 0.70 0.90

p4 0.25 0.35 0.45 0.50 0.75

p5 0.87 0.88 0.75 0.65 0.30

p6 0.13 0.22 0.35 0.49 0.85

Table 8. FSS for (F3, P).

P \U z1 z2 z3 z4 z5

p1 0.55 0.63 0.54 0.75 0.91

p2 0.88 0.86 0.70 0.50 0.40

p3 0.20 0.30 0.50 0.70 0.90

p4 0.29 0.33 0.48 0.52 0.85

p5 0.85 0.84 0.78 0.65 0.23

p6 0.12 0.25 0.30 0.57 0.85
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Table 9. FSS for (F4, P).

P \U z1 z2 z3 z4 z5

p1 0.58 0.67 0.56 0.86 0.95

p2 0.89 0.87 0.69 0.45 0.36

p3 0.19 0.27 0.34 0.57 0.89

p4 0.32 0.35 0.40 0.45 0.70

p5 0.85 0.87 0.73 0.61 0.23

p6 0.18 0.24 0.37 0.56 0.78

We obtain the performance evaluation shown in Table 10 by averaging the aforemen-
tioned four FSSs.

Table 10. Average of FSSs.

P \U z1 z2 z3 z4 z5

p1 0.54 0.62 0.55 0.82 0.92

p2 0.84 0.80 0.66 0.45 0.33

p3 0.16 0.25 0.39 0.64 0.87

p4 0.29 0.36 0.46 0.47 0.78

p5 0.87 0.85 0.74 0.63 0.24

p6 0.13 0.23 0.33 0.53 0.82

Assume that Mr. Y determines the preference weights for the various pupils as shown

in Table 11 such that
5
∑

i=1
wi = 1.

Table 11. Weightage for students.

w1 w2 w3 w4 w5

0.3 0.3 0.275 0.1 0.025

The comprehensive decision table can be derived by performing a row-wise multi-
plication of Table 10 with the weightage Table 11, followed by transposing the resulting
matrix as depicted in Table 12.

Table 12. Comprehensive decision.

P \ (U×wi) z1×w1 z2×w2 z3×w3 z4×w4 z5×w5

p1 0.162 0.186 0.151 0.082 0.023

p2 0.252 0.240 0.182 0.045 0.008

p3 0.048 0.075 0.107 0.064 0.022

p4 0.087 0.108 0.124 0.047 0.020

p5 0.261 0.255 0.204 0.063 0.006

p6 0.036 0.069 0.091 0.053 0.006

Now that the comparison table is constructed for the students, we use it to help Mr.
Y select the most qualified students possible. The comparison table is in the form of a
square and has an equal number of rows and columns. The rows and columns are both
labeled with the names of the students as z1, z2, z3, z4 and z5, and the entries are zij with
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i, j = 1, 2, 3, 4, 5 given by zij =, the number of selection criteria, for which the membership
value of zj is greater than or equal to the membership value of zi. The comparison table is
in Table 13.

Table 13. Comparison table.

U \U z1 z2 z3 z4 z5

z1 6 2 3 4 6

z2 4 6 3 5 6

z3 3 3 6 6 6

z4 1 0 0 6 6

z5 0 0 0 0 6

The column sum and the row sum from the comprehensive decision table and the
scores for each student are presented in the following Table 14.

Table 14. Score table.

Column-Sum Row-Sum Score Value

z1 14 21 −7

z2 11 24 −13

z3 12 24 −12

z4 21 12 9

z5 30 6 24

It is concluded that for Table 14 with the score table, the following ordering is sug-
gested: z5 > z4 > z1 > z3 > z2.

In this case, we discover that the highest possible score can be achieved by z5, the
student with the best parameters p1, p2, p3, p4, p5 and p6. Hence, Mr. Y can choose the
student with the best ratios of food with parameters p1(C), p2 (M), p3 (P), p4( f at), p5 (Junk
food), and p6 (V) of the selection criteria of FSSs (F1,P), (F2,P), (F3,P), and (F4,P)
over U.

4. Conclusions and Future Work

The application of fuzzy soft sets in decision making for ideal nutrition has proven to
be a promising approach. By considering the uncertainty and imprecision associated with
dietary recommendations and individual preferences, fuzzy soft sets provide a flexible
and adaptive framework for making informed choices. Through the integration of diverse
sources of information and the consideration of multiple criteria, this approach can help
individuals and health professionals to navigate the complex landscape of nutrition and
make decisions that are tailored to their specific needs and goals. Overall, fuzzy soft sets
represent a valuable tool for promoting healthy and balanced diets, and further research
in this area is likely to yield important insights and practical applications. From the given
results, it is clear that the approach to decision-making problems [38–42] with imprecise
data via FSSs is more accurate than the other approaches. We are currently working on a
new method of reducing FSS to solve the problems that appear in the methods of NPR,
PNPR and DBPR. The development of homelands begins with building a person, and
building a person depends on proper nutrition. Egypt has made many initiatives to build
the human being, including 100 million health and a decent life, and the detection of
malnutrition diseases. Therefore, in the year 2022, an initiative was launched to detect
malnutrition at the beginning of the study, with the follow-up of the Ministry of Health
and the Ministry of Education. It examines children in schools (weight, height, and the
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percentage of hemoglobin in the blood). When a child presents with a positive case of
anemia, stunting or obesity, a card is created. It contains the complete data of the child.
Upon follow-up, it is re-examined, and a complete treatment plan suitable for the child is
drawn up.The examination was carried out for 11 million students. Therefore, attention to
nutrition is a very important factor in choosing the appropriate nutrition. In the future, we
will work to help identify the best nutrition factors and the best methods of diagnosing
malnutrition, help decision makers, and link big data to FSS.
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