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1. Introduction

In 1924, the theory of semi-symmetric linear connection on a differentiable manifold
was given by Friedmann and Schouten [1]. Later, Hayden [2] introduced the concept of
metric connection with torsion on a Riemannian manifold. Approximately five decades
ago, Yano established a relation between the semi-symmetric metric connection and the
Levi-Civita connection [3]. As a generalization of semi-symmetric connection, the idea of
quarter-symmetric connection was proposed by Golab [4].

A linear connection D in a differentiable manifold M (dim M = n) is said to be a
quarter-symmetric connection [4] if its torsion tensor T is of the type

T(B1,B2) = Dp,B2 — Dp,B1 — [B1, B2] = n(B2)#B1 — 11(B1)$B2, 1

where 7 is a 1-form and ¢ is a tensor field of type (1, 1).

If the connection D satisfies the condition (Dg, g)(B2, B3) = 0, for all By, B2, B3 on M,
then D is said to be a QSMC.

The study of semi-symmetric and quarter-symmetric connections was further devel-
oped by many geometers, such as [5-12], among many others.

On the other hand, Matsumoto [13] proposed the idea of LP-Sasakian manifolds
in 1989. Subsequently, the same notion was independently introduced by Mihai and
Rosca [14] and obtained a number of key results. Numerous geometers worked out on
LP-Sasakian manifolds and contributed a number of interesting results. For more details,
we refer [15-19] and the references therein.

In differential geometry, the tangent bundles play an important role to investigate the
geometrical structures of the manifold and their properties such as integrability conditions,
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curvature conditions, partial differential equations etc. Yano and Ishihara [20] introduced

and studied almost complex structures with some basic properties induced in tangent

bundles. Recently, Khan et al. [8] studied the lifts of a QSMC from a Sasakian manifold to
its tangent bundle TM. Li et al. [21-31] did a series of theoretic research and development
and application of singularity theory and submanifolds theory etc., which also deepens
relevant research subjects. For more detail studies about the subject we recommend the
papers [32-43] and the reference therein.

In this paper, we investigate the complete lifts from (LPS), to its tangent bundle

TM associated with a connection D¢ and a QSMC DC. The following key conclusions

are drawn:

e We established the relationship between D and D¢ on TM of an (LPS),.

e We derived the curvature tensor, the Ricci tensor and the scalar curvature associated
with the connection D€ on TM of an (LPS),.

e We proved that the tangent bundle TM of an (LPS), is symmetric and ¢*-symmetric
with respect to (wrt) the connection D€ if and only if it is so wrt DC.

e We proved that the tangent bundle TM of an (LPS),, is concircular symmetric and
concircular ¢C-symmetric wrt D€ if and only if it is so wrt DC.

*  We proved that the tangent bundle TM of an (LPS), is concircular symmetric and
concircular ¢¢-symmetric wrt D if and only if it is symmetric wrt D subject to ©
constant.

Notations: Let S} (M), SY(M), S1(M) be the set of vector fields, the set of 1-forms and

the set of tensor fields of type (1,1) in M, respectively. Similarly, we assume that S}(TM),

SY(TM), 31(TM) be the set of vector fields, the set of 1-forms and the set of tensor fields

of type (1,1) in the tangent bundle T M, respectively.

2. Preliminaries

A manifold M (dim M = n), endowed with a (1,1) tensor field ¢, a vector field ¢,
a 1-form 7 and a Lorentzian metric g is an (LPS),, if [13,14]:

@) = -1 €
P = Pr+n(B1)S, ®)
§(¢B1,¢B2) = &(B1,B2) +1(B1)n(B2), 4)
8(F1,8) = n(B1), ©)
Dp,& = 9P, (6)
(Dp, )2 = 8(B1, P2)C +1(B2) B+ 217(B1)7(B2)E, )
and
$c =0, n(pp1) =0, rank$ =n —1. (8)
If we put

P(B1,B2) = g(B1,¢P2), VB1, B2 € SH(M), ©)

then @ is a symmetric tensor field of type (2,0). As 7 is closed, then we infer [13,44]
(Dg,1)(B2) = ®(B1,B2), ®(B1,8) =0, (10)

for all 1, B2 € I (M).
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In an (LPS),, we have

8(R(B1,B2)B3,6) = n(R(B1,B2)Bs3)
= 8(B2,B3)n(B1) — &(B1,B3)n(B2), (11)
R(G,B1)B2 = &(B1,B2)¢ —1(B2)B1, (12)
R(B1,B2)¢ = n(B2)p1—n(B1)B2 (13)
S(B1,6) = (n—1)n(B1), (14)
S(¢B1,¢B2) = S(B1,B2) + (n—1)n(B1)n(B2), (15)

for all By, B2, B3 € (M), where R and S denote the Riemannian curvature tensor and the
Ricci tensor of M, respectively.
In an My, the curvature tensor R of D is given by

R(B1,B2)B3 = Dp,Dp,Bs — Dp,Dp, B3 — Dy, 5,1 Bs-

Now let {j1,72,73-- . ,Jn = ¢} be a frame of orthonormal basis of the tangent space
at any point of M;;. Then we find S and r as follows:

S(B1,B2) = Zezg (7ir B1)B2,Ji),

r=1)_ €SGii),

i=1
respectively, where r is the scalar curvature of M and €; = g(j;, ;) = +1or —1.

Example 1. Let us consider a 3-manifold M3 = {(u,v,w) : u,v,w € R3,w # 0}. Let 11,72, 3
be linearly independent vector fields on M3 given by

w—au a a

d
p— wi — — = —
h=e g, 2=¢ w 27w &

where a(# 0) is a constant. Let ¢ be the Lorentzian metric and 1 be a 1-form on M3 given by

8(1.12) = 8(1,73) = 8(2,13) =0, g1, 11) =82, 12) =1, 803, 73) = —

and
1(13) = 8(3,8), J3 € Sp(M).
Let ¢ be the (1,1) tensor field defined by ¢pj1 = —J1, P12 = —J2, ¢j3 = 0. By using the linearity
of ¢ and g, we acquire 1(§) = =1, ¢*pn = j +1(1)¢ and g(¢n1, ¢12) = 801, 72) + 1)1 (12)-

Thus for j3 = ¢, the structure (¢, &, 1, g) is a Lorentzian paracontact structure on M.
Let D be the Levi-Civita connection wrt the Lorentzian metric g, then we have
U112 = —ae“n, (sl = =0 D2o78] = —)2-

By using the Koszul’s formula for the Lorentzian metric g, we infer

Dyn = =3 Dypj2=0,Dyj3=—p, (16)
D,n = ae“py, Do = —ae’;n — 13, Dyyjs = —j2, (17)
D = 0, D=0, Dz =0, (18)
(Dp¢)iz = gU1,72)¢ +1G2)n +21(71)1(2)¢. (19)

From the above relations, it can be easily seen that for j3 = ¢, (¢,&,7,¢) is an LP-
Sasakian structure on Mj3. Consequently, M3(¢, ¢, 7,g) is an (LPS)s.
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Let ]f,]g,]g be the complete lifts and ]¥,]¥,]¥ be the vertical lifts on TM of j1, 2, 73 on M3.
Let ¢© be the complete lift of the Lorentzian metric ¢ on TM such that

&5 = C&En) =m@)Y, (20)
€S 5) = (S(EnR)T=m©@)", (21)
sCU5.5) = 1, 8@ 5) =0, g'(¥.4) =0, (22)

and so on.
Let ¢C and ¢V be the complete and vertical lifts of ¢ defined by

9" 00) =1, ¢°07) =11,
9" 03) =13, ¢°05) =15,
9" (5) = ¢°(5) =0.
By using the linearity of ¢ and g, we infer
(9°0) =+ 0" (@F + 103, (23)

(@)% (92)9) = 8°G5.15) + () (1 (12))”
+ ()Y (n(12))°

Thus, for j3 = ¢ in (20), (21) and (23), the structure (¢, ¢, 5%, ¢C) is a Lorentzian
paracontact structure on TM and satisfies the relation

(Dieg )iz = 80T15)8" +8(r15)E"
+ 2{0°05)1 +n" G5t}
Then, (cpc, &<, nC,gC, TM) is an (LPS)s3.

Definition 1. An (LPS), wrt D is said to be symmetric if [45]
(Dg,R)(B1,B2)B3 =0,

for all By, B2, B3, Bs € I§(M).

Definition 2. An (LPS), wrt D is said to be ¢p-symmetric if [45]

¢*(Dg,R)(B1,B2)B3 =0,

for all By, Ba, B3, Bs € I (M).

Definition 3. An (LPS), wrt D is said to be concircular symmetric if [45]
(Dg,C)(B1,B2)B3 =0,

or all B1, Ba, B3, Ba € (M), where C is the concircular curvature tensor given by [45]
0 & Y

C(B1,B2)B3 = R(B1,B2)B3 — ﬁ[g(ﬁzf B3)B1 — g(B1,B3) B2l (24)

Definition 4. An (LPS),, is called concircular ¢-symmetric if
¢*(Dg,C) (1, B2)B3 = 0,

for all By, B2, B3, P € SH(M).
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3. Lifts of a QSMC from an (LPS), to Its TM

Let TM = Upem Tp M be the tangent bundle over the manifold M, where T, M denotes
the set of all tangent vectors of the manifold M at a point p. Let 81,7, ¢ and D be a vector
field, a 1-form, a tensor field of type (1,1) and an affine connection on the manifold M,
respectively. Then, 81", 1V, ¢V, DV and B, 1€, ¢C, DC are the vertical and complete lifts
of a vector field, a 1-form, a tensor field of type (1,1) and an affine connection, respectively
in TM [46,47].

The complete and vertical lifts by mathematical operators are given by

" (B9 = 7°B") =n(B1)", 1°(B°) =n(B1)",
" BC = (pB1)", ¢°B1° = (¢B1)",

BBV = [B1SB" 1 =[B1",B25], [B1, B2l = [B:C, B2E),
Dglcﬁzc = (Dg,B2)", DglcﬁZV:(Dﬁlﬁz)V~

Taking the complete lifts of (2)—(7), by mathematical operators we infer

ﬂc(éc) = -1,
@*B)C = B +7"(B1O)E” + 1" (B:O)zC,
(9B (9B2)C) = 8°(B1S B2°) + 1< (B1 )Y (B2) (25)

+ 7V (B (B2S),
(B EC) = (B,

Dg et = (9p1)°, (26)
(D 9 )52C = (A1 B)E + (BN + 11" (BN
+ 2{7(B1)n (BO)EY + 1< (B19)nY (BC) € 27)
+ 7Y (B (BO)ES,
forall B1, B2° € SL(TM).
From (8)—(10), we have
(95)C = 0, 7°(¢pp1)" =0, (28)
(/%1 B2) = §°(B1C, (9B2)°), (29)
(D5 cn)(B2") = @(B1%,B2°), (B15,57) =0 (30)

for all B, B € %(1)(TM), then ®€ (5,5, B,°) is a symmetric tensor field.
Now taking the complete lifts of (11)-(15), we have

8E(RE(B1S, B2)B3%,EC) = 7 (RE(B:S, B2°)B5°)
= 8BS B (B1C) + 85 (B2, BsC)n (B1C)
gC(B1, Bs5 )Y (B2°)
— 5B, B3 ) (B2°),
RE(ES,B19)B" = g°(B1S,B2)EY +85(B1", B2°)E"
— 7%(B2°)B1" — 1V (B)B1,
RE(BS, B29)EC = n(B2O)BY + 1" (B2°)B:C
- Uc(ﬁlc)ﬁz 1" (B1°)B2",
SC(B15,E%) = (n—=1)n%(Br°),
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SC((@B1)S, (9B2)) = SE(B1C, B2C) + (n = 1) {5 (B )" (B2°)
+ 1781V ()},

for all 81, B, € S$3(TM), where R€ and S© denote the complete lifts on TM of R and S,
respectively.

4. An Expression of R€ on TM of an (LPS),

In this section, we establish the relationship between D® and D on TM of an (LPS),,.
Moreover, the curvature tensor RE, the Ricci tensor S€ and the scalar curvature 7€ associated
to D€ on TM of an (LPS), are derived.

Let M be an almost contact metric manifold with a Riemannian connection D and
let TM be its tangent bundle. A linear connection D and the tensor H of type (1,1) are
related by

Dﬂlﬁz = Dﬁ1ﬁ2+H(ﬁlrﬁ2)' (31)
For the connection D to be a QSMC in M, we have [4]
2H(B1, B2) = T'(B1,B2) + T'(B2, 1) + T(B1, B2), (32)
where
§(T'(B1, B2), B3) = &(T(B3, 1), Bo)- (33)
From (1) and (33), it follows that
T'(B1,B2) = 1(B1)9B2 — §(B1, $B2)¢. (34)

By using (1) and (34) in (32), we obtain
H(B1, B2) = 1(B2)¢p1 — &(B1,$P2)¢.
Thus, a QSMC D on an (LPS),, is expressed as
Dg, B2 = Dg, B2 + 11(B2)¢B1 — g(B1, $P2)3-
Taking the complete lifts of (1), (31)~(34), we have
T(B1%, B2") = D cpa® —Di cp1€ — 41, ]

1< (B29) (9B1)Y + 1" (B1) (9B2)© (35)
nC(B25) (¢B1)" — 11V (B1€) (9B2)C,

Dglc,BZC = Dglcﬁzc + H(B:5, B2°),

where .
HE (B, B2°) = E[Tc(ﬁlcrﬁzc) + T'C(B1S, B2C) + T (B2, 1)) (36)
and
g (B, B2°), B3°) = g (TC(B5%, 1), B2°) (37)
for all By, B2, B3 € S{H(M).
From (35) and (37), we acquire
T, B2°) = nS(B1O) (¢B2)" + 1" (B19)(¢B2)C
8°(B1S, (9B2) ) — 8°(B1C, (9B2) " )EC. (38)
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By using (35) and (38) in (36), we have

HE(B1SB2S) = #S(B25)(9B1)Y + 1Y (B2°) (9B1)C
(1S, (9B2)C)EC — gC(B1S, (pB2)V)EC,

where HC is the complete lift of H.
Thus, a QSMC D€ on TM of an (LPS), wrt the Riemannian connection D€ is given by

DgcBr = Dy cpa"+n"(B2)(@p1)" + 1" (B2°) (91)°
85 (B, (982))E" — S (B1", (9B2))EC. (39)

Thus, (39) is the relation between the connections D€ and D€ on TM of an (LPS),.
Hence, we state the following theorem:

Theorem 1. Let D be the QSMC on an (LPS), and D be the complete lift of D on TM of the
manifold. Then, the relation between D¢ and D on TM is given by (39).

Let R be the curvature tensor wrt D on TM of an (LPS),,. Then the curvature tensor
RE wrt D€ on TM is defined by

RE(B1©, p2°)BsC = D D s = Dy <D o3 = Diy c ¢ /B3, (40)

where
R(B1,B2)B3 = Dp,Dp,p3s — D, D, p3 — D, g, B3-

From (39) we can easily find
ﬁchﬁ Bt = Dﬁ CD/5 cBa© Dglcﬂc(ﬁzc)(¢ﬁ3)v - Dglcﬂv(ﬁzc)(ﬁl’ﬁS)c- (41)
From (39)—(41), we obtain

RE(B1S, B2°)BsC = RE(B1S, B2°)BsC

+ 8BS (9B3)C) (9B2)Y + 8 (B1Y, (9B3) ) (9B2)©

— 8°(B2S, (¢B3)C) (9B1)” — (B2, (¢B3)) (¢P1)C

+ 77(B19)g" (B2S, Ba)&C

+ 7°(B1)8 (B2", B3 )§C+77CXC) €(B2S, B5)EY

— 77 (B29)8° (B, B3°)EC — (ﬁz > C(ﬁlvrﬁSC)‘:C

— 7YO)gC (B, BsO)EY — {n (B19)1 (B3°)B2°

+ 79(B1)nY (B )ﬁz +7(B1%)y (ﬁs )B2Y

— V(B (BB —nC(B25)nY (B5C) B ©

— (B2 (Bs)B1" ), (42)

where RE(B15, B2°)B3C is the curvature tensor of DC. Thus a relation between the curvature
tensors of TM associated to D and D¢ is given by (42).
From (42), we obtain the following relation

SC(BS BsC) = SC(B2S,BsC) — 85 (B, (¢Ba) )y — 85 (B2, (9B3) )y
+  (n=D){n(B2)1" (B5°) + 1" (B2 (Bs) }- (43)

On contracting (43), we lead to
7€ =1C —20“9Y — (n—1), o = tracep, (44)

#C and r© represent the scalar curvatures of D¢ and D€, respectively.
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5. Symmetry on TM of an (LPS), wrt D¢
An (LPS), is called symmetric wrt D if [48]

for all By, B2, B3, Ba € SH(M).
Using (39), we have

(Dg,R)(B1,B2)B3 =0

(D§4CRC)(/51C//32C)[33C = ((Dg,R)(B1,B2)B3)"

+ 7S(R(B1, B2)B3)  (9Ba)Y + 1" (R(B1, B2)B3) " (¢Ba)C
— §°(Ba, 9R(B1, B2)B3) " — (ﬁ4 ¢R(B1,B2)B3)E"
— 7B (R)(Ba, B2)B3)" — 11" (B19) (R)(¢Bs, B2)B3)C
— 7B (R)(B1, ¢Ba)B3)" — 11" (B29) (R) (B1, Ba)B3)"
— 7°(B3)(R(B1, B2)9Ba)” — 11" (B3C) (R(B1, B2)PPBa)©
+ 8°(BaS, (9B1))(R(E, B2)B3)"

+ 85(BsY, (¢B1))(R(E, B2)B3)C

+ 8°(B4S, (9B2)°) (R(B1,§)B3)”

+ 8(Bs", (¢B2))(R(B1,€)B3)C

+ g5(BaS, (9B3)C)(R(B1, B2)E)

+ 8°(B4Y, (9B3) ) (R(B1, B2)E) .

By differentiating (42) wrt B4 and using (26), (28) and (30), we lead to

(D5 RO (B, B2°)B3" = ((Dp,R)(B1, 2)3)" + O (B2, B2, Ba", a°),

where
O (B, B2 B3, BaS) = —{n°(B2°)g"(Bs", B3) (9B1)"

+ Uv(ﬁzc)gc(ﬁzx ,B3) (9B1)¢
+ 17 (B29)g  (BS, B3) (¢B1)C
+ 7(Bs9)8 (B2, BN (9B1)"
+ 77 (B398 (B2, BaC) (9B1)C
+ 17(Bs9)g (B2 )(<P!3 )
+ Z{WC(ﬁzC)nc( ) (

+ 7B (BsS)n (Ba

+ 15(B25)" (B3 (Ba

+ riv(ﬁzc)nc(ﬁs ) (B4

+ 7°(B19)8  (Ba© )(4>/3
+ 17 (B19)g (B4", Bs) (@

+ 7Y(B19)8 (B4S, B3°) (9B
+ 7°(Bs5)g" (B2C )(¢ﬁ
+ 1V(B39)8 (2", BaC) (¢

+ 17 (Bs9)g" (B2" )(47[5
+ Z{WC(ﬁlc)nc( ) €(Bs©

+ 7B ) (Bs )" (Bs©

+ 9B (B (BaC)(

(@S

(45)

(46)

(47)
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Using (25), (28) and (47) in (45), we infer
(Dg cRO) (B, B2°)B3" = (D cRO)(B1, B2°) B3 (48)
Thus, we have the following:

Theorem 2. The tangent bundle TM of an (LPS),, is symmetric wrt the connection D€ if it is so
wrt the connection DC.

Corollary 1. The tangent bundle TM of an (LPS),, is ¢-symmetric wrt the connection D if it is
so wrt the connection DC.

6. Concircular Symmetry on TM of an (LPS), wrt D¢

An (LPS), is called concircular symmetric wrt D if [48]

(Dﬁ45)(,31/,32)ﬁ3 =0,

for all B1, B2, B3, B, Where C is the concircular curvature tensor wrt D given by

C(B1,B2)Bs = R(B1, B2)Bs — ﬁ[g(ﬁzz Bs)B1 — 8(B1,B3)Bal, (49)

where R is the Riemannian curvature tensor and 7 is the scalar curvature wrt D.
Taking the complete lift of (49) and using (39), we have

(D cCOB )" = (D cCO)(B1, 2°)B5C

+ 7°(C)(B1,B2)B3)  (¢P4)”

+ 7Y(C)(B1,B2)B3) (¢B4)C

— 8%(Bu,¢C)(B1,B2)B3) "

— 8V (B4, ¢C)(B1, P2)B3) "

— 7°(B1°)(C) (9B, B2)B3)Y

— 1V(B1)(C) (¢4, B2)B3)" (50)
— 1C(B)(C) (B 9Ba)B3)Y

— 7V(B2°)(C)(B1, pBa)B3)C

— 7°(Bs)(C)(B1 B2)¢Bs)”

— 7"(Bs9)(C)(B1, B2) pPBa)C

+ 85(B4S (9B1))((C)(E B2)B3)C
+ 8°(B4S, (9B2))((C) (Br, &)B3)C
+ 85 (B4S, (9B3))((C) (Br, B2)E) .

Now differentiating (49) wrt B4, we find

(DC CO)(B1C, BO)BaC = (DC RE) (B, B2°)BsC
DCC
T ){g (B2, B3°)B1" +¢%(B2", B3)p1C (1)

— 5B BO)BY — g (B1Y. BsC)B Y
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By using (24), (44) and (47) in (51), we have

(D cCONB B2)Bs" = ((Dp,C)(B1, B2)B3)) " — O (B, BaC, B3, )
C C_n(sCPC .V CPHC .,V
Dmc” 2(y Dﬁ4c¢’ + Dﬁ4clp ) '
nn—1)
{8°(B2%, B3°)B1” +8°(B2", B3°)B1” (52)
— 85(B1S, BO)B2Y — 8 (B, B3 )Ba )
Now, by using (25), (28) and (52) in (50), we arrive at

(D, cCONBE BB = (DR, (B, B2)Ba))"
Dg e =2(4Dg ¢V + ¢ Dy c¢Y)
n(n—1)
{8°(B2%, B3)B1" +8°(B2", B3)p1©
85 (B, Bs°)B2" — g (B1", B3 )"}

Hence, we have the following:
Theorem 3. The tangent bundle TM of an (LPS),, is concircular symmetric wrt D€ if it is so wrt DC.

Corollary 2. The tangent bundle TM of an (LPS),, M is concircular ¢p-symmetric wrt D€ if it is
so wrt D€,

By making use of (2), (8) and (52) in (50), it follows that

(D, cCONB p2)Bs" = (D cRO)(B1 , p2)Bs°
D¢ #©
%{gc(ﬁchﬁsc)ﬁlv+8C(ﬁzv,ﬁ3c)ﬁlc (53)

8 (B1°, Bs)B2" — g (1", B3) 2"}
If r is constant, then (53) takes the form
(D§4C5C)(ﬁ1cfﬁzc)ﬁsc = (D§4cRC)([51C/[52C)/53C
2(¢°Dy 4¥ + ¢ Dy )
n(n—1)

+

Hence, we have the following:

Theorem 4. The tangent bundle TM of an (LPS), is concircular symmetric wrt D€ if it is
symmetric wrt D€ subject to r© constant.

Corollary 3. The tangent bundle TM of an (LPS), is concircular ¢¢-symmetric wrt D€ if it is
symmetric wrt D subject to r© constant.
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