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Abstract: This paper introduces the concept of symmetric difference operators in terms of overlap
and grouping functions, for which the associativity property is not strongly required. These sym-
metric difference operators are weaker than symmetric difference operators in terms of positive and
continuous t-norms and t-conorms. Therefore, in the sense of the characters of mathematics, these op-
erators do not necessarily satisfy certain properties, such as associativity and the neutrality principle.
We analyze several related important properties based on two models of symmetric differences.
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1. Introduction

Symmetric difference is a basic operation on classical set theory. The symmetric
difference of two crisp sets E and F, denoted by E r F, could be represented as

E∆F = (E ∩ Fc) ∪ (Ec ∩ F), (1)

E∆F = (E ∪ F) ∩ (E ∩ F)c, (2)

where Fc is the complement of F. Since the introduction of fuzzy sets beginning with
Zadeh [1], it was generalized to fuzzy settings. Agell and Rovira [2] obtained several
symmetric difference operators in the lattice (P(X), min, max, 1− j). Alsina and Trillas [3]
studied some models for the symmetric difference of fuzzy sets. Dombi [4] studied two
models of fuzzy symmetric differences in the Pliant operator case. Shen and Zhang [5]
defined the symmetric difference operator of fuzzy sets as a continuous and associative
binary operator and investigated their structures and properties. Dombi [6] studied two
formulas of symmetric difference operators based on thresholds. Renedo et al. [7] studied
symmetric differences in types of lattices. Dai and Cheng [8] introduced the noncom-
mutative symmetric difference derived from fuzzy difference operators. The symmetric
difference is also the representation of the connective “exclusive or ” (Xor, for short). The
fuzzy Xor connective was well-studied in [9–11].

In fuzzy set theory, the analogue of Formulas (1) and (2) are, respectively [2–6],
∀a, b ∈ [0, 1]

a∆b = S
(
T(a, N(b)), T(N(a), b)

)
, (3)

a∆b = T
(
S(a, b), N(T(a, b))

)
, (4)

where T is a t-norm, S is a t-conorm, and N is a fuzzy negation on [0, 1].
However, as pointed out by Fodor and Keresztfalvi [12] and Bustince et al. [13,14], the

associative properties of the t-norm and t-conorm are not demanded in some applications.
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Therefore, Bustince et al. [13,14] introduced the concepts of overlap functions and group-
ing functions, which are two kinds of non-necessarily associative bivariate aggregation
operators. By considering overlap functions and grouping functions instead of t-norms
and t-conorms, respectively, many important notions are investigated, such as RO implica-
tions derived from overlap functions [15,16], (G,N) implications derived from grouping
functions [17], binary relations induced from overlap and grouping functions [18], and (IO,
O)-fuzzy rough sets derived from overlap functions [19].

In this paper, we take a step forward to define symmetric difference operators by
considering overlap functions and grouping functions instead of t-norms and t-conorms,
respectively, in the above Formulas (3) and (4). In particular, they are weaker than the
symmetric differences in Formulas (3) and (4) for positive and continuous t-norms and
t-conorms, in the sense that they do not necessarily satisfy certain properties, such as the
neutrality principle.

The remainder of this article is structured as follows. Section 2 provides a brief
overview of key concepts related to overlap functions and grouping functions. Section 3 is
concerned with the model G(O1(a, N1(b)), O2(N2(a), b)) of symmetric difference operators.
Section 4 is concerned with the model O(G(a, b), N(O(a, b))) of symmetric difference
operators. Section 5 gives a comparative study. Conclusions are presented in Section 6.

2. Preliminaries

Definition 1 ([13]). An overlap function is a two-place function O: [0, 1]2 → [0, 1] satisfying the
following properties: ∀a, b ∈ [0, 1]—

(O1) O(a, b) = O(b, a);
(O2) O(a, b) = 0⇐⇒ ab = 0;
(O3) O(a, b) = 1⇐⇒ ab = 1;
(O4) O is increasing;
(O5) O is continuous.

Definition 2 ([14]). A grouping function is a two-place function G: [0, 1]2 → [0, 1] satisfying the
following properties: ∀a, b ∈ [0, 1]

(G1) G(a, b) = G(b, a);
(G2) G(a, b) = 0⇐⇒ a = b = 0;
(G3) G(a, b) = 1⇐⇒ a = 1 or b = 1;
(G4) G is increasing;
(G5) G is continuous.

Definition 3 ([20]). A fuzzy negation is a non-increasing function N: [0, 1] → [0, 1] with
N(0) = 1 and N(1) = 0.

Moreover, N is called strong if N(N(a)) = a, ∀a ∈ [0, 1]. N(a) = 1− a is called the
standard negation.

The overlap function, given by

O(a, b) = N
(

G
(

N(a), N(b)
))

, ∀a, b ∈ [0, 1], (5)

is called the dual overlap function of G for N and, analogously, the grouping function G,
given by

G(x, y) = N
(

O
(

N(x), N(y)
))

, (6)

is said to be the dual grouping function of the overlap function O for N.

Example 1. The following are typical examples of overlap and grouping functions in [14,21].
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• Onm(a, b) = min(a, b)max(a2, b2), and its dual grouping function for the standard nega-
tion: Gnm(a, b) = 1−min(1− a, 1− b)max((1− a)2, (1− b)2);

• Op(a, b) = apbp, and its dual grouping function for the standard negation:
Gp(a, b) = 1− (1− a)p(1− b)p, where p > 0 ;

• Omp(a, b) = min(ap, bp), and its dual grouping function for the standard negation:
Gmp(a, b) = 1−min((1− a)p, (1− b)p), where p > 0 ;

• OMp(a, b) = 1−max((1− a)p, (1− b)p), and its dual grouping function for the standard
negation: GMp(a, b) = max(ap, bp), where p > 0 .

3. The Model G(O1(a, N1(b)), O2(N2(a), b))

Suppose O is an overlap function, G is a grouping function, and N is a fuzzy negation.
Based on Formula (1), we consider the function N: [0, 1]2 → [0, 1], given by

aNb = G
(
O(a, N(b)), O(N(a), b)

)
. (7)

Similar to [3], we can let the two overlap functions and negations in Formula (7) be
different and then generalize a special kind of symmetric difference operator that is not
necessarily commutative.

Theorem 1. Suppose O1 and O2 are two overlap functions, G is a grouping function, and N1 and
N2 are two fuzzy negations. Then, the function N: [0, 1]2 → [0, 1] given by

aNb = G
(
O1(a, N1(b)), O2(N2(a), b)

)
(8)

satisfies ∀a, b ∈ [0, 1]

(i) If O1 = O2 and N1 = N2, then aNb = bNa;
(ii) 1N0 = 0N1 = 1;
(iii) 1N1 = 0N0 = 0;
(iv) If both N1 and N2 are continuous, then N is continuous;
(v) If O1 has 1 as a neutral element, i.e., O1(1, a) = a, ∀a ∈ [0, 1], and G has 0 as a neutral

element, i.e., G(0, a) = a, ∀a ∈ [0, 1], then 0Na = aN0 = a;
(vi) If O2 has 1 as a neutral element, i.e., O2(1, a) = a, ∀a ∈ [0, 1], and G has 0 as a neutral

element, i.e., G(0, a) = a, ∀a ∈ [0, 1], then 1Na = aN1 = N2(a);
(vii) If both N1 and N2 are defined as

N0(a) =
{

0, if a > 0,
1, if a = 0,

(9)

then aNa = 0.

Proof. (i) If O1 = O2 and N1 = N2, then

aNb

= G
(
O1(a, N1(b)), O2(N2(a), b)

)
By Equation(7)

= G
(
O2(N2(a), b), O1(a, N1(b))

)
By (G1)

= G
(
O2(b, N2(a)), O1(N1(b), a)

)
By (O1)

= G
(
O1(b, N1(a)), O2(N2(b), a)

)
= bNa. By Equation(7).
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(ii) Taking a = 1 and b = 0, then

1N0

= G
(
O1(1, N1(0)), O2(N2(1), 0)

)
By Equation(7)

= G
(
O1(1, 1), O2(0, 0)

)
= G

(
1, 0

)
By (O2) and (O3)

= 1. By (G3).

by (i), 0N1 = 1N0 = 1.
(iii) Taking a = 0 and b = 0, then

0N0

= G
(
O1(0, N1(0)), O2(N2(0), 0)

)
By Equation(7)

= G
(
O1(0, 1), O2(1, 0)

)
= G

(
0, 0

)
By (O2)

= 0. By (G2).

Taking a = b = 1, then

1N1

= G
(
O1(1, N1(1)), O2(N2(1), 1)

)
By Equation(7)

= G
(
O1(1, 0), O2(0, 1)

)
= G

(
0, 0

)
By (O2)

= 0. By (G2).

(iv) It is a direct consequence of the continuity of G, O1, O2, N1, and N2.
(v) Since O1 has 1 as a neutral element and G has 0 as a neutral element, then

aN0

= G
(
O1(a, N1(0)), O2(N2(a), 0)

)
By Equation(7)

= G
(
O1(a, 1), O2(N2(a), 0)

)
= G

(
a, 0

)
= a.

by (i), 0Na = aN0 = a.
(vi) Since O2 has 1 as a neutral element and G has 0 as a neutral element, then

aN1

= G
(
O1(a, N1(1)), O2(N2(a), 1)

)
By Equation(7)

= G
(
O1(a, 0), O2(N2(a), 1)

)
= G

(
0, N2(a)

)
= N2(a).

by (i), 1Na = aN1 = N2(a).
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(vii) If N1 = N2 = N0, case 1, if a = 0 or a = 1, then aNa = 0. Case 2, if a ∈ (0, 1), then

aNa

= G
(
O1(a, N1(a)), O2(N2(a), a)

)
By Equation(7)

= G
(
O1(a, 0), O2(0, a)

)
By (O2)

= G
(
0, 0

)
= 0.

Example 2. Consider the O1 = Onm, O2 = Op=2, N1 and N2 are the standard negation, and
G = GM2. Then,

aNb

= G
(
O1(a, N1(b)), O2(N2(a), b)

)
= max

((
min(a, 1− b)max(a2, (1− b)2)

)2,
(
(1− a)2b2)2

)
.

(10)

See Figure 1, which reflects the characteristics of this symmetric difference operator.

Example 3. Consider the O1 = Om2, O2 = Op=2, N1 = N2 = N(a) = 1− a2, and G = GM2. Then,

aNb

= G
(
O1(a, N(b)), O2(N(a), b)

)
= max

((
min(a2, (1− b2)2)

)2,
(
(1− a2)2b2)2

)
.

(11)

See Figure 2, which reflects the characteristics of this symmetric difference operator.
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4. The Model O(G(a, b), N(O(a, b)))

Suppose O is an overlap function, G is a grouping function, and N is a fuzzy negation.
Based on Formula (2), we consider the function H : [0, 1]2 → [0, 1] given by

aHb = O
(
G(a, b), N(O(a, b))

)
(12)

Theorem 2. The function H given by Formula (12) satisfies: ∀a, b ∈ [0, 1]

(i) aHb = bHa;
(ii) 1H0 = 0H1 = 1;
(iii) 1H1 = 0H0 = 0;
(iv) If N is continuous, then H is continuous;
(v) If O has 1 as a neutral element, i.e., O(1, a) = a, ∀a ∈ [0, 1], and G has 0 as a neutral

element, i.e., G(0, a) = a, ∀a ∈ [0, 1], then 0Ha = aH0 = a and 1Ha = aH1 = N(a);
(vi) If N = N0, then aHa = 0.

Proof. (i)

aHb

= O
(
G(a, b), N(O(a, b))

)
By Equation(12)

= O
(
G(b, a), N(O(b, a))

)
By (G1) and (O1)

= bHa. By Equation(12).

(ii) Taking a = 1 and b = 0, then

1H0

= O
(
G(1, 0), N(O(1, 0))

)
By Equation(12)

= G
(
1, N(0)

)
By (G3) and (O2)

= G
(
1, 1

)
= 1. By (G3).

by (i), 0H1 = 1H0 = 1.
(iii) Taking a = 0 and b = 0, then

0H0

= O
(
G(0, 0), N(O(0, 0))

)
By Equation(12)

= G
(
0, N(0)

)
By (G2) and (O2)

= G
(
0, 1

)
= 1. By (G3).

Taking a = 1 and b = 1, then

1H1

= O
(
G(1, 1), N(O(1, 1))

)
By Equation(12)

= G
(
1, N(1)

)
By (G3) and (O3)

= G
(
1, 0

)
= 1. By (G3).

(iv) It is a direct consequence of the continuity of G, O, and N.
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(v) Taking b = 0, then

aH0

= O
(
G(a, 0), N(O(a, 0))

)
By Equation(12)

= G
(
a, N(0)

)
= G

(
a, 1

)
= a.

by (i), 0Ha = aH0 = a.
Taking b = 1, then

aH1

= O
(
G(a, 1), N(O(a, 1))

)
By Equation(12)

= G
(
1, N(a)

)
= N(a).

by (i), 1Ha = aH1 = N(a).
(vi) If N = N0, case 1, if a = 0 or a = 1, then aHa = 0, case 2, consider a ∈ (0, 1), clearly

O(a, a) ∈ (0, 1) by (O2) and (O3), then

aHa

= O
(
G(a, a), N(O(a, a))

)
By Equation(12)

= O
(
G(a, a), 0

)
= 0.

Example 4. Consider the O = Op=2, N is the standard negation, and G = GM2. Then,

aHb

= O
(
G(a, b), N(O(a, b))

)
=

(
a2b2)2(1−min(a2, b2)

)2.

(13)

See Figure 3, which reflects the characteristics of this symmetric difference operator.

Example 5. Consider the O = Op=3, N is the standard negation, and G = GM3. Then,

aHb

= O
(
G(a, b), N(O(a, b))

)
=

(
a3b3)3(1−min(a3, b3)

)3.

(14)

See Figure 4, which reflects the characteristics of this symmetric difference operator.
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5. Comparative Study

In this section, we establish a comparison of the proposed fuzzy symmetric differences.
In [3], Alsina and Trillas defined the symmetric difference operator to be a two-place

function ∆ : [0, 1]2 → [0, 1] that satisfies the conditions a, b ∈ [0, 1]

(∆1) 0∆a = a∆0 = a (neutrality property);

(∆2) 1∆a = a∆1 = N(a);

(∆3) a∆a = 0.

They proposed the following model for symmetric difference

a∆1b = S
(
T1(a, N1(b)), T2(N2(a), )

)
, (15)

a∆2b = T
(
S(a, b), N(T(a, b))

)
. (16)

In [5], Shen and Zhang defined the symmetric difference operator to be a two-place
function ∆′ : [0, 1]2 → [0, 1] that satisfies the conditions a, b, c ∈ [0, 1]

(∆1′) 0∆′a = a∆′0 = a;

(∆2′) 1∆′1 = 0;

(∆3′) ∆′ is associative, i.e., (a∆′b)∆′c = a∆′(b∆′c);

(∆4′) ∆′ is continuous.

In [11], Bedregal, Reiser, and Dimuro defined the symmetric difference operator to be
a two-place function ∆′′ : [0, 1]2 → [0, 1] that satisfies the conditions a, b, c ∈ [0, 1]

(∆1′′) 0∆′′a = a∆′′0 = a;

(∆2′′) 1∆′′1 = 0;
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(∆3′′) ∆′′ is associative;

(∆4′′) a∆′′b = b∆′′a (symmetry).

The comparison is demonstrated in the following Remarks.

Remark 1. Since N and H satisfy (ii) 1N0 = 0N1 = 1 and (iii) 1N1 = 0N0 = 0, so they are
generalizations of classical symmetric difference operators. These two properties (ii) and (iii) are
weaker than (∆1) and (∆2) in [3], (∆1′) and (∆2′) in [5,11].

Remark 2. Similar to the symmetric difference in [3], both N and H drop the requirement of
associativity. Moreover, both N and ∆1 also drop the requirement of symmetry.

Remark 3. In particular, N and H are, respectively, weaker than ∆1 and ∆2 for positive and
continuous t-norms and t-conorms, in the sense that N and H do not necessarily satisfy certain
properties, such as the neutrality principles, as discussed above.

6. Conclusions

The main contribution of this paper was the introduction of fuzzy symmetric differ-
ences based on the notions of overlap functions, grouping functions, and fuzzy negations,
together with an extensive analysis of the related properties. These new symmetric differ-
ences are weaker than symmetric difference operators in terms of positive and continuous
t-norms and t-conorms. The symmetric differences ∆ and ∆′ in [3,5] have 0 as a neutral
element. The symmetric differences ∆′ and ∆′′ in [5,11] are associative. The symmetric
differences proposed in this paper are more flexible, since they do not necessarily satisfy
associativity and the neutrality principle.

Future theoretical work will consider the investigation of the interval-valued sym-
metric differences based on interval-valued overlap or grouping functions. Moreover, the
investigation of additive and multiplicative generators of the symmetric differences is
necessary. We give some possible topics for future consideration.

(1) We focus on the symmetric difference operator based on overlap and grouping func-
tions. There are various operators in fuzzy logics. As future work, we can con-
sider other fuzzy operators, such as equivalence operators, based on overlap and
grouping functions.

(2) Overlap and grouping functions have been extended to interval-valued overlap and
grouping functions. As future work, we can consider interval-valued fuzzy operators
based on interval-valued overlap and grouping functions.

(3) As we know, additive and multiplicative generators of overlap and grouping functions
were well-studied in [22,23]. Thus, it is interesting to study different generators of the
symmetric differences.
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