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Abstract: Based upon the Pascal distribution series N r,m
q,λ Υ(ζ) := ζ +

∞
∑

j=m+1
(j+r−2

r−1 )[1 + λ(j− 1)]qj−1

(1− q)rajζ
j, we can obtain a set of fuzzy differential subordinations in this investigation. We also

newly obtain class PF,r,m
q,λ (η) of univalent analytic functions defined by the operatorN r,m

q,λ , give certain

properties for the class PF,r,m
q,λ (η) and also obtain some applications connected with a special case for

the operator. New research directions can be taken on fuzzy differential subordinations associated
with symmetry operators.
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1. Introduction

Let Hm(v) represent the class of holomorphic and univalent functions on v such
that v⊂ C and let H(v) denote the class of holomorphic functions on v. The class of
holomorphic functions in the open unit disk of the complex plane Λ = {ζ ∈ C : |ζ| < 1} is
denoted in this study by a note H(Λ), with BΛ = {ζ ∈ C : |ζ| = 1} standing as the unit
disk’s boundary. For m ∈ N = {1, 2, ...}, we define

Hm[γ] =

{
Υ ∈ H(Λ) : Υ(ζ) = γ +

∞

∑
j=m+1

aj ζ j, ζ ∈ Λ

}
,

Am =

{
Υ ∈ H(Λ) : Υ(ζ) = ζ +

∞

∑
j=m+1

aj ζ j, ζ ∈ Λ

}
with A1 = A, (1)

and

S ={Υ ∈ Am : Υ is a univalent function in Λ}.

We denote by

C =
{

Υ ∈ Am : <
(

1 +
ζΥ
′′
(ζ)

Υ′(ζ)

)
> 0, ζ ∈ Λ

}
,

which is the set of convex functions on Λ.
Let Υ1 and Υ2 be analytic in Λ. Then Υ1 is subordinate to Υ2 written as Υ1 ≺ Υ2 if

there exists a Schwarz function φ, which is analytic in Λ with φ(0) = 0 and |φ(ζ)| < 1
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for all ζ ∈ Λ such that Υ1(ζ) = Υ2(φ(ζ)). Furthermore, if the function Υ2 is univalent in Λ,
then we have the following equivalence (see [1,2]):

Υ1(ζ) ≺ Υ2(ζ)⇔ Υ1(0) = Υ2(0) and Υ1(Λ) ⊂ Υ2(Λ).

In order to introduce the notion of fuzzy differential subordination, we use the follow-
ing definitions and propositions:

Definition 1 ([3]). Assume that T 6= ∅ is a Fuzzy subset and F : T → [0, 1] is an application.
A pair of (Λ,FΛ), where FΛ : T → [0, 1], and

R ={x ∈ T : 0 < FΛ(x) ≤ 1} = sup(Λ,FΛ),

a fuzzy subset. The fuzzy set (Λ,FΛ) is called a function FΛ.

Let Υ, g ∈ H(v) be denoted by

Υ(v) =
{

Υ(ζ) : 0 < FΥ(v)Υ(ζ) ≤ 1, ζ ∈ v
}
= sup

(
Υ(v),FΥ(v)

)
, (2)

and

g(v) =
{

g(ζ) : 0 < Fg(v)g(ζ) ≤ 1, ζ ∈ v
}
= sup

(
g(v),Fg(v)

)
. (3)

Proposition 1 ([4]). (i) If (B,FB) = (U ,FU ), then we have B = U , where B = sup(B,FB)
and U = sup(U ,FU ); (ii) if (B,FB) ⊆ (U ,FU ), then we have B ⊆ U , where B = sup(B,FB)
and U = sup(U ,FU ).

Definition 2 ([4]). Let ζ0 ∈ v be a fixed point and let the functions Υ, g ∈ H(v). The function
Υ is said to be fuzzy subordinate to g, and we write Υ ≺F g or Υ(ζ) ≺F g(ζ), which satisfies the
following conditions:

(i) Υ(ζ0) = g(ζ0);
(ii) FΥ(v)Υ(ζ) ≤ Fg(v)g(ζ), ζ ∈ v.

Proposition 2 ([4]). Assume that ζ0 ∈ ω is a fixed point and the functions Υ, g ∈ H(ω).
If Υ(ζ) ≺F g(ζ), ζ ∈ ω, then

(i) Υ(ζ0) = g(ζ0)
(ii) Υ(ω) ⊆ g(ω), FΥ(ω)Υ(ζ) ≤ Fg(ω)g(ζ), ζ ∈ ω,

where Υ(ω) and g(ω) are defined by (2) and (3), respectively.

Definition 3 ([5]). Assume that h ∈ S and Φ : C3 × Λ → C, Φ(α, 0, 0; 0) = h(0) = α.
If p satisfies the requirements of the second-order fuzzy differential subordination and is analytic
in Λ, with p(0) = α,

FΦ(C3×Λ)Φ
(

p(ζ), ζ p
′
(ζ), ζ2 p

′′
(ζ); ζ

)
≤ Fh(Λ)h(ζ). (4)

If q is a fuzzy dominant of the fuzzy differential subordination solutions, then p is said to be a
fuzzy solution of the fuzzy differential subordination and satisfies

Fp(Λ)p(ζ) ≤ Fq(Λ)q(ζ), i.e., p(ζ) ≺F q(ζ), ζ ∈ Λ,

for each and every p satisfying (4).

Definition 4. A fuzzy dominant q̃ that satisfies

Fq̃(Λ) q̃(ζ) ≤ Fq(Λ)q(ζ),
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then

q̃(ζ) ≺F q(ζ), ζ ∈ Λ.

The fuzzy best dominant of (4) is referred to for all fuzzy dominants.

Assume the function Ω ∈ Am is given by

Ω(ζ) := ζ +
∞

∑
j=m+1

ψj ζ j, ζ ∈ Λ.

The Hadamard (or convolution) product of Υ and Ω is defined as

(Υ ∗Ω)(ζ) := ζ +
∞

∑
j=m+1

ajψj ζ j, ζ ∈ Λ.

A variable x is said to have the Pascal distribution if it takes the values 0, 1, 2, 3, . . .
with the probabilities (1− q)r, qr(1−q)r

1! , q2r(r+1)(1−q)r

2! , q3r(r+1)(r+2)(1−q)r

3! , . . . , respectively,
where q and r are called the parameters, and thus we have the probability formula

P(X = k) = (k+r−1
r−1 )qk(1− q)r, k ∈ N0 = N∪{0}.

Now we present a power series whose coefficients are Pascal distribution
probabilities, i.e.,

Qr
q,m(ζ) := ζ +

∞

∑
j=m+1

(j+r−2
r−1 )qj−1(1− q)r ζ j, ζ ∈ Λ,

(m ∈ N, r ≥ 1, 0 ≤ q ≤ 1).

We easily determine from the ratio test that the radius of convergence of the above

power series is at least
1
q
≥ 1; hence, Qr

q,m ∈ Am.

We define the functions

Mr,m
q,λ (ζ) := (1− λ)Qr

q,m(ζ) + λz
(

Qr
q,m(ζ)

)′
= ζ +

∞

∑
j=m+1

(
j + r− 2

r− 1

)
[1 + λ(j− 1)]qj−1(1− q)rζ j, ζ ∈ Λ,

(m ∈ N, r ≥ 1, 0 ≤ q ≤ 1, λ ≥ 0).

El-Deeb and Bulboacă [6] introduced the linear operator N r,m
q,λ : Am → Am defined by

N r,m
q,λ Υ(ζ) :=Mr,m

q,λ (ζ) ∗ Υ(ζ)

= ζ +
∞

∑
j=m+1

(
j + r− 2

r− 1

)
[1 + λ(j− 1)]qj−1(1− q)rajζ

j, ζ ∈ Λ,

(m ∈ N, r ≥ 1, 0 ≤ q ≤ 1, λ ≥ 0),

where Υ is given by (1), and the symbol “∗” stands for the Hadamard (or convolution) product.

Remark 1. (i) For m = 1, the operator N r,m
q,λ reduces to I r

q,λ := N r,1
q,λ, introduced and studied by

El-Deeb et al. [7]; (ii) for m = 1 and λ = 0, the operator Qr
q reduces to Qr

q := N r,1
q,0 , introduced

and studied by El-Deeb et al. [7].
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Using the operator N r,m
q,λ , we create a class of analytical functions and derive several

fuzzy differential subordinations for this class.

Definition 5. If the function Υ ∈ A belongs to the class PF,r,m
q,λ (η) for all η ∈ [0, 1) and satisfies

the inequality

F(
N r,m

q,λ Υ
)′
(Λ)

(
N r,m

q,λ Υ(ζ)
)′

> η, (ζ ∈ Λ).

2. Preliminary

The following lemmas are needed to show our results.

Lemma 1 ([2]). Assume that z ∈ A and G(ζ) = 1
ζ

ζ∫
0
z(t)dt, ζ ∈ Λ. If <

{
1 + ζz′′ (ζ)

z′ (ζ)

}
> −1

2 , ζ ∈ Λ, then G ∈ C.

Lemma 2 (Theorem 2.6 in [8]). If z is a convex function such that z(0) = γ, ν ∈ C∗ = C\{0}
with <(ν) ≥ 0. If p ∈ Hm[γ] such that p(0) = γ, Φ : C2 × Λ → C, Φ

(
p(ζ), ζ p

′
(ζ); ζ

)
= p(ζ) + 1

ν ζ p
′
(ζ) is an analytic function in Λ and

FΦ(C2×Λ)

(
p(ζ) +

1
ν

ζ p
′
(ζ)

)
≤ Fh(Λ)h(ζ) → p(ζ) +

1
ν

ζ p
′
(ζ) ≺F h(ζ), ζ ∈ Λ,

then

Fp(Λ)p(ζ) ≤ Fq(Λ)q(ζ) ≤ Fh(Λ)h(ζ) → p(ζ) ≺F q(ζ), ζ ∈ Λ,

where

q(ζ) =
ν

m ζ
ν
m

ζ∫
0

ψ(t)t
ν
m−1dt, ζ ∈ Λ.

The function q is convex, and it is the fuzzy best dominant.

Lemma 3 (Theorem 2.7 in [8]). Let g be a convex function in Λ and z(ζ) = g(ζ) + m γζg
′
(ζ),

where ζ ∈ Λ, m ∈ N and γ > 0, if

p(ζ) = g(0) + pm ζm + pm+1 ζm+1 + ... ∈ H(Λ),

and

Fp(Λ)

(
p(ζ) + γζ p

′
(ζ)
)
≤ Fψ(Λ)ψ(ζ) → p(ζ) + γζ p

′
(ζ) ≺F ψ(ζ), ζ ∈ Λ.

Then

Fp(Λ)(p(ζ)) ≤ Fg(Λ)g(ζ) → p(ζ) ≺F g(ζ), ζ ∈ Λ.

This result is sharp.

We define the fuzzy differential subordination general theory and its applications
(see [9–13]). The method of fuzzy differential subordination is applied in the next section
to obtain a set of fuzzy differential subordinations related to the operator N r,m

q,λ .

3. Main Results

Assume that η ∈ [0, 1), m ∈ N, r ≥ 1, 0 ≤ q ≤ 1, λ ≥ 0 and ζ ∈ Λ are mentioned
throughout this paper.
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Theorem 1. Let k belong to C in Λ, and h(ζ) = k(ζ) + 1
ρ+2 ζk

′
(ζ). If Υ ∈ PF,r,m

q,λ (η) and

G(ζ) = IρΥ(ζ) =
ρ + 2
ζρ+1

ζ∫
0

tρΥ(t)dt, (5)

then

F(
N r,m

q,λ Υ
)′
(Λ)

(
N r,m

q,λ Υ(ζ)
)′
≤ Fh(Λ)h(ζ) →

(
N r,m

q,λ Υ(ζ)
)′
≺F h(ζ), (6)

implies

F(
N r,m

q,λ G
)′
(Λ)

(
N r,m

q,λ G(ζ)
)′
≤ Fk(Λ)k(ζ) →

(
N r,m

q,λ G(ζ)
)′
≺F k(ζ).

Proof. Since

ζρ+1G(ζ) = (ρ + 2)

ζ∫
0

tρΥ(t)dt,

by differentiating, we obtain

(ρ + 1)G(ζ) + ζG ′(ζ) = (ρ + 2)Υ(ζ),

and

(ρ + 1)N r,m
q,λ G(ζ) + ζ

(
N r,m

q,λ G(ζ)
)′

= (ρ + 2)N r,m
q,λ Υ(ζ), (7)

and also, by differentiating (7), we obtain(
N r,m

q,λ G(ζ)
)′

+
1

(ρ + 2)
ζ
(
N r,m

q,λ G(ζ)
)′′

=
(
N r,m

q,λ Υ(ζ)
)′

. (8)

The fuzzy differential subordination (6) technique is used

F(
N r,m

q,λ Υ
)′
(Λ)

((
N r,m

q,λ G(ζ)
)′

+
1

(ρ + 2)
ζ
(
N r,m

q,λ G(ζ)
)′′)

≤

Fh(Λ)

(
k(ζ) +

1
(ρ + 2)

ζk
′
(ζ)

)
. (9)

We denote

q(ζ) =
(
N r,m

q,λ G(ζ)
)′

, so q ∈ H1[n]. (10)

Putting (10) in (9), we have

F(
N r,m

q,λ Υ
)′
(Λ)

(
q(ζ) +

1
(ρ + 2)

ζq
′
(ζ)

)
≤ Fh(Λ)

(
k(ζ) +

1
(ρ + 2)

ζk
′
(ζ)

)
. (11)

Using Lemma (3), we obtain

Fq(Λ)q(ζ) ≤ Fk(Λ)k(ζ), i.e. F(
N r,m

q,λ G(ζ)
)′
(Λ)

(
N r,m

q,λ G(ζ)
)′
≤ Fk(Λ)k(ζ),

and therefore,
(
N r,m

q,λ G(ζ)
)′
≺F k(ζ),where k is the fuzzy best dominant.
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Putting m = 1 and λ = 0 in Theorem 1, we obtain the following example since the
operator Qr

q reduces to Qr
q := N r,1

q,0 .

Example 1. Let k be an element of C in Λ and h(ζ) = k(ζ) + 1
ρ+2 ζk

′
(ζ). If Υ ∈ PF,r,m

q,λ (η) and
G is given by (5), then

F
(Qr

qΥ)
′
(Λ)

(
Qr

qΥ(ζ)
)′
≤ Fh(Λ)h(ζ) →

(
Qr

qΥ(ζ)
)′
≺F h(ζ),

implies

F
(Qr

qG)
′
(Λ)

(
Qr

qG(ζ)
)′
≤ Fk(Λ)k(ζ) →

(
Qr

qG(ζ)
)′
≺F k(ζ).

Theorem 2. Assume that h(ζ) = 1+(2η−1)ζ
1+ζ , η ∈ [0, 1), λ > 0 and Iρ is given by (5), then

Iρ
[
PF,r,m

q,λ (η)
]
⊂ PF,r,m

q,λ (η∗), (12)

where

η∗= 2η − 1+(ρ + 2)(2− 2η)

1∫
0

tρ+2

t + 1
dt. (13)

Proof. A function h belongs to C, and we obtain from the hypothesis of Theorem 2 using
the same technique as that in the proof of Theorem 1 that

Fq(Λ)

(
q(ζ) +

1
(ρ + 2)

ζq
′
(ζ)

)
≤ Fh(Λ)h(ζ),

where q(ζ) is defined in (10). By using Lemma 2, we obtain

Fq(Λ)q(ζ) ≤ Fk(Λ)k(ζ) ≤ Fh(Λ)h(ζ),

which implies

F(
N r,m

q,λ G
)′
(Λ)

(
N r,m

q,λ G(ζ)
)′
≤ Fk(Λ)k(ζ) ≤ Fh(Λ)h(ζ),

where

k(ζ) =
ρ + 2
ζρ+2

ζ∫
0

tρ+1 1 + (2η − 1)t
1 + t

dt

= (2η − 1) +
(ρ + 2)(2− 2η)

ζρ+2

ζ∫
0

tρ+1

1 + t
dt ∈ C,

where k(Λ) is symmetric with respect to the real axis, so we have

F(
N r,m

q,λ G
)′
(Λ)

(
N r,m

q,λ G(ζ)
)′
≥ min
|ζ|=1

Fk(Λ)k(ζ) = Fk(Λ)k(1), (14)

and η∗ = k(1) = 2η − 1 + (ρ + 2)(2− 2η)
1∫

0

tρ+2

t + 1
dt.



Symmetry 2023, 15, 1589 7 of 9

Theorem 3. Assume that k belongs to C in Λ, that k(0) = 1, and that h(ζ) = k(ζ) + ζk
′
(ζ).

When Υ ∈ A and the fuzzy differential subordination is satisfied,

F(
N r,m

q,λ Υ
)′
(Λ)

(
N r,m

q,λ Υ(ζ)
)′
≤ Fh(Λ)h(ζ) →

(
N r,m

q,λ Υ(ζ)
)′
≺F h(ζ), (15)

holds, then

FN r,m
q,λ Υ(Λ)

N r,m
q,λ Υ(ζ)

ζ
≤ Fk(Λ)k(ζ) →

N r,m
q,λ Υ(ζ)

ζ
≺F k(ζ). (16)

Proof. Let

q(ζ) =
N r,m

q,λ Υ(ζ)

ζ
=

ζ +
∞
∑

j=m+1
(j+r−2

r−1 )[1 + λ(j− 1)]qj−1(1− q)rajζ
j

ζ

= 1 +
∞

∑
j=m+1

(
j + r− 2

r− 1

)
[1 + λ(j− 1)]qj−1(1− q)raj ζ j−1,

and we obtain that

q(ζ) + ζq
′
(ζ) =

(
N r,m

q,λ Υ(ζ)
)′

,

so

F(
N r,m

q,λ Υ
)′
(Λ)

(
N r,m

q,λ Υ(ζ)
)′
≤ Fh(Λ)h(ζ)

implies

Fq(Λ)

(
q(ζ) + ζq

′
(ζ)
)
≤ Fh(Λ)h(ζ) = Fk(Λ)

(
k(ζ) + ζk

′
(ζ)
)

.

Using the Lemma 3, we obtain

Fq(Λ)q(ζ) ≤ Fk(Λ)k(ζ) → FN r,m
q,λ Υ(Λ)

N r,m
q,λ Υ(ζ)

ζ
≤ Fk(Λ)k(ζ),

and we obtain

N r,m
q,λ Υ(ζ)

ζ
≺F k(ζ).

Theorem 4. Consider h ∈ H(Λ), which satisfies <
(

1 + ζh
′′
(ζ)

h′ (ζ)

)
> −1

2 when h(0) = 1. If the

fuzzy differential subordination

F(
N r,m

q,λ Υ
)′
(Λ)

(
N r,m

q,λ Υ(ζ)
)′
≤ Fh(Λ)h(ζ) →

(
N r,m

q,λ Υ(ζ)
)′
≺F h(ζ), (17)

then

FN r,m
q,λ Υ(Λ)

N r,m
q,λ Υ(ζ)

ζ
≤ Fk(Λ)k(ζ) i.e.

N r,m
q,λ Υ(ζ)

ζ
≺F k(ζ), (18)

where

k(ζ) =
1
ζ

ζ∫
0

h(t)dt,

the function k is convex, and it is the fuzzy best dominant.
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Proof. Let

q(ζ) =
N r,m

q,λ Υ(ζ)

ζ
= 1 +

∞

∑
j=d+1

[j]q!
[λ + 1]q,j−1

ajψj ζ j−1, q ∈ H1[1],

where <
(

1 + ζh
′′
(ζ)

h′ (ζ)

)
> −1

2 . From Lemma 1, we have

k(ζ) =
1
ζ

ζ∫
0

h(t)dt ∈

belongs to the class C, which satisfies the fuzzy differential subordination (17). Since

k(ζ) + ζk
′
(ζ) = h(ζ),

it is the fuzzy best dominant. We have

q(ζ) + ζq
′
(ζ) =

(
N r,m

q,λ Υ(ζ)
)′

,

then (17) becomes

Fq(Λ)

(
q(ζ) + ζq

′
(ζ)
)
≤ Fh(Λ)h(ζ).

By using Lemma 3, we obtain

Fq(Λ)q(ζ) ≤ Fk(Λ)k(ζ), i.e. FN r,m
q,λ Υ(Λ)

N r,m
q,λ Υ(ζ)

ζ
≤ Fk(Λ)k(ζ),

then
N r,m

q,λ Υ(ζ)

ζ
≺F k(ζ).

Putting h(ζ) = 1+(2υ−1)ζ
1+ζ in Theorem 4. As a result, we have the following corollary:

Corollary 1. Let h = 1+(2υ−1)ζ
1+ζ be a convex function in Λ, with h(0) = 1, 0 ≤ β < 1. If Υ ∈ A

and verifies the fuzzy differential subordination

F(
N r,m

q,λ Υ
)′
(Λ)

(
N r,m

q,λ Υ(ζ)
)′
≤ Fh(Λ)

(
1 + (2υ− 1)ζ

1 + ζ

)
, i.e.

(
N r,m

q,λ Υ(ζ)
)′
≺F

(
1 + (2υ− 1)ζ

1 + ζ

)
,

then

FN r,m
q,λ Υ(Λ)

N r,m
q,λ Υ(ζ)

ζ
≤ Fk(Λ)k(ζ), (19)

then
N r,m

q,λ Υ(ζ)

ζ
≺F k(ζ),

where

k(ζ) = 2υ− 1 +
2(1− υ)

ζ
ln(1 + ζ),

the function k is convex and it is the fuzzy best dominant.

Putting m = 1 and λ = 0 in Corollary 1, we obtain the following example.
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Example 2. Let h = 1+(2υ−1)ζ
1+ζ be a convex function in Λ, with h(0) = 1, 0 ≤ β < 1. If f ∈ A

and verifies the fuzzy differential subordination

F
(Qr

qΥ)
′
(Λ)

(
Qr

qΥ(ζ)
)′
≤ Fh(Λ)

(
1 + (2υ− 1)ζ

1 + ζ

)
, i.e.

(
Qr

qΥ(ζ)
)′
≺F

(
1 + (2υ− 1)ζ

1 + ζ

)
then

FQr
qΥ(Λ)

Qr
qΥ(ζ)

ζ
≤ Fk(Λ)k(ζ) i.e.

Qr
qΥ(ζ)

ζ
≺F k(ζ), (20)

where

k(ζ) = 2υ− 1 +
2(1− υ)

ζ
ln(1 + ζ).

4. Conclusions

All of the above results provide information about fuzzy differential subordinations
for the operatorN r,m

q,λ ; we also provide certain properties for the class PF,r,m
q,λ (η) of univalent

analytic functions. Using these classes and operators, we can create some simple applications.

Author Contributions: Conceptualization, S.M.E.-D. and L.-I.C.; Formal analysis, S.M.E.-D. and
L.-I.C.; Investigation, S.M.E.-D. and L.-I.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bulboaca, T. Differential Subordinations and Superordinations, Recent Results; House of Scientific Book Publishing: Cluj-Napoca,

Romania, 2005.
2. Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and

Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225.
3. Gal, S.G.; Ban, A.I. Elemente de Matematica Fuzzy; Editura Universitatea din Oradea: Oradea, Romania, 1996.
4. Oros, G.I.; Oros, G. The notation of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103.
5. Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis 2012, 30, 55–64.
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