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1. Introduction

Define A as a class of analytic functions h of the form

h(z) = z +
∞

∑
n=2

anzn, (z ∈ U), (1)

where U = {z ∈ C : |z| < 1}.
Let S ,S∗, and K be the subclasses of A, which are composed of univalent functions,

starlike functions and convex functions, respectively ([1,2]).
Let P denote the class of analytic functions p with a positive real part on U of the

following form:

p(z) = 1 +
∞

∑
k=1

ckzk.

The function p ∈ P is called the Carathéodory function.
Suppose that the functions F and G are analytic in U. The function F is said to

be subordinate to the function G if there exists a function ω satisfying ω(0) = 0 and
|ω(z)| < 1 (z ∈ U), such that F(z) = G(ω(z))(z ∈ U). Note that F(z) ≺ G(z). In particu-
lar, if G is univalent in U, the following conclusion follows (see [1]):

F(z) ≺ G(z)⇐⇒ F(0) = G(0) and F(U) ⊂ G(U).

In 1994, Ma and Minda [3] introduced the classes S∗(φ) and K(φ) of starlike functions
and convex functions by using the subordination. The function h(z) ∈ S∗(φ) if and only if
zh′(z)
h(z) ≺ φ(z) and the function h(z) ∈ K(φ) if and only if 1 + zh′′(z)

h′(z) ≺ φ(z), where h ∈ A
and φ ∈ P .

Let φ(z) = 1+Az
1+Bz and −1 ≤ B < A ≤ 1. The classes S∗( 1+Az

1+Bz ) = S∗(A, B) and
K( 1+Az

1+Bz ) = K(A, B), which are the classes of Janowski starlike and convex functions,
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respectively (refer to [4]). S∗( 1+z
1−z ) = S∗ and K( 1+z

1−z ) = K are known for the classes of
starlike and convex function, respectively.

In 1959, Sakaguchi [5] introduced the class S∗s of starlike functions with respect to
symmetric points. The function h ∈ S∗s if and only if

Re
(

zh′(z)
h(z)− h(−z)

)
> 0.

In 1987, El Ashwah and Thomas [6] introduced the classes S∗c and S∗sc of starlike
functions with respect to conjugate points and symmetric conjugate points as follows:

h ∈ S∗c ⇐⇒ Re
(

zh′(z)
h(z) + h(z)

)
> 0 and h ∈ S∗sc ⇐⇒ Re

(
zh′(z)

h(z)− h(−z)

)
> 0.

Similarly to the previous section, the classes S∗c and S∗sc can be further generalized to
the classes S∗sc(φ) and Ksc(φ).

The function h(z) belongs to S∗sc(φ) if and only if 2zh′(z)
h(z)−h(−z)

≺ φ(z) holds true and h(z)

belongs to Ksc(φ) if and only if 2(zh′(z))′

(h(z)−h(−z))′
≺ φ(z) holds true, where h ∈ A and φ ∈ P .

If the function h ∈ A meets the following criteria: Re
(

h(z)
zh′(z)

)
> α(0 ≤ α < 1), then

h is said to be in the class of the reciprocal starlike functions of order α, which is represented
by h ∈ RS∗(α).

In contrast to the classical starlike function class S∗(α) of order α, the reciprocal starlike
function class of order α maps the unit disk to a starlike region within a disk with

(
1

2α , 0
)

as the center and 1
2α as the radius ([7]). In particular, the disk is large when 0 < α < 1

2 .
Therefore, the study of the class of reciprocal starlike functions has aroused the research
interest of most scholars [8–15]. In 2012, Sun et al. [8] extended the reciprocal starlike
function to the class of meromorphic univalent function.

For the analytic functions h(z) and g(z)(z ∈ U), let SH be a class of harmonic map-
pings, which has the following form (see [16,17]):

f (z) = h(z) + g(z), (z ∈ U) (2)

where

h(z) = z +
∞

∑
k=2

akzk and g(z) =
∞

∑
k=1

bkzk, |b1| = α ∈ [0, 1). (3)

Specifically, h is referred to as the analytical part, and g is known as the co-analytic
part of f .

It is known that the function f = h + g is locally univalent and sense-preserving in U
if and only if |h′(z)| > |g′(z)| (see [18]).

Based on these results, it is possible to obtain the geometric properties of the co-analytic
part by means of the analytic part of the harmonic function.

In the past few years, different subclasses of SH have been studied by several authors
as follows.

In 2007, Klimek and Michalski [19] investigated the subclass SH with h ∈ K.
In 2014, Hotta and Michalski [20] investigated the subclass SH with h ∈ S .
In 2015, Zhu and Huang [21] investigated the subclasses of SH with h ∈ S∗( 1+(1−2β)z

1−z )

and h ∈ K( 1+(1−2β)z
1−z ).

Combined with the above studies, by using the subordination relationship, this pa-
per further constructs the reciprocal structure harmonic function class with symmetric
conjugate points as follows.
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Definition 1. Let f = h + g be in the class SH and have the form (3) and −1 ≤ B < A ≤ 1. We
define the class HRS∗,αsc (A, B) as that of univalent harmonic reciprocal starlike functions with a
symmetric conjugate point, the function f = h + g ∈ HRS∗,αsc (A, B) if and only if h ∈ RS∗sc(A, B),
that is,

h(z)− h(−z)
2zh′(z)

≺ 1 + Az
1 + Bz

. (4)

In addition, let HRKα
sc(A, B) define the class of harmonic univalent reciprocal convex functions

with a symmetric conjugate point. The function f = h + g ∈ RKsc(A, B) if and only if h ∈
HRKα

sc(A, B), that is,
(h(z)− h(−z))′

2(zh′(z))′
≺ 1 + Az

1 + Bz
. (5)

In this paper, we will discuss the harmonic Bloch constant and the norm of the pre-
Schwarzian derivative for the classes.

For f = h + ḡ ∈ SH , the harmonic Bloch constant of f is

B f = sup
z,w∈U,z 6=w

| f (z)− f (w)|
Q(z, w)

, (6)

where

Q(z, w) =
1
2

log

(
1 +

∣∣ z−w
1−z̄w

∣∣
1−

∣∣ z−w
1−z̄w

∣∣
)

= arctan
∣∣∣∣ z− w
1− z̄w

∣∣∣∣
is the hyperbolic distance between z and w, and z, w ∈ U. If B f < ∞, then f is called the
Bloch harmonic function. By (6), Colonna [22] proved that

B f = sup
z∈U

(
1− |z|2

)
(| fz(z)|+ | fz̄(z)|) = sup

z∈U

(
1− |z|2

)∣∣h′(z)∣∣(1 + |w(z)|). (7)

Recently, many authors have studied the Bloch constant of harmonic functions
(see [23,24]).

Let f be the analytic and locally univalent function in U, and the pre-Schwarzian
derivative of f is

Tf (z) =
f ′′(z)
f ′(z)

(8)

and the norm of Tf is defined as

‖Tf ‖ = sup
z∈U

(1− |z|2)|Tf |. (9)

Unlike the case of analytic functions, the pre-Schwarzian derivative of harmonic
functions allows a variety of different definitions (see [25–27]).

In [27], Chuaqui–Duren–Osgood gives the following definition of the pre-Schwarzian
derivative the harmonic function f = h + g:

Tf =
2∂(log λ)

∂z
,

where λ = |h′|+ |g′|. In fact, it is easy to see that the above definition is consistent with the
classical pre-Schwarzian derivative of an analytic function.

In 2022, Xiong et al. [24] rewrite the pre-Schwarzian derivative as follows:

Tf =
2∂(log λ)

∂z
=

h′′

h′
+

2w′w̄
1 + |w|2 = Th +

2w′w̄
1 + |w|2 (10)
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and the norm of the pre-Schwarzian derivative of the harmonic function f can be defined
in terms of (9).

In this paper, we will give an inequality of f belonging to the class HRKα
sc(− 1

2 ,−1)
with respect to its pre-Schwarzian derivative. In particular, the bounds of the norm of the

pre-Schwarzian derivative of f in the class HRK
1
2
sc(− 1

2 ,−1) is also determined.

2. Preliminary Preparation

To obtain our results, we need the following Lemmas.
According to the subordination relationship, we obtain the distortion theorem of the

classes RS∗sc(A, B) and RK∗sc(A, B).

Lemma 1. Let −1 ≤ B < A ≤ 1 and |z| = r ∈ [0, 1).
(1) If h(z) ∈ RS∗(A, B), then

m1(r; A, B) ≤ |h(z)| ≤ M1(r; A, B), (11)

and
m2(r; A, B) ≤

∣∣h′(z)∣∣ ≤ M2(r; A, B). (12)

(2) If h(z) ∈ RK(A, B), then

m3(r; A, B) ≤ |h(z)| ≤ M3(r; A, B), (13)

and
m1(r; A, B)

r
≤
∣∣h′(z)∣∣ ≤ M1(r; A, B)

r
, (14)

where

M1(r; A, B) =

{
r(1− Ar)

B−A
A , A 6= 0,

re−Br, A = 0,
(15)

m1(r; A, B) =

{
r(1 + Ar)

B−A
A , A 6= 0,

reBr, A = 0,
(16)

M2(r; A, B) =

{
(1− Ar)

B−2A
A (1− Br), A 6= 0,

(1− Br)e−Br, A = 0,
(17)

m2(r; A, B) =

{
(1 + Ar)

B−2A
A (1 + Br), A 6= 0,

(1 + Br)eBr, A = 0,
(18)

M3(r; A, B) =

{
1
B −

1
B (1− Ar)

B
A , A 6= 0,

1
B −

1
B e−Br, A = 0,

(19)

m3(r; A, B) =

{
1
B (1 + Ar)

B
A − 1

B , A 6= 0,
1
B eBr − 1

B , A = 0.
(20)

Proof. (i) For h(z) ∈ RS∗(A, B), let

h(z)
zh′(z)

= P(z) and P(z) ≺ 1 + Az
1 + Bz

.

After a simple calculation, we can obtain

h(z) = z · exp
[(∫ z

0

1− P(ζ)
ζP(ζ)

dζ

)]
.



Symmetry 2023, 15, 1639 5 of 15

Therefore,

|h(z)
z
| = exp

(
Re
∫ z

0

1− P(ζ)
ζP(ζ)

dζ

)
.

Substituting ζ = zt, we obtain

|h(z)| = |z| exp
(∫ 1

0
Re

1− P(zt)
tP(zt)

dt
)

. (21)

Letting z = x + iy and |z| = r ∈ (0, 1], we obtain

Re
(B− A)z
1 + Azt

=
(B− A)(x + Ar2t)
1 + A2r2t2 + 2Axt

:= φ(x).

It is easy to find that φ(x) is decreasing with respect to x ∈ [−r, r]. Therefore,

− (A− B)r
1 + Art

≤ Re
(B− A)z
1 + Azt

≤ (A− B)r
1− Art

,

that is,

− (A− B)r
1 + Art

≤ Re
1− P(zt)

tP(zt)
≤ (A− B)r

1− Art
.

Integrating the two sides of the inequality for t above from 0 to 1, we obtain

(1 + Ar)
B−A

A ≤ exp
∫ 1

0
Re

1− P(zt)
tP(zt)

dt ≤ (1− Ar)
B−A

A , (A 6= 0), (22)

and

reBr ≤ exp
∫ 1

0
Re

1− P(zt)
tP(zt)

dt ≤ e−Br (A = 0). (23)

By combining the inequalities (21)–(23), we can obtain (11) of Lemma 1.
On the other hand, for |z| = r, we can obtain

1− Ar
1− Br

<

∣∣∣∣ h(z)
zh′(z)

∣∣∣∣ < 1 + Ar
1 + Br

. (24)

From (11) and (24), we can obtain (12) of Lemma 1.
(ii) If h(z) ∈ RK(A, B), then zh′(z) ∈ RS∗(A, B). According to the results in (11), we

can easily obtain (14), that is,

m1(r; A, B)
r

≤
∣∣h′(z)∣∣ ≤ M1(r; A, B)

r
.

Integrating the two sides of the inequality from 0 to r, we can obtain (13). Therefore,
we complete the proof of Lemma 1.

Lemma 2. If h(z) ∈ RS∗sc(A, B), then h(z)−h̄(−z̄)
2 ∈ RS∗(A, B).

Lemma 3. If h(z) ∈ RKsc(A, B), then h(z)−h̄(−z̄)
2 ∈ RK(A, B).

Lemma 4. Let −1 ≤ B < A ≤ 1 and |z| = r ∈ [0, 1).
(i) If h(z) ∈ RS∗sc(A, B), then

m2(r; A, B) ≤
∣∣h′(z)∣∣ ≤ M2(r; A, B). (25)
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(ii) If h(z) ∈ RKsc(A, B), then

m1(r; A, B)
r

≤
∣∣h′(z)∣∣ ≤ M1(r; A, B)

r
, (26)

where M1(r; A, B), m1(r; A, B), M2(r; A, B) and m2(r; A, B) are given by (15),(16),(17) and (18),
respectively.

Proof. (i) Suppose that h(z) ∈ RS∗sc(A, B); then, we obtain

1 + Br
1 + Ar

· |h(z)− h̄(−z̄)
2

| ≤
∣∣zh′(z)

∣∣ ≤ 1− Br
1− Ar

· |h(z)− h̄(−z̄)
2

|. (27)

According to Lemma 1 and Lemma 2, we have

m1(r; A, B) ≤ |h(z)− h̄(−z̄)
2

| ≤ M1(r; A, B). (28)

Inequality (25) can be obtained by combining (27) and (28).
(ii) Suppose that h(z) ∈ RKsc(A, B); then, we obtain

1 + Br
1 + Ar

≤
∣∣∣∣ 2(zh′(z))′

(h(z)− h̄(−z̄))′

∣∣∣∣ ≤ 1− Br
1− Ar

. (29)

According to Lemma 1 and Lemma 3, we have

m1(r; A, B)
r

≤
∣∣∣∣∣
(

h(z)− h̄(−z̄)
2

)′∣∣∣∣∣ ≤ M1(r; A, B)
r

. (30)

By (29) and (30), we can obtain

(1 + Br)
r(1 + Ar)

m1(r; A, B) ≤
∣∣(zh′(z))′

∣∣ ≤ (1− Br)
r(1− Ar)

M1(r; A, B). (31)

By integrating the two sides of inequality (31) about r, we can obtain (26) after a simple
calculation.

Lemma 5 ([28]). (Avkhadiev-Wirths) Suppose that f = g + h̄ ∈ SH and g′ = wh′, where w is
the Mobius self-mapping of U and

w(z) =
z + α

1 + αz
= c0 + c1z + c2z2 + · · · , α ∈ (0, 1), ci ∈ C, i ∈ {1, 2, · · · },

then the following conclusion can be drawn:
(i) c0 = g′(0) = α and |ck| 6 1− |c0|2, k ∈ {1, 2, · · · }.
(ii) |r−α|

1−αr 6 |w(z)| 6 r+α
1+αr , |z| = r < 1.

(iii) |w′(z)| 6 1−|w(z)|2
1−|z|2 , z ∈ U.

3. Main Results

First, we will find the Bloch constants for the class HRS∗,αsc (A, B).

Theorem 1. Let α ∈ (0, 1),−1 6 B < A 6 1 and |z| = r < 1. If the function f ∈
HRS∗,αsc (A, B), then the Bloch constant B f of f is bounded, and

B f ≤


(1+α)(1−r2

1)(1+r1)(1−Br1)(1−Ar1)
B−2A

A

1+αr1
, B < 0, B

2 < A < min
{

B
3 , 1

2

(
B + 1+B

1−B

)}
,

(1+α)(1−r2
2)(1+r2)(1−Br2)e−Br2

1+αr2
, A = 0, max

{
− 4α

1+4α , α− 1
}
< B < 0,
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where r1 and r2 are, respectively, the only two roots in interval (0, 1) of the following equations:

(1 + αr)[1− B− 2(1 + B)r− 3(1− B)r2 + 4Br3](1− Ar)
B−2A

A

+ [α(3A− B)r + 2A− B− α]
(

1− r2
)
(1 + r)(1− Br)(1− Ar)

B−3A
A = 0,

and

(1 + αr)[1− B− 2(1 + B)r− 3(1− B)r2 + 4Br3]− [B(1 + αr) + α](1− r2)(1− r)(1− Br) = 0.

Proof. Suppose that f = h + ḡ ∈ HRS∗,αsc (A, B), then the analytic part h ∈ RS∗sc(A, B).
According to Lemma 4 and Lemma 5, we have

B f = sup
z∈U

(
1− |z|2

)∣∣h′(z)∣∣(1 + |w(z)|)

≤


(1 + α) sup

0<r<1

(1−r2)(1+r)(1−Br)(1−Ar)
B−2A

A

1+αr , A 6= 0,

(1 + α) sup
0<r<1

(1−r2)(1+r)(1−Br)e−Br

1+αr , A = 0.

(32)

To obtain the bounds of B f in (32), we define the following functions:

Q(r) =
(
1− r2)(1 + r)(1− Br)(1− Ar)

B−2A
A

1 + αr
,

and

S(r) =
(
1− r2)(1 + r)(1− Br)e−Br

1 + αr
.

A simple calculation shows that the derivatives of the functions Q(r) and S(r) are

Q′(r) = M(r)
(1 + αr)2 ,

and

S ′(r) = N (r)
(1 + αr)2 e−Br,

respectively, where

M(r) =(1 + αr)[1− B− 2(1 + B)r− 3(1− B)r2 + 4Br3](1− Ar)
B−2A

A

+ [α(3A− B)r + 2A− B− α]
(

1− r2
)
(1 + r)(1− Br)(1− Ar)

B−3A
A ,

(33)

and
N (r) =(1 + αr)[1− B− 2(1 + B)r− 3(1− B)r2 + 4Br3]

− [B(1 + αr) + α](1− r2)(1 + r)(1− Br).
(34)

From (33),M(r) is a continuous function of r in the interval [0, 1] satisfying

M(0) = 1− α + 2(A− B) > 0, M(1) = −4(1− B)(1 + α)(1− A)B−2A < 0,

and
M′(r) =(2A− B)(3A− B)(1 + αr)(1− r2)(1 + r)(1− Br)(1− Ar)

B−4A
A

+ (1 + αr)(1− Ar)
B−3A

A F(r),
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where
F (r) =2(2A− B)[1− B− 2(1 + B)r− 3(1− B)r2 + 4Br3]

+ (1− Ar)[−2(1 + B)− 6(1− B)r + 12Br2].

Now, we consider the monotonicity of the functionM(r). Since

F ′(r) = 12B(A− 2B)r2 + [−12(A− B)(1− B) + 24B]r− 2(3A− 2B)(1 + B)− 6(1− B).

Due to the condition B < 0, B
2 < A < min

{
B
3 , 1

2

(
B + 1+B

1−B

)}
, we have F ′(r) < 0, that

is,
F (r) < F (0) = 2(2A− B)(1− B)− 2(1 + B) < 0, r ∈ (0, 1).

In summary, it can be seen thatM′(r) < 0 is always true, that is,M(r) is a monotoni-
cally decreasing function with respect to r. By the zero point theorem, there exists a unique
r1 ∈ (0, 1) such thatM(r1) = 0, known by the properties of the function, is the maximum
point of the function Q(r).

Similarly to the previous proof, N (r) is a continuous function of r in the interval [0, 1].
According to (34), the following conclusions can be drawn:

N (0) = 1− 2B− α > 0,

N (1) = −4(1 + α)(1− B) < 0,

and

N ′(r) = B2 − (3 + α)B− 2 + B(1 + B)(2 + 3αr)r + B(1− B)(3 + 4αr)r2 − 4B2(1 + 2αr)r3

− 2(1 + B)αr− 6(1 + αr)(1− B)r + 12B(1 + αr)r2.

If max{− 4α
1+4α , α− 1} < B < 0, then N ′(r) < 0 is always true, that is, the function

N (r) is a monotonically decreasing function with respect to r. By the zero point theorem,
there exists a unique r2 ∈ (0, 1) such that N (r2) = 0, known by the properties of the
function, then r2 is the maximum point of the function S(r).

In particular, let α = 1
2 , A = − 5

24 , B = − 1
2 in Theorem 1, we can obtain the follow-

ing result.

Corollary 1. Let |z| = r < 1. If f ∈ HRS∗,
1
2

sc (− 5
24 ,− 1

2 ), then the Bloch constant B f of f is
bounded, and

B f ≤
3
2

(
1− r2

1

)
(1 + r1)(1 +

5
24

r1)
2
5 ,

where r1 =
√

6257−67
34 is the only root of the equation

17 r4 + 118 r3 + 209 r2 + 56 r− 52 = 0

in the interval (0, 1).

In particular, let α = 1
2 , A = 0, B = − 1

2 in Theorem 1, we can obtain the following re-
sult.

Corollary 2. Let α = 1
2 , A = 0, B = − 1

2 and |z| = r < 1. If f ∈ HRS∗,
1
2

sc (0,− 1
2 ), then the Bloch

constant B f of f is bounded, and

B f ≤
3
2

(
1− r2

2

)
(1 + r2)e

1
2 r2 ,
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where r2 is the only root of equation

r4 + 9r3 + 17r2 + r− 6 = 0

in the interval (0, 1).

Next, we will find the Bloch constants for the class HRKα
sc(A, B).

Theorem 2. Let α ∈ (0, 1),−1 6 B < A 6 1 and |z| = r < 1. If f ∈ HRKα
sc(A, B), then the

Bloch constant B f of f is bounded, and

B f ≤

 (1+α)(1−r2
3)(1+r3)(1−Ar3)

B−A
A

1+αr3
, A 6= 0, A + B ≥ 1,

(1+α)(1−r2
4)(1+r4)e−Br4

1+αr4
, A = 0,

where r3 and r4 are the only roots of equations

(1 + αr)(1− 2r− 3r2)(1− Ar) + [A− B− α + (2A− B)αr]
(

1− r2
)
(1 + r) = 0

and
(1 + αr)(1− 2r− 3r2)− (α + B(1 + αr))(1− r2)(1 + r) = 0

in the interval (0, 1), respectively.

Proof. Suppose that f = h + ḡ ∈ HRKα
sc(A, B), then the analytic part h ∈ RKsc(A, B).

According to Lemma 4 and Lemma 5, we have

B f = sup
z∈U

(
1− |z|2

)∣∣h′(z)∣∣(1 + |w(z)|)

≤


(1 + α) sup

0<r<1

(1−r2)(1+r)(1−Ar)
B−A

A

1+αr , A 6= 0,

(1 + α) sup
0<r<1

(1−r2)(1+r)e−Br

1+αr , A = 0.

To obtain the bounds of B f in the above inequality, we define the following functions:

Q(r) =
(
1− r2)(1 + r)(1− Ar)

B−A
A

1 + αr
,

and

S(r) =
(
1− r2)(1 + r)e−Br

1 + αr
.

After a simple calculation, the derivatives of the functionsQ(r) and S(r) are, respectively,

Q′(r) = M(r)
(1 + αr)2 (1− Ar)

B−2A
A ,

and

S ′(r) = N (r)
(1 + αr)2 e−Br,

where

M(r) =(1 + αr)(1− 2r− 3r2)(1− Ar) + [A− B− α + (2A− B)αr]
(

1− r2
)
(1 + r), (35)
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and
N (r) = (1 + αr)(1− 2r− 3r2)− (α + B(1 + αr))(1− r2)(1 + r). (36)

By (35),M(r) in [0, 1] is a continuous function with respect to r satisfying

M(0) = 1− α + (A− B) > 0 and M(1) = −4(1 + α)(1− A) < 0.

Next, we consider the monotonicity of the functionM(r).

M(1)(r) = −B(1 + αr)(1− 2r− 3r2)− 2(1 + αr)(1 + 3r)(1− Ar) + (2A− B)α
(

1− r2
)
(1 + r),

M(2)(r) = (12B + 12A)αr2 + ((6B− 12)α + 6B + 12A)r + (−2B + 2A− 2)α + 2B + 2A− 6,

M(3)(r) = (24B + 24A)αr + (6B− 12)α + 6B + 12A,

M(4)(r) = (24B + 24A)α.

According to the condition A + B ≥ 1, it is obvious that M(4)(r) > 0. So we can
obtain

M(3)(0) <M(3)(r) <M(3)(1), r ∈ (0, 1).

If we takeM(3)(0) = (6B− 12)α + 6B + 12A as a function of α and write it as φ(α),
then

φ(0) = 6B + 12A > 0, and φ(1) = 12(A + B)− 12 ≥ 0.

Since α ∈ (0, 1), we obtainM(3)(0) > 0, which gives usM(3)(r) > 0. So, we obtain

M(2)(0) <M(2)(r) <M(2)(1), r ∈ (0, 1).

Similarly to the above estimate, we can obtainM′(0) < 0,M′(1) < 0,M(2)(0) < 0,
M(2)(1) > 0. By the monotonicity ofM(2)(r) and the zero point theorem, there exists
r0 ∈ (0, 1), which satisfies the following conclusion.

When 0 < r ≤ r0,M(2)(r) < 0 is true,M′(r) <M′(0) < 0.
When r0 < r < 1,M(2)(r) > 0 is true,M′(r) <M′(1) < 0.
The results obtained from the above analysis are as follows.
By condition A + B ≥ 1, formulaM′(r) < 0 is always true, that is, the functionM(r)

is monotonically decreasing with respect to r.
Similarly to the proof of Theorem 1, from the zero point theorem, there exists a unique

r3 ∈ (0, 1) such thatM(r3) = 0, and according to the properties of the function, then r3 is
the maximum point of the function Q(r).

As in the previous similar proof,N (r) in [0, 1] is a continuous function about r. By (36),
we obtain

N (0) = 1− α− B > 0, N (1) = −4(1 + α) < 0,

and

N ′(r) = 4Bαr3 + [(3B− 6)α + 3B]r2 + [(−2B− 2)α + 2B− 6]r− Bα− B− 2.

Since B < 0, we find that N ′(r) < 0 is always true, that is, the function N (r) is
monotonically decreasing with respect to r. By the zero point theorem, there exists a unique
r4 ∈ (0, 1) such that N (r4) = 0, according to the properties of the function, then r4 is the
maximum point of the function S(r).

In Theorem 2, let A = 1, B = 1
2 and A = 0, B = −1, respectively, and the following

corollaries can be obtained:
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Corollary 3. Let α ∈ (0, 1) and |z| = r < 1. If the function f ∈ HRKα
sc(1, 1

2 ), then the Bloch
constant B f of f is bounded and

B f ≤
(1 + α)(1− r2

3)(1 + r3)(1− r3)
− 1

2

1 + αr3
,

where r3 is the only root of equation

2(1 + αr)(1− 2r− 3r2) + (1− 2α + 3αr)(1 + r)2 = 0

in the interval (0, 1), and the image of function

M(r, α) = 2(1 + αr)(1− 2r− 3r2) + (1− 2α + 3αr)(1 + r)2 (37)

is shown in Figure 1. In the figure, the functionM(r, α) is represented by the three-dimensional
coordinate system plus color; the x−axis represents the variable α; the y−axis represents the variable
r; the z−axis and color represents the functionM(r, α).

Figure 1. The graph ofM(r, α) given by (37).

Corollary 4. Let α ∈ (0, 1) and |z| = r < 1. If the function f ∈ HRKα
sc(1, 0), then the Bloch

constant B f of f is bounded and

B f ≤
(1 + α)(1− r2

4)(1 + r4)er4

1 + αr4
,

where r4 is the only root of the equation

(1 + αr)(1− 3r)− (α− (1 + αr))(1− r2) = 0

in the interval (0, 1), and the image of function

N (r, α) = (1 + αr)(1− 3r)− (α− (1 + αr))(1− r2) (38)

is shown in Figure 2. In the figure, the function N (r, α) is represented by the three-dimensional
coordinate system plus color; the x−axis represents the variable α; the y−axis represents the variable
r; the z−axis and color represents the function N (r, α).
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Figure 2. The graph of N (r, α) given by (38).

Next, we obtain the norm of the pre-Schwarzian derivative for the classes HRKα
sc(−1

2 ,−1).

Theorem 3. Let A = − 1
2 , B = −1 and |z| = r < 1. If f ∈ HRKα

sc(− 1
2 ,−1), then the norm of

the pre-Schwarzian derivative of f is bounded and

∥∥∥Tf

∥∥∥ 6 3(1− r2
5)

(2− r5)
+

2(1− α2)(1− r2
5)(r5 + α)

(1 + αr5)
[
(1 + r2

5)(1 + α2)− 4αr5
] ,

where r5 is the only root of the equation

(3r2 − 12r + 3)[α(1 + α2)r3 + (1− 3α2)r2 + α(α2 − 3)r + 1 + α2]2

+ 2(1− α2)(2− r)2[(α4 + 4α2 − 1)r4 + 4α(1− α2)r3

− 4(1 + α4)r2 + 4α(α2 − 1)r + 1 + 4α2 − α4] = 0

in the interval (0, 1).
In particular, let α = 1

2 . The norm of the pre-Schwarzian derivative of f is bounded and

∥∥∥Tf

∥∥∥ 6 3(1− r2
6)

(2− r6)
+

6(2r6 + 1)(1− r2
6)

(2 + r6)(5r2
6 − 8r6 + 5)

,

where r6 ≈ 0.4975 is the only root of the equation

75r8 − 240r7 − 477r6 + 1620r5 − 1467r4 − 360r3 + 2553r2 − 3180r + 1044 = 0.

Proof. Suppose that f = h + ḡ ∈ HRKα
sc(− 1

2 ,−1), then h ∈ RKsc(− 1
2 ,−1). Applying

Lemma 4, we have

|Th| =
∣∣∣∣h′′h′

∣∣∣∣ ≤ 3
2

(1− 1
2 r)

. (39)

We can obtain from Lemma 5 and the inequality (39) that∣∣∣Tf

∣∣∣ = ∣∣∣∣h′′h′
+

2w′w̄
1 + |w|2

∣∣∣∣ 6 |Th|+
2|w′||w̄|
1 + |w|2 .

and ∥∥∥Tf

∥∥∥ ≤ sup
0<r<1

[
(1− r2)( 3

2 )

(1− 1
2 r)

+
2
(
1− α2)(1− r2)(r + α)

(1 + αr)[(1 + r2)(1 + α2)− 4αr]

]
. (40)

Let

Fα(r) =
3(1− r2)

(2− r)
+

2
(
1− α2)(1− r2)(r + α)

(1 + αr)[(1 + r2)(1 + α2)− 4αr]
,
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then

F′α(r) =
3r2 − 12r + 3

(2− r)2 +
2
(
1− α2)V(α, r)

{(1 + αr)[(1 + r2)(1 + α2)− 4αr]}2 , (41)

where

V(α, r) =
(

α4 + 4α2 − 1
)

r4 + 4α
(

1− α2
)

r3 − 4
(

1 + α4
)

r2 + 4α
(

α2 − 1
)

r + 1 + 4α2 − α4.

It can be seen from (41) that F′α(r) = 0 is true if and only if Tα(r) = 0 is true, where

Tα(r) =(3α6 + 6α4 + 3α2)r8 + (−12α6 − 18α5 − 24α4 − 12α3 − 12α2 + 6α)r7

+ (7α6 + 72α5 + 15α4 + 48α3 − 23α2 − 24α + 1)r6

+ (−16α6 − 22α5 − 36α4 + 44α3 + 104α2 + 2α− 4)r5

+ (9α6 + 16α5 − 53α4 − 224α3 + 27α2 + 16α− 7)r4

+ (−44α6 + 18α5 + 176α4 + 12α3 − 92α2 − 6α + 8)r3

+ (37α6 + 8α5 − 75α4 − 16α3 + 59α2 + 104α− 21)r2

+ (−8α6 − 26α5 + 28α4 + 52α3 − 48α2 − 50α− 20)r

+ 8α6 − 37α4 + 30α2 + 11.

(42)

The image of Tα(r) is shown Figure 3 because Tα(r) is continuous in the interval [0, 1]
and satisfies the condition

Tα(0) =8α6 − 37α4 + 30α2 + 11 > 0, Tα(1) = −16(1 + α)2(1− α)3(2− α) < 0.

Figure 3. The graph of Tα(r) in (42).

Therefore, there is at least a root r5 ∈ (0, 1), such that Tα(r5) = 0.
In particular, let α = 1

2 . From (40), we have

∥∥∥Tf

∥∥∥ 6 sup
0<r<1

3(1− r2)

(2− r)
+

6(2r + 1)(1− r2)

(2 + r)(5r2 − 8r + 5)
.

Let

F(r) = 3(1− r2)

(2− r)
+

6(2r + 1)(1− r2)

(2 + r)(5r2 − 8r + 5)
,

we obtain

F′(r) = T(r)
(2− r)2((2 + r)(5r2 − 8r + 5))2 . (43)
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It can be seen from (43) that F′(r) = 0 is true if and only if T(r) = 0 is true, where

T(r) = 75r8 − 240r7 − 477r6 + 1620r5 − 1467r4 − 360r3 + 2553r2 − 3180r + 1044. (44)

The image of T(r) is shown Figure 4 because T(r) is continuous in the interval [0, 1]
and satisfies the condition

T(0) =1044 > 0, T(1) = −432 < 0.

0 0.2 0.4 0.6 0.8 1

r

-600

-400

-200

0

200

400

600

800

1000

1200

T
(r

)

Figure 4. The graph of T(r) in (44).

As a result, there is only one r6 ∈ (0, 1), which makes T(r6) = 0. According to the
geometric properties of the function F(r), F(r) takes the maximum value at r6.

4. Conclusions

In this paper, by means of subordination, we introduce some classes of univalent
harmonic functions with respect to the symmetric conjugate points. the analytic parts
of which are reciprocal starlike (or convex) functions. Further, by combining with the
graph of the function, we discuss the bound of Bloch constant and the norm of pre-
Schwarzian derivative for the classes, which can enrich the research field of univalent
harmonic mapping.
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