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Abstract: This paper introduces an efficient approach for solving Lane–Emden–Fowler problems.
Our method utilizes two Nyström schemes to perform the integration. To overcome the singularity at
the left end of the interval, we combine an optimized scheme of Nyström type with a set of Nyström
formulas that are used at the fist subinterval. The optimized technique is obtained after imposing
the vanishing of some of the local truncation errors, which results in a set of symmetric hybrid
points. By solving an algebraic system of equations, our proposed approach generates simultaneous
approximations at all grid points, resulting in a highly effective technique that outperforms several
existing numerical methods in the literature. To assess the efficiency and accuracy of our approach,
we perform some numerical tests on diverse real-world problems, including singular boundary value
problems (SBVPs) from chemical kinetics.

Keywords: optimized Nyström methods; Lane–Emden–Fowler equations; singular boundary-value
problems; analysis of convergence
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1. Introduction

The problem of interest is described by the differential equation

q′′(x) +
λ

x
q′(x) = k(x, q(x)), 0 < x ≤ xN = 1 (1)

with one of the following three different types of boundary conditions (BCs)

q(0) = qa, q(1) = qb, (2)

q(0) = qa, q′(1) = q′b, (3)

q′(0) = q′a, q(1) = qb, (4)

where λ, qa, qb, q′a, and q′b are given, and the function k(x, q) is assumed to be continuous.
It is worth mentioning that the existence and uniqueness of the solution to (1) together with
appropriate boundary conditions have been rigorously determined by Zhang [1].

Many researchers, such as Thula and Roul [2], Rufai and Ramos [3,4], and Tunc [5],
discussed the wide applicability and the theoretical analysis of second-order singular
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initial/boundary value ordinary differential equations in different fields. By modeling
using the system represented by (1), researchers can gain insights into the behavior and
properties of many complex physical systems.

Researchers across various fields of applied sciences and engineering have shown
significant interest in solving equations of the Emden–Fowler type, which are represented
by (1)–(4). However, these equations pose challenges due to their singularity at x = 0
and nonlinear characteristics, making them difficult to handle theoretically. In order to
overcome these challenges and obtain meaningful solutions, numerical methods have
emerged as crucial tools. By discretizing the equations and performing computations on a
computational grid, these methods enable researchers to address the complexities arising
from the singularity and nonlinearity, providing reasonable and practical approximate
solutions.

Considerable efforts have been dedicated to obtain approximate solutions of the
aforementioned problems. Various strategies have been used to tackle the challenge posed
by the singularity at x = 0 in Equation (1). Numerical analysts have proposed various
numerical methods to solve the type of problem described in Equation (1). Some of these
existing numerical methods include the finite difference methods proposed in [6,7], the
spline methods discussed in [8,9], the Nyström methods reported in [10], the approximation
methods introduced in [11,12], the hybrid block technique in [13], the high-order compact
finite differences method in [14], the semi-numerical approach in [15], the pseudospectral
method in [16], and the collocation method presented in [17]. The choice of these methods
depends on the specific problem characteristics, such as the presence of singularities,
smoothness of the solution, computational resources available, and desired accuracy.

Despite the extensive research conducted by numerous scholars to address the chal-
lenge of solving SBVPs described by Equations (1)–(4), the accuracies of many existing
methods still require improvements. In order to address this issue, this work introduces
a novel approach called Pair of Optimized Nyström Methods (PONM). This method is
specifically designed to enhance the accuracy of numerical solutions by directly integrat-
ing second-order SBVPs. By utilizing PONM, we provide more reliable and accurate
results compared to existing methods, contributing to the advancement of solving these
challenging boundary value problems.

2. Pair of Optimized Nyström Methods

The method under consideration, namely, a pair of optimized Nyström methods, has
been previously introduced in [3] for solving second-order singular initial value problems.
The interested reader can refer to this source to better understand the method’s mathe-
matical derivation and its characteristics. This method is represented by the following
equations, which are fully explained in [3].

qn+1 = qn + hq′n +
1

360
h2
(

7
(√

21 + 7
)

fn+u + 64 fn+v − 7
(√

21− 7
)

fn+w + 18 fn

)
,

q′n+1 = q′n + h
(

1
20

fn +
49
180

fn+u +
16
45

fn+v +
49

180
fn+w +

1
20

fn+1

)
. (5)
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qn+u = qn −
1

14

(√
21− 7

)
hq′n

+
h2

17640

(
140 fn+u + 32

(
31− 7

√
21
)

fn+v + 7
(

227− 49
√

21
)

fn+w

)
+

h2

17640

((
435− 63

√
21
)

fn − 6 fn+1

)
,

qn+v = qn +
h
2

q′n +
h2

5760

(
7
(

8
√

21 + 35
)

fn+u + 80 fn+v + 7
(

35− 8
√

21
)

fn+w

)
(6)

+
h2

5760
(147 fn + 3 fn+1),

qn+w = qn +

(√
21 + 7

)
h

14
q′n +

h2

17640
7
(

49
√

21 + 227
)

fn+u

+
h2

17640

(
32
(

7
√

21 + 31
)

fn+v + 140 fn+w +
(

63
√

21 + 435
)

fn − 6 fn+1

)
,

q′n+u = q′n +
h

17640

(
7
(

343− 9
√

21
)

fn+u + 64
(

49− 12
√

21
)

fn+v + 7
(

343− 69
√

21
)

fn+w

+9
(

3
√

21 + 119
)

fn + 27
(√

21− 7
)

fn+1

)
,

q′n+v = q′n +
h

2880

(
7
(

15
√

21 + 56
)

fn+u + 512 fn+v + 7
(

56− 15
√

21
)

fn+w + 117 fn + 27 fn+1

)
, (7)

q′n+w = q′n +
h

17640

(
7
(

69
√

21 + 343
)

fn+u + 64
(

12
√

21 + 49
)

fn+v + 7
(

9
√

21 + 343
)

fn+w

+9
(

119− 3
√

21
)

fn − 27
(√

21 + 7
)

fn+1

)
,

q1 = q0 + hq′0 (8)

+h2(0.2009319137389590 fū + 0.2292411063595862 fv̄ + 0.0698269799014541 fw̄),

q′1 = q′0 + h(0.2204622111767684 fū + 0.3881934688431719 fv̄

+0.3288443199800597 fw̄ + 0.0625 f1),

qū = q0 + 0.0885879595127039hq′0
+h2(0.0053826755294719 fū + 0.0024215917832576 fv̄

+0.001564645634154 fw̄ − 0.0006018160950569 f1),

qv̄ = q0 + 0.4094668644407347hq′0
+h2(0.0695583040205626 fū + 0.0161202500910538 fv̄

−0.002478766567991 fw̄ + 0.000631768993838 f1), (9)

qw̄ = q0 + 0.7876594617608470hq′0
+h2(0.1545378137303791 fū + 0.1448580872610296 fv̄

+0.0111501356039639 fw̄ − 0.00034232274467 f1),
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q′ū = q′0 + h(0.112999479323156 fū − 0.0403092207235222 fv̄

+0.0258023774203363 fw̄ − 0.0099046765072664 f1),

q′v̄ = q′0 + h(0.2343839957474002 fū + 0.206892573935358 fv̄

−0.0478571280485407 fw̄ + 0.0160474228065162 f1), (10)

q′w̄ = q′0 + h(0.2166817846232503 fū + 0.4061232638673733 fv̄

+0.189036518170056 fw̄ − 0.024182104899832 f1),

where

u =

(
7−
√

21
)

14
, v =

1
2

, w =

(
7 +
√

21
)

14
,

ū =
1
7

(
3−
√

6 sin
(

1
3

tan−1(7)
)
−
√

2 cos
(

1
3

tan−1(7)
))
' 0.0885879595127039,

v̄ =
1
7

(
3 +
√

6 sin
(

1
3

tan−1(7)
)
−
√

2 cos
(

1
3

tan−1(7)
))
' 0.4094668644407347,

w̄ =
3
7
+

2
7

√
2 cos

(
1
3

tan−1(7)
)
' 0.7876594617608470.

To solve the SBVP in (1) subject to any of the boundary conditions in (2)–(4) using
PONM, we first select a mesh grid with step-size h. Then, we utilized the formulas
presented in (5)–(7) for n = 1(1)N− 1, in addition to those given in (8)–(10), corresponding
to the first integration step. This systematic approach enabled us to obtain a global method
that could accurately approximate the solution and complete the integration process over
the interval [0, xN ]. Through these steps, we could effectively use PONM to give numerical
solutions to the challenging nature of the given SBVPs and obtain reliable numerical results.

Convergence Analysis

Firstly, we will define the concept of convergence. We will proceed to show that the
PONM is convergent and provide a suitable matrix–vector representation for the formulas
in (5)–(7) and (8)–(10). By doing so, we can analyze the convergence of the PONM and
prove its effectiveness in approximating the solution to the considered problem. We assume
that the exact solution is sufficiently smooth, as needed.

Definition 1. Let q(x) be the exact solution of the considered problem and
{

qj
}N

j=0 the approxima-
tions provided by the PONM technique. The numerical scheme is said to be convergent of order p if,
when h→ 0, there is a constant K that is independent of h, satisfying

max
0≤j≤N

|q(xj)− qj| ≤ Khp.

Remark 1. Note that K denotes a generic positive real constant, which, in general, cannot be
estimated. This does not affect the convergence result, as, when h→ 0, we have

max
0≤j≤N

|q(xj)− qj| → 0,

no matter how big K is. This K depends, of course, on the specific problem at hand.

In the following lines, we will analyze the convergence of the proposed method for
solving the SBVP given in (1) and (2), but we could have considered any other boundary
conditions.
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Theorem 1. Let q(x) denote the exact solution of problem (1) together with the BCs given in (2),
and

{
qj
}N

j=0 represents the approximate solution obtained using the proposed scheme. Then, the
proposed method exhibits convergence of, at least, order five.

Proof. The matrix M with dimensions 8N × 8N can be defined as follows:

M =

 M1,1 M1,2 . . . M1,2N
...

...
...

M2N,1 M2N,2 . . . M2N,2N

,

where the matrix M comprises various sub-matrices, denoted as Mi,j, where most of them
have dimensions of 4× 4. However, there are two exceptions: Mi,N+1 with dimensions
4× 3, and Mi,2N with dimensions 4× 5. These sub-matrices are given as follows:

Mi,i = I, i = N + 2, . . . , 2N, I is a four-dimensional identity matrix,

MN,N =


1 0 0
0 1 0
0 0 1
0 0 0

; Mi,i−1 =


0 0 0 −1
0 0 0 −1
0 0 0 −1
0 0 0 −1

, i = N + 2, . . . , 2N;

MN+1,N+1 =


−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

;

M1,N+1 = h


−0.0885879595127039 0 0 0 0
−0.4094668644407347 0 0 0 0
−0.7876594617608471 0 0 0 0
−1.0000000000000000 0 0 0 0

;

Mi,N+i = h


0 0 0 − 1

14

(
7−
√

21
)

0 0 0 −1
2

0 0 0 − 1
14

(
7 +
√

21
)

0 0 0 −1

, i = 1 . . . , N − 1;

MN,2N = h


0 0 0 0 − 1

14

(
7−
√

21
)

0 0 0 0 −1
2

0 0 0 0 − 1
14

(
7 +
√

21
)

0 0 0 0 −1

.

The remaining sub-matrices, which were not mentioned previously, were null matrices
represented by Mi,j = O. These null sub-matrices contributed to the structure of the overall
matrix. Furthermore, we introduced another matrix called U, which had dimensions of
8N × (4N + 1). The matrix U played a role in the problem and complemented the matrix
M in the numerical computations.

U =

 U1,1 U1,2 . . . U1,N
...

...
...

U2N,1 U2N,2 . . . U2N,N

,
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where the submatrices, denoted by Ui,j, have dimensions of 4× 4, except for Ui,1, where i
ranges from 1 to 2N, which has a size of 4× 5. The explicit expressions for these submatrices
are provided below:

U1,1 = h


0 −0.005382675529 −0.002421591783 −0.001564645635 0.000601816095
0 −0.069558304020 −0.016120250091 0.002478766567 −0.000631768993
0 −0.154537813730 −0.144858087261 −0.011150135603 0.0003423227446
0 −0.200931913738 −0.229241106359 −0.069826979901 0.0000000000000

;

Ui,i = h


− 1

126
4(−31+7

√
21)

2205
−227+49

√
21

2520
1

2940

− 7(35+8
√

21)
5760 − 1

72
7(−35+8

√
21)

5760 − 1
1920

−227−49
√

21
2520 − 4(31+7

√
21)

2205 − 1
126

1
2940

− 7
360

(
7 +
√

21
)

− 8
45

7
360

(
−7 +

√
21
)

0

, i = 2 . . . , N;

Ui,i−1 = h


0 0 0 −145+21

√
21

5880
0 0 0 − 49

1920

0 0 0 −145−21
√

21
5880

0 0 0 − 1
20

, i = 3, . . . , N; U2,1 = h


0 0 0 0 −145+21

√
21

5880
0 0 0 0 − 49

1920

0 0 0 0 −145−21
√

21
5880

0 0 0 0 − 1
20

;

UN+1,1 =


0 −0.112999479323 0.040309220723 −0.025802377420 0.009904676507
0 −0.23438399574 −0.206892573935 0.047857128048 −0.016047422806
0 −0.216681784623 −0.406123263867 −0.189036518170 0.024182104899
0 −0.220462211176 −0.388193468843 −0.328844319980 −0.062500000000

;

UN+j,j =


−343+9

√
21

2520 − 8
45 + 32

35
√

21
−343+69

√
21

2520 − 3(−7+
√

21)
1960

− 7(56+15
√

21)
2880 − 8

45
7(−56+15

√
21)

2880 − 3
320

−343−69
√

21
2520 − 8(49+12

√
21)

2205
−343−9

√
21

2520
3(7+

√
21)

1960
− 49

180 − 16
45 − 49

180 − 1
20

, j = 2, . . . , N;

UN+j,j−1 =


0 0 0 −119−3

√
21

1960
0 0 0 − 13

320

0 0 0 −119+3
√

21
1960

0 0 0 − 1
20

, j = 3, . . . , N; UN+2,1 =


0 0 0 0 −119−3

√
21

1960
0 0 0 0 − 13

320

0 0 0 0 −119+3
√

21
1960

0 0 0 0 − 1
20

.

All submatrices, Ui,j, which were not mentioned earlier, are null matrices, denoted by
Ui,j = O.

We can express the vectors of exact values in the following manner:

Q8N =
(
q(xū), q(xv̄), q(xw̄), q(x1), . . . , q(xN−1+w), q′(x0), q′(xū), . . . , q′(xN)

)T ,

F4N+1 =
(

f (x0, q(x0), q′(x0)), f (xū, q(xū), q′(xū)), . . . , f (xN , q(xN), q′(xN))) .

It is important to highlight that the vector Y contains a total of 8N terms, but the
vector F contains (4N + 1) components. This is due to the fact that, as indicated in (2),
the boundary conditions specify that the values of q(x) at x0 and xN are known, with
q(x0) = qa, and q(xN) = qb. The SBVP can be discretized and approximated using the
following formulas:

M8N×8NQ8N + hU8N×(4N+1)F4N+1 + C8N = LT(h)8N . (11)
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In the above equation, the vector C8N is constructed by assembling the predetermined
values, given by

C8N = (−qa,−qa,−qa,−qa, 0, . . . , 0, qb, 0, . . . , 0)T ,

where T denotes the transpose operation. On the other hand, the vector LT(h)8N represents
the Local Truncation Errors (LTEs) associated with the formulas used in the discretization
process. These LTEs can be expressed as follows:

LT(h)8N '



2.805556× 10−6h6q(6)(x0) +O(h7)

9.161677× 10−7h6q(6)(x0) +O(h7)

−2.962403× 10−6h6q(6)(x0) +O(h7)

1.417233× 10−7h8q(8)(x0) +O(h9)

h7q(7)(x1)

1152480
√

21
+O(h8)

− h8q(8)(x1)
30965760 +O(h9)

− h7q(7)(x1)

1152480
√

21
+O(h8)

h9q(9)(x1)
177811200 +O(h10)

...
h9q(9)(xN−1)

177811200 +O(h10)

4.58527× 10−5h6q(6)(x0) +O(h7)

−4.81348× 10−5h6q(6)(x0) +O(h7)

2.60817× 10−5h6q(6)(x0) +O(h7)

−2.02462× 10−8h9q(9)(x0) +O(h10)

h7q(7)(x1)
493920 +O(h8)

− h7q(7)(x1)
322560 +O(h8)

h7q(7)(x1)
493920 +O(h8)

− h10y(10)(x1)
1422489600 +O(h11)

...

− h10q(10)(xN−1)
1422489600 +O(h11)



.

Regarding the approximate values, they are obtained from the following system of
equations:

M8N×8NQ̄8N + hU8N×(4N+1) F̄4N+1 + C8N = 0, (12)

Q̄8N being an approximation of the vector Q8N , such that:

Q̄8N =
(
qū, qv̄, qw̄, q1, . . . , qN−1+w, q′0, q′ū, . . . , q′N

)T ,

and
F̄4N+1 = ( f0, fū, fv̄, fw̄, f1, f1+u, . . . , fN)

T .

By subtracting (12) from (11), we obtain the following equation:

M8N×8N E8N + hU8N×(4N+1)(F4N+1 − F̄4N+1) = LT(h)8N , (13)

where the vector E8N denotes the errors at the discrete points, which are obtained by
subtracting Q̄8N from the vector Q8N . It is represented as a column vector containing the
errors eū, ev̄, . . . , eN−1+w, e′0, e′ū, . . . , e′N at the considered points.
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This equation characterizes the truncation errors resulting from the numerical approx-
imation process. By utilizing the Mean Value Theorem, as presented in [18], we have that,
for any suitable subindex i, there exists a value ξi such that:

f (xi, q(xi), q′(xi))− f (xi, qi, q′i) = (q(xi)− qi)
∂ f
∂q

(ξi) +
(
q′(xi)− q′i

) ∂ f
∂q′

(ξi),

where ξi represents an intermediate point lying on the line segment between (xi, q(xi), q′(xi))
and (xi, qi, q′i). This implies that:

(F− F̄)4N+1 =


∂ f
∂q (ξ0) 0 . . . 0 ∂ f

∂q′ (ξ0) 0 . . . 0

0 ∂ f
∂q (ξū) . . . 0 0 ∂ f

∂q′ (ξū) . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . ∂ f

∂q (ξN) 0 0 . . . ∂ f
∂q′ (ξN)





e0
eū
...

eN
e′0
e′ū
...

e′N


=



0 . . . 0 ∂ f
∂q′ (ξ0) . . . 0

∂ f
∂q (ξū) . . . 0 0 . . . 0

...
. . . 0

...
. . .

...
0 . . . ∂ f

∂q (ξN−1+w) 0 . . . 0

0 . . . 0 0 . . . ∂ f
∂q′ (ξN)





eū
ev̄
...

eN−1+w
e′0
e′ū
...

e′N


=

J(4N+1)×8N E8N .

It is important to note that the second equation utilizes the fact that e0 = q(x0)− qa = 0,
and eN = q(xN)− qb = 0. Taking this into account, we can reorganize the equation given
in (13) in the following manner:(

M8N×8N + hU8N×(4N+1) J(4N+1)×8N

)
E8N = LT(h)8N , (14)

and, taking D = M + hUJ, we can write

D8N×8N E8N = LT(h)8N . (15)

For sufficiently small values of h > 0, we can express Equation (15) as follows:

E = D−1(LT(h)). (16)

After expanding the components of D−1 in powers of h, it is obtained that
‖D−1‖= O(h−1). Considering that q(x) has derivatives that are bounded within the
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interval [0, xN ] up to the required order, we can derive the following inequality from (16)
and the vector LT(h):

‖E‖≤ ‖D−1‖ ‖LT(h)‖
= O(h−1)O(h6)

≤ K h5.

Therefore, the method suggested exhibits a minimum convergence order of five. This
means that the error between the exact solution and the numerical approximation decreases
at a rate of at least fifth order as the step size is reduced.

Remark 2. The above result shows a fifth order of convergence as a global method, i.e., considering
all the points, including the intermediate ones. However, taking into account the expression of the
vector of local truncation errors LT(h)8N , we see that, at the grid points (with integer index), the
method exhibits a superconvergence order (see [19]):

• |e1| = |q(x1)− q1| ≤ |O(h−1)| |O(h8)| ≤ Kh7,
• |ei| = |q(xi)− qi| ≤ |O(h−1)| |O(h9)| ≤ Kh8, i = 2, 3, . . . , N.

This behavior can be observed in the numerical experiments (see Table 1, where the calculated
rates of convergence are close to eight).

Table 1. Order of convergence for Problem (17).

h Proposed Method MAE ROC
1
4 PONM 2.4386× 10−9

1
8 PONM 1.0498× 10−11 7.8597
1
16 PONM 4.0634× 10−14 8.0132
1
32 PONM 2.2204× 10−16 7.5157

3. Implementation

To implement the PONM, we used a block global approach. We rearranged the system
in (12) as F(Q̃) = 0, the unknowns being as follows:

Q̃ =
{

qū, qv̄, qw̄, q′ū, q′v̄, q′w̄
}⋃{

qj
}

j=1(1)N−1

⋃{
q′j
}

j=0(1)N⋃{
qj+u, qj+v, qj+w, q′j+u, q′j+v, q′j+w

}
j=1(1)N−1

.

To solve the resulting nonlinear equations, we employed the Modified Newton’s
Method (MNM) due to the implicit nature of the PONM method. The MNM can be
expressed as:

Q̃i+1 = Q̃i −
(

Ji
)−1

Fi,

where J is the Jacobian matrix of F. The MNM iterations start with initial values obtained
from linear interpolation based on the boundary conditions.

We provide a comprehensive summary of how the PONM is applied to obtain numer-
ical solutions to the SBVPs:

1. Select a positive integer N and define the step size h as h = xN−x0
N to create the

partition PN . This partition consists of the points

PN = {xū, xv̄, xw̄}
⋃{

xj
}

j=0(1)N

⋃{
xj+k

}
k=u,v,w;j=1(1)N−1

.

2. Utilize the formulas given in (8)–(10) and the ones in (5)–(7), taking n = 1(1)N − 1 to
construct a system whose unknowns are those in Q̃.
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3. Combine all the equations from Step 2 within PN to form a single block matrix equation
4. Then, solve the system obtained in the previous step, in order to get an efficient and

accurate approximation of the SBVP solution on the grid and intermediate points over
[x0, xN ].

4. Computational Examples

Here, we present the computational experiments and discussions of the proposed
PONM method applied to solve singular model problems described by Equations (1) to (4).
The accuracy of the PONM is evaluated using the usual formulas:

AE = ‖q(xj)− qj‖, MAE = max
j=0,1,...,N

‖q(xj)− qj‖.

In the above formulas, absolute error (AE) measures the absolute error at each node
as the difference between the theoretical solution q(xj) and the approximate solution qj
obtained from the PONM. Maximum absolute error (MAE) is used to indicate the largest
deviation between the theoretical and approximate solutions obtained using the PONM
over the considered interval. These formulas are useful in determining the accuracy of the
PONM in approximating the solutions of the singular model problems.

4.1. Numerical Example 1

Consider the following physical model SBVP problem of the isothermal gas sphere
equilibrium, as described in [20]:

q′′(x) +
2
x

q′(x) + q(x)5 = 0, q(0) = 0, q′(1) =

√
3
4

, (17)

with analytical solution q(x) =
√

3
3+x2 .

The rate of convergence (ROC) of the proposed PONM is presented in Table 1 using
the formula ROC = − log2

(
MAEh
MAE2h

)
. Table 2 compares the absolute error (AE) of the

methods presented in [20–22] with the proposed method, using h = 1
10 . The results in

Table 2 demonstrate that the proposed PONM is more accurate than the methods proposed
in [20–22]. Furthermore, Figure 1 is produced using h = 1

16 , showing good agreement
between the numerical and exact solutions.

Table 2. Comparison of AE for Example (17).

x PONM Method in [21] Method in [20] Method in [22]

0 1.50857× 10−12 1.65000× 10−6 6.32000× 10−4 6.52000× 10−6

0.1 1.75970× 10−12 6.63000× 10−6 6.27000× 10−4 6.46000× 10−6

0.2 9.21152× 10−13 1.59000× 10−6 6.11000× 10−4 6.30000× 10−6

0.3 6.06404× 10−13 1.53000× 10−6 5.86000× 10−4 6.05000× 10−6

0.4 4.24327× 10−13 1.44000× 10−6 5.28000× 10−4 5.70000× 10−6

0.5 2.99538× 10−13 1.34000× 10−6 5.09000× 10−4 5.30000× 10−6

0.6 2.06835× 10−13 1.22000× 10−6 4.53000× 10−4 4.84000× 10−6

0.7 1.35669× 10−13 1.10000× 10−6 3.82000× 10−4 4.33000× 10−6

0.8 7.99361× 10−14 9.58000× 10−7 2.88000× 10−4 3.86000× 10−6

0.9 3.57492× 10−14 7.30000× 10−7 1.64000× 10−4 3.24000× 10−6

1.0 0.00000 1.89000× 10−14 0.00000 1.45000× 10−13
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0.88

0.90
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0.96

0.98

1.00

x

q
(x
)

Figure 1. Plots of exact (blue line) and PONM solution (dots) for Problem (17).

4.2. Numerical Example 2

Consider the following model SBVP [23]:

q′′(x) +
2
x

q′(x)− φ2q(x)n = 0, q(1) = 1, q′(0) = 0 , x ∈ [0, 1]. (18)

Although the general exact solution for (18) is not known, the solution for n = 1 can
be expressed as q(x) = sinh(xφ)

x sinh(φ) , where φ represents the Thiele modulus. The value of φ

is determined by the ratio of the reaction rate at the catalyst surface to the diffusion rate
through the catalyst pores.

In Table 3, the Absolute Error (AE) of the Nyström method (NM) presented in [23] is
compared with the proposed method using h = 1

10 , n = 1, and φ = 5. The results in Table 3
indicate that the proposed PONM is more accurate than the NM method proposed in [23].
Additionally, Figure 2 is generated using h = 1

20 , n = 1, and φ = 2, demonstrating good
agreement between the numerical solution and the exact solution.

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

x

q
(x
)

Figure 2. Plots of exact (blue line) and PONM solution (dots) for Example (18).
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Table 3. Comparison of AE for Problem (18).

x AE with NM AE with PONM

0.1 1.87474× 10−9 5.37389× 10−11

0.2 9.16894× 10−10 1.74590× 10−11

0.3 1.91515× 10−9 8.02497× 10−12

0.4 2.61712× 10−9 4.47804× 10−12

0.5 3.29006× 10−9 2.85583× 10−12

0.6 3.95964× 10−9 1.94503× 10−12

0.7 4.50469× 10−9 1.28325× 10−12

0.8 4.59898× 10−9 6.94778× 10−13

0.9 3.55123× 10−9 1.87517× 10−13

1 0.00000 0.00000

4.3. Numerical Example 3

Consider the SBVP for the thermal explosion in a cylindrical vessel presented in [24]:

q′′(x) +
1
x

q′(x)− eq(x) = 0, q(0) = 0, q′(1) = 0. (19)

The exact solution of this problem is q(x) = 2 log
(

2
√

6+1−5
(2
√

6−5)x2+1

)
.

We solve Problem (19) numerically using the new PONM for various stepsize (h)
values. The summarized numerical results and the comparisons of MAE between PONM
and the method in [24] are presented in Table 4. It is worth noting that the PONM performs
better than the technique in [24]. Additionally, Figure 3 is obtained using h = 1

8 , and it
demonstrates a good agreement between the numerical and exact solutions.

Table 4. Comparison of MAE for Example (19).

h Methods MAE
1
8 PONM 1.51282× 10−11

1
8 Method in [24] 8.53810× 10−10

1
16 PONM 2.33730× 10−13

1
16 Method in [24] 2.19100× 10−11

1
32 PONM 2.58127× 10−15

1
32 Method in [24] 3.92400× 10−13

0.0 0.2 0.4 0.6 0.8 1.0

-0.20

-0.15

-0.10

-0.05

0.00

x

q
(x
)

Figure 3. Plots of exact (blue line) and PONM solution (dots) for Example (17).
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4.4. Numerical Example 4

Consider the SBVP for the thermal explosion arising in chemistry and chemical kinetics
presented in [25] and the following physical model describing it:

q′′(x) +
λ

x
q′(x) = φ2q(x) exp

(
sr(1− q(x))

1 + c(1− q(x))

)
, q(0) = 0, q′(1) = 0. (20)

The true solution of this SBVP is not available.
Problem (20) is solved using the PONM method for φ = r = s = c = 1. The numerical

results obtained by PONM, the spline method (SM), and the Adomian decomposition
method (ADM) in [25,26] are presented in Table 5. It is evident from Table 4 that the PONM
method outperforms the other methods significantly.

Table 5. Comparison of numerical solutions for Example (20).

x PONM, h = 1
10 SM in [26], h = 1

10 ADM in [25], h = 1
50

0.1 0.8383648968813362 0.838364878696000 0.83836491959750
0.2 0.8431842515033859 0.843184233589000 0.84318428772800
0.3 0.8512302074809177 0.851230190133000 0.85123026453741
0.4 0.8625224114670785 0.862522394979000 0.86252249405263
0.5 0.8770865272385724 0.877086511985000 0.87708663616863
0.6 0.8949523006665648 0.894952287104000 0.89495243141739
0.7 0.9161509382762109 0.916150926969000 0.91615107927542
0.8 0.9407117001190575 0.940711691749000 0.94071183074544
0.9 0.9686575885214240 0.968657583887000 0.96865767679753
1.0 1.0000000000000000 1.0000000000000000 1.000000000000000

4.5. Numerical Example 5

Consider the following SBVP:

q′′(x) +
0.5
x

q′(x) + e2q(x) − 0.5eq(x) = 0, q(0) = log(2), q(1) = 0. (21)

The exact solution of this problem is q(x) = log
(

2
x2+1

)
.

The new PONM was used to solve Problem (21) numerically for different values of
the stepsize (h). Table 4 presents the numerical results and compares PONM with [14] in
terms of MAE. It is evident that PONM provides better accuracy than the method in [14].

5. Conclusions

The paper proposed a Pair of Optimized Nyström Methods (PONM) to solve the SBVP
of the Lane–Emden type, which is expressed in (1)–(4). The primary aim of this approach is
to provide more accurate approximate solutions to some physical model SBVP problems.
The numerical solutions obtained from the proposed PONM method are presented in
Tables 2–6 and Figures 2 and 3. These results demonstrate that the proposed PONM
method performs better than various existing numerical techniques used for comparison.
Hence, it can be concluded that the PONM method proposed in this study is an efficient
numerical method to solve SBVPs of the Lane–Emden type and other similar problems in
diverse fields of science and engineering.
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Table 6. Comparison of MAE for Example (21).

h Methods MAE
1
8 PONM 3.38905× 10−10

1
8 Method in [14] 5.62700× 10−5

1
16 PONM 1.55342× 10−12

1
16 Method in [14] 1.45823× 10−7

1
32 PONM 6.21724× 10−15

1
32 Method in [14] 1.37249× 10−9
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