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Abstract: In this study, we present a novel family of holomorphic and bi-univalent functions, de-
noted as EΩ(η, ε;z). We establish the coefficient bounds for this family by utilizing the generalized
telephone numbers. Additionally, we solve the Fekete–Szegö functional for functions that belong to
this family within the open unit disk. Moreover, our results have several consequences.
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1. Introduction

Consider the class of functions denoted by A, which is represented in the following
form:

f (i) = i+
∞

∑
n=2

anin, (1)

The functions in class A are holomorphic in the open unit disk ∆ = {i : |i| < 1}.
Furthermore, N denotes the set of all functions in A that are univalent in ∆. Each function
f in the set N has an inverse denoted as f−1, which is defined by

f−1( f (i)) = i (i ∈ ∆)

and f applied to the inverse of f for input w yields w, subject to the condition that the
absolute value of w is less than the radius r0( f ), where r0( f ) is greater than or equal to 1/4.

The inverse of function f applied to input w can be expressed as a series expansion
starting with the term w, and subsequently involving terms like −a2w2, (2a2

2 − a3)w3,
−(5a3

2 − 5a2a3 + a4)w4, and so on.
A function f is considered to be in the class Ω, or the class of bi-univalent functions

in the unit disk ∆ if both f (z) and its inverse f−1(z) are univalent in ∆. Lewin (2011)
showed that for every function in Ω described by Equation (1), the absolute value of a2 is
less than 1.51. Brannan and Clunie (12) further refined Lewin’s findings by proposing the
hypothesis that |a2| ≤

√
2. Netanyahu later proved that the maximum absolute value of

a2 is 4
3 , where f belongs to the set Ω [1]. The problem of estimating the coefficient |an| for

n ∈ {4, 5, 6, · · · } remains unresolved (see [2] for more information). Several researchers
have investigated different subfamilies of Ω and obtained estimates for the Maclaurin
coefficients |a2| and |a3| (see [3–6]). Extensive research has been dedicated to the Fekete–
Szegö functional, represented as

∣∣a3 − κa2
2

∣∣, within the domain of geometric function theory.
Its historical significance holds broad recognition. The origins of its development can
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be traced back to Fekete and Szegö, who employed it to refute the Littlewood–Paley
conjecture [7]. Numerous scholars have identified Fekete–Szegö inequalities applicable
to diverse function families. Currently, there exists substantial interest among geometric
function theory researchers (refer to citations [8–29]).

Consider the two holomorphic functions g and h defined within the open unit disk
∆. We say that g is subordinated to h if there is a holomorphic function w in the same unit
disk ∆ such that |w(z)| < 1, w(0) = 0, and the relationship g(i) = h(w(i)) holds.

Moreover, for a function h that is univalent in the unit disk ∆, the inequality g(i) ≺
h(i) holds if and only if g(0) = h(0) and the image of g under the same mapping is
contained within the image of h, i.e., g(∆) ⊂ h(∆).

The recurrence relation quantifies standard telephone numbers

T(k) = T(k− 1) + (k− 1)T(k− 2) k ≥ 2,

with initial conditions
T(0) = 1 = T(1).

For non-negative integers ι ≥ 0 and k ≥ 1, Wloch and Wolowiec-Musial [30] intro-
duced a series of numbers called generalized telephone numbers T(ι,k), which are defined
using a recurrence relation:

T(ι,k) = ιT(ι,k− 1) + (k− 1)T(ι,k− 2),

with initial conditions
T(ι, 0) = 1 and T(ι, 1) = ι.

In a recent study, Bednarz and Wolowiec-Musial [31] explored an approach to gener-
alize telephone numbers in an accessible manner, considering a new perspective on the
concept:

Tι(k) = Tι(k− 1) + ι(k− 1)Tι(k− 2),

where k ≥ 2 and ι ≥ 1 with initial conditions

Tι(0) = Tι(1) = 1.

In a recent investigation, Deniz [32] studied the exponential generating function for
T(ι,k) in the following manner:

e(r+ι r
2 ) =

∞

∑
k=0

Tι(k) rk

k!
.

Clearly, when ι = 1, we have Tι(k) ≡ T(k) classical telephone numbers.
Here, with the domain of the open unit disk ∆, we define the function

z(i) = e
(
i+ι i

2
2

)
= 1 +i+

1
2
i2 +

1 + ι

6
i3 +

1 + 3ι

24
i4 + · · · . (2)

The function z(i) is holomorphic in the domain ∆. It has the properties z(0) = 1,
z′(0) > 0, and it maps ∆ onto a star-like region centered at 1 and symmetric with respect
to the real axis.

Lemma 1 ([33]). Let the function sj ∈ P have the form

s(i) = 1 + s1i+ s2i2 + s3i3 + · · · (i ∈ ∆),

then
∣∣sj
∣∣ ≤ 2, j ∈ N.
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This paper aims to introduce the family of bi-univalent functions, denoted as EΩ(τ, ε;z),
and derive upper bounds for the Maclaurin coefficients |a2| and |a3|. We also discuss the
Fekete–Szegö inequality for this family.

2. The Main Results of Function Class EΩ(τ, ε;z)

We now present the subsequent subfamilies of holomorphic functions.

Definition 1. A function f (i) ∈ Ω is allegedly in the class EΩ(τ, ε;z) if it fulfills the following
two subordinations:

(1− τ)
f (i)
i + τ( f (i))′ + εi( f (i))′′ ≺ z(i) =: e

(
i+ι i

2
2

)

and

(1− τ)
h(w)

w
+ τ(h(w))′ + εw(h(w))′′ ≺ z(w) =: e

(
w+ι w2

2

)

where τ ≥ 1, ε ≥ 0, z, w ∈ ∆ and h = f−1.

For τ = 1, the family EΩ(τ, ε;z) reduces to the subsequent subfamily.

Definition 2. A function f (i) ∈ Ω is allegedly in the subclass EΩ(1, ε;z) iff

( f (i))′ + εi( f (i))′′ ≺ z(i) =: e
(
i+ι i

2
2

)

and

(h(w))′ + εw(h(w))′′ ≺ z(w) =: e
(

w+ι w2
2

)
where z, w in ∆ and h = f−1.

For ε = 0, the family EΩ(τ, ε;z) reduces to the subsequent subfamily.

Definition 3. A function f (i) ∈ Ω is allegedly in the subclass EΩ(τ, 0;z) iff

(1− τ)
f (i)
i + τ( f (i))′ ≺ z(i) =: e

(
i+ι i

2
2

)

and

(1− τ)
h(w)

w
+ τ(h(w))′ ≺ z(w) =: e

(
w+ι w2

2

)

where z, w in ∆ and h = f−1.

For ε = 0, the family EΩ(1, ε;z) reduces to the subsequent subfamily.

Definition 4. A function f (i) ∈ Ω is allegedly in the subclass EΩ(1, 0;z) iff

( f (i))′ ≺ z(i) =: e
(
i+ι i

2
2

)

and

(h(w))′ ≺ z(w) =: e
(

w+ι w2
2

)
where z, w in ∆ and h = f−1.

Estimates for the coefficients |a2| and |a3| for functions in the family EΩ(τ, ε;z) are
provided in the subsequent theorem.
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Theorem 1. If the function f (z) defined by Equation (1) lies within the family denoted as
EΩ(τ, ε;z), then

|a2| ≤ min

{
1

2ε + τ + 1
,

2√
|2(6ε + 2τ + 1) + (1− ι)(2ε + τ + 1)2|

}
(3)

and

|a3| ≤ min
{

ι + 3
2(6ε + 2τ + 1)

,
1

6ε + 2τ + 1
+

1
(2ε + τ + 1)2

}
. (4)

Proof. Suppose f (i) belongs to the family EΩ(τ, ε;z), and let h = f−1. Then, there exist
the two holomorphic functions ψ and ϑ, mapping from the open unit disk ∆ to itself, with
the initial conditions ψ(0) = ϑ(0) = 0. Additionally, these functions satisfy the following
requirements:

(1− τ)
f (i)
i + τ( f (i))′ + εi( f (i))′′ = z(ψ(i)), i ∈ ∆ (5)

and

(1− τ)
h(w)

w
+ τ(h(w))′ + εw(h(w))′′ = z(ϑ(w)), w ∈ ∆. (6)

We define the functions s and t by

s(i) = 1 + ψ(i)
1− ψ(i) = 1 + s1i+ s2i2 + · · ·

and

t(i) = 1 + ϑ(i)
1− ϑ(i) = 1 + t1i+ t2i2 + · · · .

Then the functions s and t are holomorphic in ∆ with s(0) = t(0) = 1. Since we have
ψ, ϑ : ∆→∆, each of s and t has a positive real part in ∆.

For ψ and ϑ, we have

ψ(i) = s(i)− 1
s(i) + 1

=
1
2

[
s1i+

(
s2 −

s2
1
2

)
i2

]
+ · · · (i ∈ ∆) (7)

and

ϑ(i) = t(i)− 1
t(i) + 1

=
1
2

[
t1i+

(
t2 −

t2
1
2

)
i2

]
+ · · · (i ∈ ∆). (8)

Substituting (7) and (8) into (5) and (6) and applying (2), we have

(1− τ)
f (i)
i + τ( f (i))′ + εi( f (i))′′

= z(ψ(i)) =: e

(
s(i)−1
s(i)+1+

ι
2

(
s(i)−1
s(i)+1

)2
)

(9)

= 1 +
1
2

s1i+

(
s2

2
+

(ι− 1)s2
1

8

)
i2 + · · ·
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and

(1− τ)
h(w)

w
+ τ(h(w))′ + εw(h(w))′′

= z(ϑ(w)) =: e

(
t(w)−1
t(w)+1+

ι
2

(
t(w)−1
t(w)+1

)2
)

(10)

= 1 +
1
2

t1w +

(
t2

2
+

(ι− 1)t2
1

8

)
w2 + · · · .

From (9) and (10), we obtain

(2ε + τ + 1)a2 =
s1

2
, (11)

(6ε + 2τ + 1)a3 =
s2

2
+

(ι− 1)s2
1

8
, (12)

−(2ε + τ + 1)a2 =
t1

2
, (13)

and

(6ε + 2τ + 1)(2a2
2 − a3) =

t2

2
+

(ι− 1)t2
1

8
. (14)

From (11) and (13), we obtain
s1 = −t1 (15)

and
2(2ε + τ + 1)2a2

2 =
1
4
(s2

1 + t2
1). (16)

By adding (12) with (14), we have

2(6ε + 2τ + 1)a2
2 =

1
2
(s2 + t2) +

(ι− 1)
8

(s2
1 + t2

1). (17)

Substituting the value of s2
1 + t2

1 from (16) in (17), we find that

a2
2 =

s2 + t2

2(6ε + 2τ + 1) + (1− ι)(2ε + τ + 1)2 . (18)

Then, applying Lemma 1 for (16) and (18), we obtain

|a2| ≤
1

2ε + τ + 1
, |a2| ≤

2√
|2(6ε + 2τ + 1) + (1− ι)(2ε + τ + 1)2|

which provides estimates for the coefficient |a2|.
Next, to find the bound on |a3|, we subtract (14) from (12), and then applying (15), we

obtain s2
1 = t2

1, hence

2(6ε + 2τ + 1)
(

a3 − a2
2

)
=

1
2
(s2 − t2), (19)

then by substituting the value of a2
2 from (16) into (19), we have

a3 =
s2 − t2

4(6ε + 2τ + 1)
+

s2
1 + t2

1
8(2ε + τ + 1)2 .

So, we have

|a3| ≤
1

6ε + 2τ + 1
+

1
(2ε + τ + 1)2 .
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Also, substituting the value of a2
2 from (17) into (19), we have

a3 =
(s2 − t2) + (s2 + t2) +

1
4 (ι− 1)

(
s2

1 + t2
1
)

4(6ε + 2τ + 1)
.

So, we have

|a3| ≤
ι + 3

2(6ε + 2τ + 1)

which provides estimates for the coefficient |a3|.

By taking τ = 1 in Theorem 1, we have

Corollary 1. If f (z) is given by (1) and in the subfamily EΩ(1, ε;z), then

|a2| ≤ min

{
1

2ε + 2
,

2√
|2(6ε + 3) + (1− ι)(2ε + 2)2|

}

and

|a3| ≤ min
{

ι + 3
2(6ε + 3)

,
1

6ε + 3
+

1
(2ε + 2)2

}
.

Putting ε = 0 in Theorem 1, we have the following.

Corollary 2. If f (i) is given by (1) and in the subfamily EΩ(τ, 0;z), then

|a2| ≤ min

{
1

τ + 1
,

2√
|2(2τ + 1) + (1− ι)(τ + 1)2|

}

and

|a3| ≤ min
{

ι + 3
2(2τ + 1)

,
1

2τ + 1
+

1
(τ + 1)2

}
.

Putting ε = 0 in Corollary 1, we have the following.

Corollary 3. If f (i) given by (1) and in the subfamily EΩ(1, 0;z),

|a2| ≤ min

{
1
2

,
2√

|10− 4ι|

}

and

|a3| ≤ min
{

ι + 3
6

,
7
12

}
.

Now, we provide the Fekete–Szegö functional
∣∣a3 − κa2

2

∣∣ for f ∈ EΩ(τ, ε;z).

Theorem 2. Let f (i) be given by (1) and in the family EΩ(τ, ε;z). Then

∣∣∣a3 − κa2
2

∣∣∣ ≤


1
6ε+2τ+1 for 0 ≤ |κ − 1| ≤ 2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2

4(6ε+2τ+1) ,

4|κ−1|
|2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2| for |κ − 1| ≥ 2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2

4(6ε+2τ+1) .
.
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Proof. From (18) and (19), it follows that

a3 − κa2
2 =

s2 − t2

4(6ε + 2τ + 1)
+ (1− κ)a2

2

=
s2 − t2

4(6ε + 2τ + 1)
+

(1− κ)(s2 + t2)

2(6ε + 2τ + 1) + (1− ι)(2ε + τ + 1)2

=

[
1− κ

2(6ε + 2τ + 1) + (1− ι)(2ε + τ + 1)2 +
1

4(6ε + 2τ + 1)

]
s2

+

[
1− κ

2(6ε + 2τ + 1) + (1− ι)(2ε + τ + 1)2 −
1

4(6ε + 2τ + 1)

]
t2.

According to Lemma 1, we obtain

∣∣∣a3 − κa2
2

∣∣∣ ≤


1
6ε+2τ+1 for 0 ≤

∣∣∣ 1−κ
2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2

∣∣∣ ≤ 1
4(6ε+2τ+1) ,

4|κ−1|
|2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2| for

∣∣∣ 1−κ
2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2

∣∣∣ ≥ 1
4(6ε+2τ+1) .

Finally, after some computations, we have

∣∣∣a3 − κa2
2

∣∣∣ ≤


1
6ε+2τ+1 for 0 ≤ |κ − 1| ≤ 2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2

4(6ε+2τ+1) ,

4|κ−1|
|2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2| for |κ − 1| ≥ 2(6ε+2τ+1)+(1−ι)(2ε+τ+1)2

4(6ε+2τ+1) .

By taking τ = 1 in Theorem 2, we have

Corollary 4. Let f (i) be given by (1) and in the subfamily EΩ(1, ε;z). Then

∣∣∣a3 − κa2
2

∣∣∣ ≤


1
3(2ε+1) for 0 ≤ |κ − 1| ≤ 3(2ε+1)+2(1−ι)(ε+1)2

6(2ε+1) ,

2|κ−1|
|3(2ε+1)+2(1−ι)(ε+1)2| for |κ − 1| ≥ 3(2ε+1)+2(1−ι)(ε+1)2

6(2ε+1) .
.

Putting ε = 0 in Theorem 2, we have

Corollary 5. Let f (i) given by (1) and in the subfamily EΩ(τ, 0;z). Then

∣∣∣a3 − κa2
2

∣∣∣ ≤


1
2τ+1 for 0 ≤ |κ − 1| ≤ 2(2τ+1)+(1−ι)(τ+1)2

4(2τ+1) ,

4|κ−1|
|2(2τ+1)+(1−ι)(τ+1)2| for |κ − 1| ≥ 2(2τ+1)+(1−ι)(τ+1)2

4(2τ+1) .
.

Putting ε = 0 in Corollary 4, we have the following.

Corollary 6. Let f (i) be given by (1) and in the subfamily EΩ(1, ε;z). Then

∣∣∣a3 − κa2
2

∣∣∣ ≤


1
3 for 0 ≤ |κ − 1| ≤ 5−2ι

6 ,

2|κ−1|
|5−2ι| for |κ − 1| ≥ 5−2ι

6 .
.
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3. Conclusions

In this research, we introduced a novel category of normalized holomorphic and
bi-univalent functions, which we denoted as EΩ(τ, ε;z). We derived estimations for the
magnitudes of the coefficients |a2| and |a3| in the Taylor0-Maclaurin series, along with
tackling Fekete–Szegö functional problems.

Furthermore, by appropriately configuring the parameters τ and ε, one can determine
the outcomes for the specific subclasses EΩ(1, ε;z), EΩ(τ, 0;z), and EΩ(1, 0;z) as defined
in Definitions (2), (3), and (4), respectively. Employing these classes of holomorphic and
bi-univalent functions could serve as an inspiration for researchers seeking to establish
estimates for the Taylor–Maclaurin coefficients |a2| and |a3| and delve into Fekete–Szegö
functional problems for functions belonging to newly defined subclasses of bi-univalent
functions, which are defined based on the telephone number associated with this distribu-
tion series.
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