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Abstract: The study of symmetry is a fascinating and unifying subject that connects various areas of
mathematics in the twenty-first century. Algebraic structures offer a framework for comprehending
the symmetries of geometric objects in pure mathematics. This paper introduces new concepts in
algebraic structures, concentrating on semimodules over semirings and analysing the neutrosophic
structure in this context. We explore the properties of neutrosophic subsemimodules and neutrosophic
ideals after defining them. We discuss, utilizing neutrosophic products, the representations of
neutrosophic ideals and subsemimodules, as well as the relationship between neutrosophic products
and intersections. Finally, we derive equivalent criteria in terms of neutrosophic structures for a
semiring to be fully idempotent.
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1. Introduction

The exploration of symmetry is a foundational and captivating topic that unites
various disciplines in contemporary mathematics. Algebraic structures provide valuable
tools in pure mathematics for understanding the symmetries of geometric objects. For
instance, in ring theory, homomorphisms are essential functions that preserve the ring
operation. These functions are crucial for studying the symmetries within the context of
ring theory. Additionally, the theory of groups, another significant algebraic structure,
offers a comprehensive framework for exploring symmetry. Using group theory, various
types of symmetries can be examined and analysed. As a result, group theory has become
widely employed as an algebraic tool for understanding and characterizing symmetries
in diverse contexts. Semirings play an important role in computer science as well as in
mathematics. It is advantageous to characterise a ring’s properties using modules over
the ring. Consequently, semimodules over semirings are common as a generalisation of
modules over rings (see [1–4]).

In 1965, Zadeh [5] pioneered the notion of fuzzy sets and their characteristics; since
then, a wide range of fields involving uncertainty have made extensive use of fuzzy sets
and fuzzy logic, including robotics, machine learning, computer engineering, control theory,
business administration, and operational science. However, it has been noted that some
situations are still not covered by fuzzy sets, so the idea of interval-valued fuzzy sets was
developed in order to capture those situations. While fuzzy set theory is incredibly effective
at managing uncertainties resulting from an element’s vagueness within a set, it is unable
to capture all types of uncertainties found in various real-world physical problems, such as
those involving incomplete information.
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In [6], Altassan et al. defined the concept of a ω-fuzzy set, ω-fuzzy subring, and ω-
fuzzy ideal, where they also looked into various fundamental outcomes of this phenomenon.
Furthermore, they developed a quotient ring with respect to this specific fuzzy ideal
analogue to the classical quotient ring and proposed the idea of a ω-fuzzy coset. They also
established a ω-fuzzy homomorphism between a ω-fuzzy subring of the quotient ring and
a ω-fuzzy subring of this ring, and they proved some additional basic theorems of ω-fuzzy
homomorphism for these particular fuzzy subrings. Additionally, they described ω-fuzzy
homomorphism and ω-fuzzy isomorphism. Numerous authors have investigated fuzzy
logic in a number of different structures (see [7–9]).

In [10], Atanassov created intuitionistic fuzzy sets (IFS), a further generalisation of the
fuzzy set. Each element in IFS has a non-membership grade attached to it in addition to
a membership grade. Additionally, the total of these two grades cannot be greater than
or equal to unity. When there is insufficient data available to define imprecision using
traditional fuzzy sets, the idea of IFS can be seen as a suitable or alternative approach.

To address the ubiquitous uncertainty, Smarandache [11] proposed neutrosophic
sets. In addition to fuzzy sets, they also generalise intuitionistic fuzzy sets. The three
characteristics of neutrosophic sets are truth(T) membership functions, falsity(F), and
indeterminacy(I). These sets can be used to address the complexities brought about by
ambiguous information in a wide range of applications. A neutrosophic set can distinguish
between absolute and relative membership functions. Smarandache used these sets for
non-traditional analyses such as control theory, decision-making theory, sports decisions
(winning/defeating/tie), etc.

In [12], Khan et al. investigated several characteristics of the ε-neutrosophic N-
subsemigroup as well as the neutrosophic N-subsemigroup in a semigroup. In [13], B.
Elavarasan et al. investigated various properties of neutrosophic N-ideals in semigroups.
In [14], Muhiuddin et al. defined neutrosophic N-ideals and neutrosophic N-interior ideals
in ordered semigroups and studied their properties. They also used neutrosophic N-ideals
and neutrosophic N-interior ideals to describe ordered semigroups.

In [15], Karaaslan obtained some information pertaining to the determinant and adjoint
of the interval-valued neutrosophic matrices by defining the determinant and adjoint of
interval-valued neutrosophic (IVN) matrices based on the permanent function. In [16], Jun
et al. introduced the notion of neutrosophic quadruple BCK/BCI-numbers and studied
neutrosophic quadruple BCK/BCI-algebras. In [17], Muhiuddin et al. continued this work
by coming up with the idea of implicative neutrosophic quadruple BCK-algebras and
looking into some of their properties. In [18], Nagarajan et al. described a way to find
the correlation coefficient of neutrosophic sets, which tells us how strong the connections
are between variables based on neutrosophic sets. They also talked about the multiple
regression method in the context of neutrosophic sets.

In this paper, we investigate neutrosophic structures in semiring modules, the con-
cept of neutrosophic N-subsemimodules, and neutrosophic N-ideals over semirings, and
establish their various properties. In addition, we investigate the concept of neutrosophic
right t-pure ideals in semirings and the relations between neutrosophic t-pure ideals and
neutrosophic N-submodules in semirings. Moreover, we obtain equivalent statements for a
semiring that is fully idempotent.

2. Preliminary Definitions of Semirings

In this section, we summarize the preliminary definitions of semirings that are required
later in this paper.

Definition 1 ([1]). LetR( 6= ∅), “ + ” and “ · ” be two binary operations defined onR. ThenR
is called a semiring if it satisfies the below requirements:

(i) (R,+) and (R, ·) are commutative semigroups with identity elements 0 and 1( 6= 0),
respectively.
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(ii) j1 · (y1 + d1) = j1 · y1 + j1 · d1 and (j1 + y1) · d1 = j1 · d1 + y1 · d1, ∀j1, y1, d1 ∈ R.
(iii) ∀d1 ∈ R, 0 · d1 = d1 · 0 = 0.

Obviously, a ring is a semiring, where each element has an additive inverse. A module
over a ring is a vector space over a field generalisation where the corresponding scalars are
components of a ring that were selected at random (with identity) and the elements of the
modules and rings are multiplied (on the right and/or on the left).

Definition 2 ([1]). Let (R,+, ·) be a semiring. A non-empty set O is called a rightR-semimodule
overR if the following are satisfied:

(i) (O,+) is a commutative semigroup with an identity element 0, For any m1, m2 ∈ O and
u1, u2 ∈ R,

(ii) m1 · u1 ∈ O,
(iii) (m1 + m2) · u1 = m1 · u1 + m2 · u1,
(iv) m1 · (u1 + u2) = m1 · u1 + m1 · u2,
(v) m1 · (u1 · u2) = (m1 · u1) · u2,
(vi) m1 · 1 = m1,
(vii) 0 · u1 = m1 · 0 = 0.

It is denoted by OR.

A leftR-semimodule RO can be defined in a similar manner. It is obvious that each
semiringR is a right (left)R semimodule over itself.

Hereafter, a semiring can be represented byR, O denotes a rightR-semimodule over
R, and the power set of a set B can be expressed as P(B).

Definition 3 ([1]). Let O be a right R-semimodule and C ∈ P(O). Then C is termed as a
subsemimodule of O if s0 + z0 ∈ C and s0l0 ∈ C ∀s0, z0 ∈ C and l0 ∈ R.

Naturally, C has evolved into its ownR-module, with the same addition and scalar
multiplication as O. Clearly, a ring is a semiring, so a left module over a ring R is a left
semimodule overR.

Definition 4. Let C ∈P(R). If C ofRR( RR) is a subsemimodule, then C is termed as a right
(left) ideal ofR.

If C ofR is both a right and a left ideal, then it is described as an ideal ofR.

Definition 5. If b1 ∈ R satisfies b1 + b1 = b1, it is known as an additive idempotent.
If each element b1 ofR satisfies b1 + b1 = b1, thenR is described as an idempotent semiring.

3. Preliminary Definitions and Results of Neutrosophic N-Structure

This portions outlines the basic ideas of neutrosophic N-structures of O, which are
essential for the sequel.

A set Q( 6= ∅), F (Q, I−) is the family of functions with negative values from a set Q
to I−. An element k1 ∈ F (Q, I−) is known as a N-function on Q and N-structure denotes
(Q, k1) of X, where I− = [−1, 0].

Definition 6 ([12]). For a set Q( 6= ∅), a neutrosophic N- structure of Q is described as below:

QM := Q
(TM ,IM ,FM)

=
{

v0
(TM(v0),IM(v0),FM(v0))

: v0 ∈ Q
}

,

where TM means the negative truth membership function on Q, IM means the negative inde-
terminacy membership function on Q, and FM means the negative falsity membership function
on Q.

Remark 1. QM satisfies the requirement −3 ≤ TM(b1) + IM(b1) + FM(b1) ≤ 0 ∀b1 ∈ Q.
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Definition 7 ([12]). Let Q( 6= ∅). For any QJ := Q
(TJ ,IJ ,FJ)

and QM := Q
(TM ,IM ,FM)

,
(i) QM is defined as a neutrosophic N-substructure of QJ , represented by QJ ⊆ QM, if it fulfils

the below criteria: for any z0 ∈ Q,

TJ(z0) ≥ TM(z0), IJ(z0) ≤ IM(z0), FJ(z0) ≥ FM(z0).

If QJ ⊆ QM and QM ⊆ QJ , then QJ = QM.
(ii) The intersection and union of QJ and QM are neutrosophic N-structures over Q and are

defined as follows:
(a) QJ ∩QM = QJ∩M = (Q; TJ∩M, IJ∩M,FJ∩M), where

(TJ ∩ TM)(h0) =TJ∩M(h0) = TJ(h0) ∨ TM(h0),

(IJ ∩ IM)(h0) =IJ∩M(h0) = IJ(h0) ∧ IM(h0),

(FJ ∩ FM)(h0) =FJ∩M(h0) = FJ(h0) ∨ FM(h0) f or any h0 ∈ Q.

(b) QJ ∪QM = QJ∪M = (Q; TJ∪M, IJ∪M,FJ∪M), where

(TJ ∪ TM)(y0) =TJ∪M(y0) = TJ(y0) ∧ TM(y0),

(IJ ∪ IM)(y0) =IJ∪M(y0) = IJ(y0) ∨ IM(y0),

(FJ ∪ FM)(y0) =FJ∪M(y0) = FJ(y0) ∧ FM(y0) f or any y0 ∈ Q.

Definition 8. For V ⊆ Q 6= ∅, consider the neutrosophic N-structure

χV(QD) := Q
(χV(T)D ,χV(I)D ,χV(F)D)

,

where, for any r0 ∈ Q,

χV(T)D : Q→ I−, r0 →
{
−1 i f r0 ∈ V
0 i f r0 /∈ V,

χV(I)D : Q→ I−, r0 →
{

0 i f r0 ∈ V
−1 i f r0 /∈ V,

χV(F)D : Q→ I−, r0 →
{
−1 i f r0 ∈ V
0 i f r0 /∈ V,

which is described as the characteristic neutrosophic N-structure of V over Q.

Definition 9 ([12]). For a nonempty set Q, let QN := Q
(TN ,IN ,FN)

and ϑ, ϕ, ν ∈ I− with −3 ≤
ϑ + ϕ + ν ≤ 0. Consider the following sets:

Tϑ
N = {c1 ∈ Q | TN(c1) ≤ ϑ}, Iϕ

N = {c1 ∈ Q | IN(c1) ≥ ϕ}, Fν
N = {c1 ∈ Q|FN(c1) ≤ ν}.

Then the set QN(ϑ, ϕ, ν) = {c1 ∈ Q|TN(c1) ≤ ϑ, IN(c1) ≥ ϕ, FN(c1) ≤ ν} is known as a
(ϑ, ϕ, ν)-level set of QN . Note that QN(ϑ, ϕ, ν) = Tϑ

N ∩ Iϕ
N ∩ Fν

N .

Definition 10. Let OK := O
(TK ,IK ,FK)

and OP := O
(TP ,IP ,FP)

be neutrosophic N-structures in O.
Then:

(i) The neutrosophic N-sum of OK and OP is described as a neutrosophic N-structure of O,
OK ⊕OP := O

(TK+P ,IK+P ,FK+P)
=

{
v0

(TK+P(v0),IK+P(v0),FK+P(v0))
| v0 ∈ O

}
, where
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(TK + TP)(v0) = TK+P(v0) =


∧

v0=s0+c0

{TK(s0) ∨ TP(c0)} i f ∃s0, c0 ∈ O : v0 = s0 + c0

0 otherwise,

(IK + IP)(v0) = IK+P(v0) =


∨

v0=s0+c0

{IK(s0) ∧ IP(c0)} i f ∃s0, c0 ∈ O : v0 = s0 + c0

−1 otherwise,

(FK + FP)(v0) = FK+P(v0) =


∧

v0=s0+c0

{FK(s0) ∨ FP(c0)} i f ∃s0, c0 ∈ O : v0 = s0 + c0

0 otherwise.

For v0 ∈ O, the element v0
(TK+P(v0),IK+P(v0),FK+P(v0))

is simply denoted by (OK ⊕OP)(v0) =

(TK+P(v0), IK+P(v0), FK+P(v0)).
(ii) The neutrosophic N-product of OK and OP is described to be a neutrosophic N-structure of

O, OK �OP := O
(TK◦P ,IK◦P ,FK◦P)

=
{

k
(TK◦P(k),IK◦P(k),FK◦P(k))

| k ∈ O
}

, where

(TK ◦ TP)(k) = TK◦P(k) =


∧

k=st

{TK(s) ∨ TP(t)} i f ∃s ∈ O, t ∈ R : k = st

0 otherwise,

(IK ◦ IP)(k) = IK◦P(k) =


∨

k=st

{IK(s) ∧ IP(t)} i f ∃s ∈ O, t ∈ R : k = st

−1 otherwise,

(FK ◦ FP)(k) = FK◦P(k) =


∧

k=st

{FK(s) ∨ FP(t)} i f ∃s ∈ O, t ∈ R : k = st

0 otherwise.

For k ∈ O, the element k
(TK◦P(k),IK◦P(k),FK◦P(k))

is simply denoted by (OK � OP)(k) =

(TK◦P(k), IK◦P(k), FK◦P(k)).

4. Main Results

The neutrosophic N-subsemimodule is defined and its various properties are examined
in this section. Additionally, we define and examine the notion of neutrosophic right t-pure
ideals in semirings as well as the connections between neutrosophic t-pure ideals and
neutrosophic N-submodules in semirings.

Definition 11. A neutrosophic N-structure ON := O
(TN ,IN ,FN)

of O is defined as a neutrosophic
N-subsemimodule of O if it satisfies the following:

(i) (∀ y0, f0 ∈ O)

 TN(y0 + f0) ≤ TN(y0) ∨ TN( f0)
IN(y0 + f0) ≥ IN(y0) ∧ IN( f0)
FN(y0 + f0) ≤ FN(y0) ∨ FN( f0)

.

(ii) (∀ k0 ∈ O; s0 ∈ R)

 TN(k0s0) ≤ TN(k0)
IN(k0s0) ≥ IN(k0)
FN(k0s0) ≤ FN(k0)

.

It is clear that, for any neutrosophic N-subsemimodule ON of O, we obtain

(∀l ∈ O)

 TN(0) ≤ TM(l)
IN(0) ≥ IM(l)
FN(0) ≤ FM(l)

.
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Definition 12. IfRN , a neutrosophic N-structure ofR, is a neutrosophic N-subsemimodule of a
rightR-semimoduleRR, thenRN is referred to as a neutrosophic N-right ideal ofR.

IfRN is a neutrosophic N-subsemimodule of a leftR-semimodule RR, thenRN is referred as
a neutrosophic N-left ideal ofR.

RN of R is defined as a neutrosophic N-ideal if it is both a neutrosophic N-right and a
neutrosophic N-left ideal ofR.

Example 1. Let O be the set of all non-zero negative integers. Then, with respect to usual addition
“ + ” and multiplication “ ∗ ”, (O,+) is a commutative semigroup with an identity element 0 and
(O,+, ∗) and (2O,+, ∗) are semirings. Clearly, O is a right 2O-semimodule over 2O and O is a
right O-semimodule over O. Define a neutrosophic N- structure ON := O

(TN ,IN ,FN)
, where, for any

y0 ∈ O,

TN(y0) = FN(y0) =

{
−1 i f y0 = 0
−1 + 1

n otherwise
; IN(y0) =

{
0 i f y0 = 0
− 1

n otherwise.

It is then easy to verify that ON is a neutrosophic 2O-subsemimodule of O and ON is a
neutrosophic ON ideal of O.

Theorem 1. Let ON := O
(TN ,IN ,FN)

. Then the following criteria are equivalent:
(i) For any $, λ, ν ∈ I−, ON($, λ, ν)( 6= φ) is a subsemimodule of O;
(ii) ON of O is a neutrosophic N-subsemimodule.

Proof. (i) ⇒ (ii) Let c, z ∈ O. Then TN(c) = q1, FN(c) = r1, IN(c) = t1 and TN(z) =
q2, FN(z) = r2, IN(z) = t2, for some q1, q2, t1, t2, r1, r2 ∈ I−.

If q = max{q1, q2}; t = min{t1, t2} and r = max{r1, r2}, then TN(c) ≤ q, IN(c) ≥
t, FN(c) ≤ r and TN(z) ≤ q, IN(z) ≥ t, FN(z) ≤ r, so c, z ∈ ON(q, t, r). Since ON(q, t, r)
is a subsemimodule of O, we obtain c + z ∈ ON(q, t, r), which implies TN(c + z) ≤ q =
TN(c) ∨ TN(z), IN(c + z) ≥ t = IN(c) ∧ IN(z), FN(c + z) ≤ r = FN(c) ∨ FN(z).

In addition, for r ∈ R, we have cr ∈ ON(q1, t1, r1), which implies TN(cr) ≤ q1 =
TN(c), IN(cr) ≥ t1 = IN(c), FN(cr) ≥ r1 = FN(c). Therefore, ON is a neutrosophic N-
subsemimodule of O.

(ii) ⇒ (i) For $, λ, ν ∈ I−, let q, z ∈ ON($, λ, ν). Then, TN(q + z) ≤ TN(q) ∨ TN(z) ≤
$, ; IN(q + z) ≥ IN(q) ∧ IN(z) ≥ λ and FN(q + z) ≤ FN(q) ∨ FN(z) ≤ ν, which imply
q + z ∈ ON($, λ, ν).

In addition, for r ∈ R, TN(qr) ≤ TN(q) ≤ $, IN(qr) ≥ IN(q) ≥ λ, and FN(qr) ≤
FN(q) ≤ ν imply that qr ∈ ON($, λ, ν). Therefore, ON($, λ, ν) is a subsemimodule of O.

Remark 2. Based on the equivalent conditions of the above Theorem 1, we have the following
succeeding Corollary as an outcome of Theorem 1.

Corollary 1. For ∅ 6= D ⊆ O, a neutrosophic N- structure DN := D
(TN ,IN ,FN)

of D is characterized
as below: For g1, l1, ω1, t1, s1, v1 ∈ I−,

TN(y0) :=

{
g1 i f y0 ∈ D
l1 otherwise

; IN(y0) :=

{
ω1 i f y0 ∈ D
t1 otherwise,

; FN(y0) :=

{
s1 i f y0 ∈ D
v1 otherwise,

where g1 < l1; ω1 > t1 and s1 < v1 in I−, the listed below statements are equivalent:
(i) D of O is a subsemimodule;
(ii) DN is a neutrosophic N-subsemimodule of O.

Proof. (i) ⇒ (ii) For y0, f0 ∈ O; s0 ∈ R. If y0 + f0 ∈ D, then TN(y0 + f0) = g1 ≤
TN(y0)∨ TN( f0), IN(y0 + f0) = w1 ≥ IN(y0)∧ IN( f0), FN(y0 + f0) = s1 ≤ FN(y0)∨ FN( f0).
Otherwise, y0 + f0 /∈ D. Then, y0 /∈ D or f0 /∈ D, which implies TN(y0 + f0) = l1 =
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TN(y0) ∨ TN( f0), IN(y0 + f0) = t1 = IN(y0) ∧ IN( f0), FN(y0 + f0) = v1 = FN(y0) ∨
FN( f0). For s0 ∈ R, if y0s0 ∈ D, then TN(y0s0) = g1 ≤ TN(y0), IN(y0s0) = w1 ≥
IN(y0), FN(y0s0) = s1 ≤ FN(y0). Otherwise, y0s0 /∈ D. Then, y0 /∈ D, which implies
TN(y0s0) = l1 = TN(y0), IN(y0s0) = t1 = IN(y0), FN(y0s0) = v1 = FN(y0). Therefore, DN
is a neutrosophic N-subsemimodule of O.

(ii) ⇒ (i) If DN is a neutrosophic N-subsemimodule of O, then, by Theorem 1,
DN(g1, w1, s1) = D is a subsemimodule of O.

Remark 3. If we take g1 = t1 = s1 = −1 and l1 = w1 = v1 = 0 in Corollary 1, then we obtain
the following Corollary:

Corollary 2. For ∅ 6= K ⊆ O and ON := O
(TN ,IN ,FN)

, the listed below statements are equivalent:
(i) χK(ON) of O is a neutrosophic N-subsemimodule;
(ii) K of O is a subsemimodule.

Next, we prove the following result:

Theorem 2. Let OK := O
(TK ,IK ,FK)

and OP := O
(TP ,IP ,FP)

be neutrosophic N-structures in O.
If OK and OP are neutrosophic N-subsemimodules of O, then OK ⊕OP is also a neutrosophic
N-subsemimodule of O.

Proof. Let z, x ∈ O. Then, for d, d
′
, q, q

′ ∈ O, we have

TK+P(x) ∨ TK+P(z) =

 ∧
x=d+q

{TK(d) ∨ TP(q)}

 ∨
 ∧

z=d′+q′
{TK(d

′
) ∨ TP(q

′
)}


=

∧
x=d+q

z=d′+q′

{{TK(d) ∨ TP(q)} ∨ {TK(d
′
) ∨ TP(q

′
)}}

=
∧

x=d+q

z=d′+q′

{TK(d) ∨ TK(d
′
) ∨ TP(q) ∨ TP(q

′
)}

>
∧

x+z=(d+d′ )+(q+q′ )

{TK(d + d
′
) ∨ TP(q + q

′
)} = TK+P(x + z),

IK+P(x) ∧ IK+P(z) =

 ∨
x=d+q

{IK(d) ∧ IP(q)}

 ∧
 ∨

z=d′+q′
{IK(d

′
) ∧ IP(q

′
)}


=

∨
x=d+q

z=d′+q′

{{IK(d) ∧ IP(q)} ∧ {IK(d
′
) ∧ IP(q

′
)}}

=
∨

x=d+q

z=d′+q′

{IK(d) ∧ IK(d
′
) ∧ IP(q) ∧ IP(q

′
)}

6
∨

x+z=(d+d′ )+(q+q′ )

{IK(d + d
′
) ∧ IP(q + q

′
)} = IK+P(x + z),
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FK+P(x) ∨ FK+P(z) =

 ∧
x=d+q

{FK(d) ∨ FP(q)}

 ∨
 ∧

z=d′+q′
{FK(d

′
) ∨ FP(q

′
)}


=

∧
x=d+q

z=d′+q′

{{FK(d) ∨ FP(q)} ∨ {FK(d
′
) ∨ FP(q

′
)}}

=
∧

x=d+q

z=d′+q′

{FK(d) ∨ FK(d
′
) ∨ FP(q) ∨ FP(q

′
)}

>
∧

x+z=(d+d′ )+(q+q′ )

{FK(d + d
′
) ∨ FP(q + q

′
)} = FK+P(x + z).

For z ∈ O and r ∈ R, we obtain

TK+P(z) =
∧

z=q+w
{TK(q) ∨ TP(w)}

>
∧

zr=qr+wr
{TK(qr) ∨ TP(wr)} >

∧
zr=q′+w′

{TK(q
′
) ∨ TP(w

′
)} = TK+P(zr),

IK+P(z) =
∨

z=q+w
{IK(q) ∧ IP(w)}

6
∨

zr=qr+wr
{IK(qr) ∧ IP(wr)} 6

∨
zr=q′+w′

{IK(q
′
) ∧ IP(w

′
)} = IK+P(zr),

FK+P(z) =
∧

z=q+w
{FK(q) ∨ FP(w)}

>
∧

zr=qr+wr
{FK(qr) ∨ FP(wr)} >

∧
zr=q′+w′

{FK(q
′
) ∨ FP(w

′
)} = FK+P(zr).

Therefore, OK ⊕OP is a neutrosophic N-subsemimodule of O.

Theorem 3. Let OK := O
(TK ,IK ,FK)

be a neutrosophic N-structure in O. If RP := R
(TP ,IP ,FP)

is a
neutrosophic N-right ideal ofR, then OK �RP is a neutrosophic N-subsemimodule of O.

Proof. For z, x ∈ O. If ∃w, w′ ∈ O and q, q
′ ∈ R : x = wq and z = w′q′, then

TK◦P(x) ∨ TK◦P(z) =

[ ∧
x=wq
{TK(w) ∨ TP(q)}

]
∨

 ∧
z=w′ q′

{TK(w
′
) ∨ TP(q

′
)}


=

∧
x=wq

z=w′ q′

{{TK(w) ∨ TP(q)} ∨ {TK(w
′
) ∨ TP(q

′
)}}

=
∧

x=wq

z=w′ q′

{TK(w) ∨ TK(w
′
) ∨ TP(q) ∨ TP(q

′
)}

>
∧

x+z=(ww′ )+(qq′ )

{TK(ww
′
) ∨ TP(qq

′
)} = TK◦P(x + z),
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IK◦P(x) ∧ IK◦P(z) =

[ ∨
x=wq
{IK(w) ∧ IP(q)}

]
∧

 ∨
z=w′ q′

{IK(w
′
) ∧ IP(q

′
)}


=

∨
x=wq

z=w′ q′

{{IK(w) ∧ IP(q)} ∧ {IK(w
′
) ∧ IP(q

′
)}}

=
∨

x=wq

z=w′ q′

{IK(w) ∧ IK(w
′
) ∧ IP(q) ∧ IP(q

′
)}

6
∨

x+z=(ww′ )+(qq′ )

{IK(ww
′
) ∧ IP(qq

′
)} = IK◦P(x + z),

FK◦P(x) ∨ FK◦P(z) =

[ ∧
x=wq
{FK(w) ∨ FP(q)}

]
∨

 ∧
z=w′ q′

{FK(w
′
) ∨ FP(q

′
)}


=

∧
x=wq

z=w′ q′

{{FK(w) ∨ FP(q)} ∨ {FK(w
′
) ∨ FP(q

′
)}}

=
∧

x=wq

z=w′ q′

{FK(w) ∨ FK(w
′
) ∨ FP(q) ∨ FP(q

′
)}

>
∧

x+z=(ww′ )+(qq′ )

{FK(ww
′
) ∨ FP(qq

′
)} = FK◦P(x + z).

For z ∈ O and r ∈ R, we obtain

TK◦P(z) =
∧

z=qw
{TK(q) ∨ TP(w)}

>
∧

zr=q(wr)

{TK(q) ∨ TP(wr)} >
∧

zr=q′w′
{TK(q

′
) ∨ TP(w

′
)} = TK◦P(zr),

IK◦P(z) =
∨

z=qw
{IK(q) ∧ IP(w)}

6
∨

zr=qwr
{IK(q) ∧ IP(wr)} 6

∨
zr=q′w′

{IK(q
′
) ∧ IP(w

′
)} = IK◦P(zr),

FK◦P(z) =
∧

z=qw
{FK(q) ∨ FP(w)}

>
∧

zr=qwr
{FK(q) ∨ FP(wr)} >

∧
zr=q′w′

{FK(q
′
) ∨ FP(w

′
)} = FK◦P(zr).

Therefore, OK �RP is a neutrosophic N-subsemimodule of O.

Corollary 3. If RK and RP are neutrosophic N-ideals in R, then RK ⊕RP and RK �RP are
neutrosophic N-ideals inR.

Definition 13. The neutrosophic N-product of RK and RP is described to be a neutrosophic
N-structure ofR, RK �RP := R

(TK◦P ,IK◦P ,FK◦P)
=

{
k

(TK◦P(k),IK◦P(k),FK◦P(k))
| k ∈ R

}
, where

(TK ◦ TP)(k) = TK◦P(k) =


∧

k=st

{TK(s) ∨ TP(t)} i f ∃s, t ∈ R : k = st

0 otherwise,
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(IK ◦ IP)(k) = IK◦P(k) =


∨

k=st

{IK(s) ∧ IP(t)} i f ∃s, t ∈ R : k = st

−1 otherwise,

(FK ◦ FP)(k) = FK◦P(k) =


∧

k=st

{FK(s) ∨ FP(t)} i f ∃s, t ∈ R : k = st

0 otherwise.

Theorem 4. Let RZ := R
(TZ ,IZ ,FZ )

. Then, for any nonempty subsets J, D of R, the following
statements hold:

(i) χJ(RZ ) ∩ χD(RZ ) = χJ∩D(RZ );
(ii) χJ(RZ )� χD(RZ ) = χJD(RZ ).

Proof. (i) Let v1 ∈ R. If v1 ∈ J ∩ D, then (χJ(T)Z ∩ χD(T)Z )(v1) = χJ(T)Z (v1) ∨
χD(T)Z (v1) = −1 = χJ∩D(T)Z (v1), (χJ(I)Z ∩χD(I)Z )(v1) = χJ(I)Z (v1)∧χD(I)Z (v1) =
0 = χJ∩D(I)Z (v1) and (χJ(F)Z ∩ χD(F)Z )(v1) = χJ(F)Z (v1) ∨ χD(F)Z (v1) = −1 =
χJ∩D(F)Z (v1).

If v1 /∈ J ∩ D, then (χJ(T)Z ∩ χD(T)Z )(v1) = χJ(T)Z (v1) ∨ χD(T)Z (v1) = 0 =
χJ∩D(T)Z (v1), (χJ(I)Z ∩ χD(I)Z )(v1) = χJ(I)Z (v1)∧ χD(I)Z (v1) = −1 = χJ∩D(I)Z (v1)
and (χJ(F)Z ∩ χD(F)Z )(v1) = χJ(F)Z (v1) ∨ χD(F)Z (v1) = 0 = χJ∩D(F)Z (v1).

Therefore, χJ(RZ ) ∩ χD(RZ ) = χJ∩D(RZ ).
(ii) Let v1 ∈ R. If v1 = c1d1 for some c1 ∈ J and d1 ∈ D; then we have

(χJ(T)Z ◦ χD(T)Z )(v1) =
∧

v1=s1l1

{χJ(T)Z (s1) ∨ χJ(T)Z (l1)}

≤ χJ(T)Z (c1) ∨ χJ(T)Z (d1) = −1 = χJD(T)Z (v1),

(χJ(I)Z ◦ χD(I)Z )(v1) =
∨

v1=s1l1

{χJ(I)Z (s1) ∧ χJ(I)Z (l1)}

≥ χJ(I)Z (c1) ∨ χJ(I)Z (d1) = 0 = χJD(I)Z (v1),

(χJ(F)Z ◦ χD(F)Z )(v1) =
∧

v1=s1l1

{χJ(F)Z (s1) ∨ χJ(F)Z (l1)}

≤ χJ(F)Z (c1) ∨ χJ(F)Z (d1) = −1 = χJD(F)Z (v1).

If v1 6= c1d1 for any c1 ∈ J and d1 ∈ D, then we have

(χJ(T)Z ◦ χD(T)Z )(v1) =
∧

v1=s1l1

{χJ(T)Z (s1) ∨ χJ(T)Z (l1)} = 0 = χJD(T)Z (v1),

(χJ(I)Z ◦ χD(I)Z )(v1) =
∨

v1=s1l1

{χJ(I)Z (s1) ∧ χJ(I)Z (l1)} = −1 = χJD(I)Z (v1),

(χJ(F)Z ◦ χD(F)Z )(v1) =
∧

v1=s1l1

{χJ(F)Z (s1) ∨ χJ(F)Z (l1)} = 0 = χJD(F)Z (v1).

Therefore, χJ(RZ )� χD(RZ ) = χJD(RZ ).

The equivalent condition for a non-empty subset ofR to be an ideal ofR is given below.

Theorem 5. Let RH := R
(TH ,IH ,FH)

. Then, for any subset C( 6= ∅) of R, the below criteria
are equivalent:

(i) C ofR is a left (right) ideal;
(ii) χC(RH) ofR is a neutrosophic N-left (right) ideal.

Proof. (i) ⇒ (ii) Let z, x ∈ R. If x ∈ C and z ∈ C, then xz ∈ C, so χC(T)H(xz) = −1 =
χC(T)H(x)∨ χC(T)H(z), χC(I)H(xz) = 0 = χC(I)H(x) ∧ χC(I)H(z) and χC(F)H(xz) =
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−1 = χC(F)H(x) ∨ χC(F)H(z). If x /∈ C or z /∈ C, then χC(T)H(xz) ≤ 0 = χC(T)H(x) ∨
χC(T)H(z), χC(I)H(xz) ≥ −1 = χC(I)H(x) ∧ χC(I)H(z) and χC(F)H(xz) ≤ 0 =
χC(F)H(x) ∨ χC(F)H(z).

If x ∈ C, then xz ∈ C, which implies χC(T)H(xz) = −1 ≤ χC(T)H(z), χC(I)H(xz) =
0 ≥ χC(I)H(z) and χC(F)H(xz) = −1 ≤ χC(F)H(z). Therefore, χC(RH) is a neutrosophic
N-left ideal ofR.

(ii) ⇒ (i) Let l, z ∈ C and y ∈ R. Then χC(T)H(l + z) ≤ χC(T)H(l) ∨ χC(T)H(z) =
−1, χC(I)H(l + z) ≥ χC(I)H(l) ∧ χC(I)H(z) = 0 and χC(F)H(l + z) ≤ χC(F)H(l) ∨
χC(F)H(z) = −1, which imply l + z ∈ C.

In addition, χC(T)H(ly) ≤ χC(T)H(y) = −1, χC(I)H(ly) ≥ χC(I)H(y) = 0 and
χC(F)H(ly) ≤ χC(F)H(y) = −1, which imply ly ∈ C. Therefore, C ofR is a left ideal.

Definition 14 ([1]). InR, an ideal P is known as a right t-pure if for t ∈ P, ∃ d ∈ P : t = td.

Theorem 6 ([1]). If Y ofR is a two-sided ideal, then the below criteria are equivalent:
(i) for any right ideal G ofR, G ∩Y = GY;
(ii) Y is right t-pure.

Definition 15. A subsemimodule N of O is said to be pure in O if, for any ideal I ofR, N ∩OI =
NI. If O is described as normal, then each subsemimodule of O is pure in O.

Definition 16. A neutrosophic N-right idealRK := R
(TK ,IK ,FK)

is described as a neutrosophic right
t-pure N-ideal inR ifRP ∩RK = RP �RK for every neutrosophic N -right idealRP inR.

Below is the equivalent condition for an ideal ofR to be a right t-pure ideal ofR.

Theorem 7. LetRK := R
(TK ,IK ,FK)

and C be an ideal ofR. Then, the below criteria are equivalent:
(i) χC(RK) ofR is a neutrosophic right t-pure N-ideal;
(ii) C ofR is a right t-pure ideal.

Proof. (i)⇒ (ii) By Theorem 5, C is a right ideal ofR. For any right ideal D ofR, we have
χC(RK) ∩ χD(RK) = χC(RK)� χD(RK). By Theorem 4, we have χC∩D(RK) = χCD(RK),
which implies that C ∩ D = CD; therefore, C is a right t-pure ideal ofR.

(ii)⇒ (i) By Theorem 5, χC(RK) is a neutrosophic right N-ideal ofR.
LetRP := R

(TP ,IP ,FP)
be a neutrosophic N -right ideal inR.

Now, we show thatRP ∩ χC(RK) = RP � χC(RK).
Let x ∈ R. Then,

(TP ◦ χC(T)K)(w) =
∧

w=st
{TP(s) ∨ χC(T)K(t)}

≥
∧

w=st
{TP(st) ∨ χC(T)K(st)} = TP(x) ∨ χC(T)K(x),

(IP ◦ χC(I)K)(w) =
∨

w=st
{IP(s) ∧ χC(I)K(t)}

≤
∨

w=st
{IP(st) ∧ χC(I)K(st)} = IP(x) ∧ χC(I)K(x),

(FP ◦ χC(F)K)(w) =
∧

w=st
{FP(s) ∨ χC(F)K(t)}

≥
∧

w=st
{FP(st) ∨ χC(F)K(st)} = FP(x) ∨ χC(F)K(x).

Therefore,RP ∩ χC(RK) ⊇ RP � χC(RK).
Let h ∈ R. If h /∈ C, then
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(TP ∩ χC(T)K)(h) = TP(h) ∨ χC(T)K(h) = 0 ≥ (TPχ̇C(T)K)(h),

(IP ∩ χC(I)K)(h) = IP(h) ∧ χC(I)K(h) = −1 ≤ (IPχ̇C(I)K)(h),

(FP ∩ χC(F)K)(h) = FP(h) ∨ χC(F)K(h) = 0 ≥ (FPχ̇C(F)K)(h).

If h ∈ C, then ∃r ∈ C : h = hr. Now,

(TP ∩ χC(T)K)(h) = TP(h) ∨ χC(T)K(h)

= TP(h) ∨ χC(T)K(hr) ≥
∧

h=ad

{TP(a) ∨ χC(T)K(d)} = (TPχ̇C(T)K)(h),

(IP ∩ χC(I)K)(h) = IP(h) ∧ χC(I)K(h)

= IP(h) ∧ χC(I)K(hr) ≤
∨

h=ad

{IP(a) ∧ χC(I)K(d)} = (IPχ̇C(I)K)(h),

(FP ∩ χC(F)K)(h) = FP(h) ∨ χC(F)K(h)

= FP(h) ∨ χC(F)K(hr) ≥
∧

h=ad

{FP(a) ∨ χC(F)K(d)} = (FPχ̇C(F)K)(h).

Thus,RP ∩ χC(RK) ⊆ RP � χC(RK) and henceRP ∩ χC(RK) = RP � χC(RK).

Definition 17. An ideal I of R is idempotent if I2 = I. If every ideal of R is idempotent, then
R is termed as fully idempotent. A neutrosophic N-structure RK of R is called idempotent if
RK �RK = RK.

Definition 18. A semiringR is termed as regular if, for j ∈ R, ∃z ∈ R : j = jzj. Clearly, every
regular semiring is fully idempotent.

Theorem 8. ForR, the conditions listed below are equivalent:
(i)R is fully idempotent;
(ii) every neutrosophic N-ideal inR is idempotent;
(iii) for every neutrosophic N-idealsRW andRB inR,RW ∩RB = RW �RB .

IfR is commutative, then the above criteria are equivalent to
(iv)R is regular.

Proof. (i) ⇒ (ii) Let RW := R
(TW ,IW ,FW )

of R be a neutrosophic N-ideal. Then, for any

f ∈ R, we obtain (TW ◦ TW )( f ) =
∧

f=ad

{TW (a) ∨ TW (d)} ≥
∧

f=ad

{TW (ad) ∨ TW (ad)} =

∧
f=ad

{TW ( f ) ∨ TW ( f )} = TW ( f ), (IW ◦ IW )( f ) =
∨

f=ad

{IW (a) ∧ IW (d)} ≤
∨

f=ad

{IW (ad) ∧

IW (ad)} =
∨

f=ad

{IW ( f ) ∧ IW ( f )} = IW ( f ) and (FW ◦ FW )( f ) =
∧

f=ad

{FW (a) ∨ FW (d)} ≥
∧

f=ad

{FW (ad) ∨ FW (ad)} =
∧

f=ad

{FW ( f ) ∨ FW ( f )} = FW ( f ). Therefore,RW �RW ⊆ RW .

SinceR is fully idempotent, we have f ∈< f >=< f >2= R fRR fR, so ∃p1, f1, p2,
f2 ∈ R : f = p1 f f1 p2 f f2. Now,

TW ( f ) = TW ( f ) ∨ TW ( f ) ≥ TW (p1 f f1) ∨ TW (p2 f f2)

≥
∧

f=p1 f f1 p2 f f2

{TW (p1 f f1) ∨ TW (p2 f f2)} ≥
∧

f=st

{TW (s) ∨ TW (t)} = (TW ◦ TW )( f ),

IW ( f ) = IW ( f ) ∧ IW ( f ) ≤ IW (p1 f f1) ∧ IW (p2 f f2)

≤
∨

f=p1 f f1 p2 f f2

{IW (p1 f f1) ∧ IW (p2 f f2)} ≤
∨

f=st

{IW (s) ∧ IW (t)} = (IW ◦ IW )( f ),
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FW ( f ) = FW ( f ) ∨ FW ( f ) ≥ FW (p1 f f1) ∨ FW (p2 f f2)

≥
∧

f=p1 f f1 p2 f f2

{FW (p1 f f1) ∨ FW (p2 f f2)} ≥
∧

f=st

{FW (s) ∨ FW (t)} = (FW ◦ FW )( f ).

Thus,RW �RW ⊇ RW and henceRW �RW = RW .
(ii)⇒ (i) IfRW is a neutrosophic N-ideal ofR and C is an ideal ofR, then χC(RW )

is a neutrosophic N-left ideal ofR, so χC(RW )� χC(RW ) = χC(RW ) implies thatRW �
RW = RW .

(i)⇒ (iii) LetRW andRB be any two neutrosophic N-ideals ofR and b ∈ R. Then,

(TW ◦ TB)(b) =
∧

b=st

{TW (s) ∨ TB(t)} ≥
∧

b=st

{TW (st) ∨ TB(st)}

=
∧

b=st

{TW (b) ∨ TB(b)} = TW (b) ∨ TB(b) = (TW ∩ TB)(b),

(IW ◦ IB)(b) =
∨

b=st

{IW (s) ∧ IB(t)} ≤
∨

b=st

{IW (st) ∧ IB(st)}

=
∨

b=st

{IW (b) ∧ IB(b)} = IW (b) ∧ IB(b) = (IW ∪ IB)(b),

(FW ◦ FB)(b) =
∧

b=st

{FW (s) ∨ FB(t)} ≥
∧

b=st

{FW (st) ∨ FB(st)}

=
∧

b=st

{FW (b) ∨ FB(b)} = FW (b) ∨ FB(b) = (FW ∩ FB)(b).

Therefore,RW �RB ⊆ RW ∩RB .
SinceR is fully idempotent, we have < b >=< b >2 for any b ∈ R. In the first section

of this Theorem’s proof, we mentioned that we obtain

(TW ∩ TB)(b) =TW (b) ∨ TB(b) ≥
∧

b=st

{TW (s) ∨ TB(t)} = (TW ◦ TB)(b),

(IW ∪ IB)(b) =IW (b) ∧ IB(b) ≤
∨

b=st

{IW (s) ∧ IB(t)} = (IW ◦ IB)(b),

(FW ∩ FB)(b) =FW (b) ∨ FB(b) ≥
∧

b=st

{FW (s) ∨ FB(t)} = (FW ◦ FB)(b).

Thus,RW ∩RB ⊆ RW �RB and henceRW �RB = RW ∩RB .
(iii)⇒ (i) IfRW ofR is a neutrosophic N-ideal, thenRW �RW = RW ∩RW = RW .

As (iii) ⇐⇒ (i) and (ii) ⇐⇒ (i), we obtain (i) ⇐⇒ (ii) ⇐⇒ (iii). If R is
commutative, then it is simple to obtain (iv) ⇐⇒ (i).

Theorem 9. For any neutrosophic N-subsemimodule OK of O and neutrosophic N- idealRI inR,
ifR is regular, then for any x ∈ O, we have

(TK ◦ TP)(x) = TK◦P(x) =


∧

x=st
{TK(st) ∨ TP(t)} i f ∃s ∈ O, t ∈ R : x = st

0 otherwise,

(IK ◦ IP)(x) = IK◦P(x) =


∨

x=st
{IK(st) ∧ IP(t)} i f ∃s ∈ O, t ∈ R : x = st

−1 otherwise,

(FK ◦ FP)(x) = FK◦P(x) =


∧

x=st
{FK(st) ∨ FP(t)} i f ∃s ∈ O, t ∈ R : x = st

0 otherwise.
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Proof. Let x ∈ O. Then, by Definition, we have

(TK ◦ TP)(x) = TK◦P(x) =


∧

x=st
{TK(s) ∨ TP(t)} i f ∃s ∈ O, t ∈ R : x = st

0 otherwise,

(IK ◦ IP)(x) = IK◦P(x) =


∨

x=st
{IK(s) ∧ IP(t)} i f ∃s ∈ O, t ∈ R : x = st

−1 otherwise,

(FK ◦ FP)(x) = FK◦P(x) =


∧

x=st
{FK(s) ∨ FP(t)} i f ∃s ∈ O, t ∈ R : x = st

0 otherwise.

Since R is regular, for u ∈ R, ∃t1, t2 ∈ R : u = ut1ut2. Clearly, TK(zu) ≥ TK(zut1) ≥
TK(zut1ut2) = TK(zu), IK(zu) ≤ IK(zut1) ≤ IK(zut1ut2) = IK(zu), FK(zu) ≥ FK(zut1) ≥
FK(zut1ut2) = FK(zu). In addition, TP(u) ≥ TP(ut1) ≥ TP(ut1ut2) = TP(u), IP(u) ≤
IP(ut1) ≤ IP(ut1ut2) = IP(u), FP(u) ≥ FP(ut1) ≥ FP(ut1ut2) = FP(u).

Now,

(TK ◦ TP)(x) = TK◦P(x) ≥
∧

x=zu
{TK(zu) ∨ TP(u)}

=
∧

x=zu
{TK(zut1) ∨ TP(ut1)}

≥
∧

x=ys
{TK(y) ∨ TP(s)} = TK◦P(x) = (TK ◦ TP)(x),

(IK ◦ IP)(x) = IK◦P(x) ≤
∨

x=zu
{IK(zu) ∧ IP(u)}

=
∨

x=zu
{IK(zut1) ∧ IP(ut1)}

≤
∨

x=ys
{IK(y) ∧ IP(s)} = IK◦P(x) = (IK ◦ IP)(x),

(FK ◦ FP)(x) = FK◦P(x) ≥
∧

x=zu
{FK(zu) ∨ FP(u)}

=
∧

x=zu
{FK(zut1) ∨ FP(ut1)}

≥
∧

x=ys
{FK(y) ∨ FP(s)} = FK◦P(x) = (FK ◦ FP)(x).

Therefore,

(TK ◦ TP)(x) = TK◦P(x) =


∧

x=st
{TK(st) ∨ TP(t)} i f ∃s ∈ O, t ∈ R : x = st

0 otherwise,

(IK ◦ IP)(x) = IK◦P(x) =


∨

x=st
{IK(st) ∧ IP(t)} i f ∃s ∈ O, t ∈ R : x = st

−1 otherwise,

(FK ◦ FP)(x) = FK◦P(x) =


∧

x=st
{FK(st) ∨ FP(t)} i f ∃s ∈ O, t ∈ R : x = st

0 otherwise.

5. Conclusions

Algebraic structures are significant in mathematics, having a broad impact in diverse
fields such as theoretical physics, computer science, control engineering, information
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science, coding theory, and topological spaces, among others. Symmetry is a crucial and
aesthetically pleasing concept that connects several domains in modern mathematics, with
algebraic structures providing a valuable apparatus in pure mathematics for understanding
the symmetries of geometric entities. We have obtained the neutrosophic structures for
semiring modules; the idea of neutrosophic N-subsemimodules and neutrosophic N-ideals
was established in this study, and some of their characteristics were discussed. In addition,
we looked into the idea of neutrosophic right t-pure ideals in a semiring and the many
connections between neutrosophic t-pure ideals and neutrosophic N-submodules in a
semiring. Moreover, we have obtained equivalent statements for a semiring to be fully
idempotent. Using the ideas and findings of this paper, it is possible to define the concept of
neutrosophic N-prime(resp., semi) ideals and derive their various properties and equivalent
conditions for a neutrosophic N-ideal to be a neutrosophic N-prime (resp., semi) ideal in a
neutrosophic N-subsemimodule.
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