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Abstract: We propose a new hierarchy of the vector derivative nonlinear Schrödinger equations
and consider the simplest multiphase solutions of this hierarchy. The study of the simplest solutions
of these equations led to the following results. First, the three-leaf spectral curves Γ = {(µ, λ)} of
the simplest multiphase solutions have a quite simple symmetry. They are invariant with respect to
holomorphic involution τ. The type of this involution depends on the genus of the spectral curve.
Or the involution has the form τ : (µ, λ) → (µ,−λ), or τ : (µ, λ) → (−µ,−λ). The presence of
symmetry leads to the fact that the dynamics of the solution is determined not by the entire spectral
curve Γ, but by its factor Γ/τ, which has a smaller genus. Secondly, it turned out that the dynamics
of the two-component vector p = (p1, p2)

t is determined, first of all, by the dynamics of its length |p|.
Independent equations determine the dependence of the direction of the vector p from its length. In
cases where the direction of the vector p is fixed, the corresponding spectral curve splits into separate
components. In conclusion, we note that, as in the case of the Manakov system, the equation of the
spectral curve is invariant with respect to the orthogonal transformation of the vector solutions. I.e.,
the solution can be found from the spectral curve up to the orthogonal transformation. This fact
indicates that the spectral curve does not depend on the individual components of the solution, but
on their symmetric functions. Thus, the spectral data of multiphase solutions have two symmetries.
These symmetries make it difficult to reconstruct signals from their spectral data. The work contains
examples illustrating these statements.

Keywords: spectral curve; derivative NLS equation; vector NLS equation; Gerdjikov–Ivanov equation;
multiphase solution

1. Introduction

Vector integrable nonlinear equations still continue to attract active attention (see, for
example, [1–10]). Mainly, the vector nonlinear Schrödinger equation is considered. Much
less work is devoted to the derivative form of the vector equation (see, for example, [11–19]).
Scalar forms of the derivative nonlinear Schrödinger equation are given much more at-
tention (see, for example, [20–25]). Note that for each derivative nonlinear Schrödinger
equation, its vector form is obtained, and multi-soliton solutions of these vector forms are
investigated. Attention to two-component variants of the nonlinear Schrodinger equation
is due to the fact that with the help of double-polarized waves, twice as much information
can be transmitted over an optical fiber [26–29]. In practice, it turns out that it is much more
difficult to recover encoded information from a two-component signal. Apparently, this is
due to the results obtained in our work. When transmitting information, it is assumed that
each component is independent and carries its own part of the information. As we proved
earlier [30], the spectral curve is invariant with respect to the orthogonal transformation of
the solution. I.e., it does not depend on the individual components of the solution, but on
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their symmetric functions. This statement is also true for the equations from our current
work. This is one of the possible reasons for the difficulty of recovering information from
the transmitted signal. The second possible reason most likely follows from the fact that the
spectral curve corresponding to a solution with linearly dependent components is greatly
reduced. The correctness of this statement can be seen in the examples from this work.
Therefore, when transmitting signals that differ slightly from each other, some information
about the spectral characteristics of the signals may be lost. In addition, as our examples
show, the genus of the spectral curve far exceeds the number of phases of the solution.
Thus, part of the spectral data is redundant. Also, as we show, in the case of the vector
equations, first of all, we get the law of transformation of the length of the solution vector,
and then the rule of direction transformation. When replacing the components of a vector
by its length and vice versa, information loss may occur. Thus, based on the results of
this work, we can advise transmitting information not in Cartesian coordinates, but in
polar ones.

In this paper, we use the monodromy matrix method (see, for example, [1,20,30]) to
construct a hierarchy of the Gerdjikov–Ivanov vector equation and investigate the simplest
solutions of equations from this hierarchy. As a rule, in the works devoted to the study
of vector nonlinear equations, the individual components of the vector are analyzed. At
the same time, sometimes there are works (see, for example, [7]) in which the behavior of
the length and tangent of the angle of inclination of the vector is investigated. Our studies
of the simplest solutions have shown that in the case of a vector nonlinear equation, the
evolution of a vector can naturally be divided into two components: the evolution of the
length of the vector and the evolution of its direction. Note that this statement is also
true for the Manakov system, which can be seen by looking at the calculations in [1]. For
example, assuming

p1 = |p|eiα1 cos(ϕ), p2 = |p|eiα2 sin(ϕ)

and q = σp∗, where σ = ±1, we have

u1 = p1q1 = σ|p|2 cos2(ϕ), u2 = p2q2 = σ|p|2 sin2(ϕ) (1)

and
u = u1 + u2 = σ|p|2,

v = u1 − u2 = σ|p|2 cos(2ϕ),

v̂ = v/u = cos(2ϕ) ≤ 1.

(2)

If the reduction has the form

q1 = σp∗1 , q2 = −σp∗2 , (3)

then the angle ϕ becomes purely imaginary ϕ = iϕ̂, where ϕ̂ ∈ R. In this case, the “direction”
of the vector p is defined by the function v̂ = cosh(2ϕ̂) ≥ 1. Thus, if v̂ < 1, then it is
possible to construct solutions that satisfy the reduction q = σp∗. If v̂ > 1, then the
solutions will satisfy the reduction (3). When v̂ = 1, the second component of the vector p
is missing (u2 = 0). The reduction sign σ is determined by the sign of the function u:

σ = sign(u).

Note that the functions u, v, and v̂ naturally appear during calculations. Also, note

that from Equation (1) it follows that
∣∣pj
∣∣ = √∣∣uj

∣∣. Therefore, to plot the amplitudes of
the individual components pj of the vector p, it is enough to find uj. The analysis of the
examples showed that when the direction of the vector p is independent of the coordinate
and time (v̂ = const), the spectral curve splits into two separate components, and the
dynamics of the solution is determined by a spectral curve of a smaller kind than in the
case when the direction of the vector p changes depending on the coordinate and time.
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The presented article consists of an introduction, four sections, and concluding re-
marks. In the first section, we define the Lax operator, define the monodromy matrix,
find recurrent relations between its elements, and derive the equation of spectral curves
associated with multiphase solutions. In Section 2, we define the second Lax pair operators
and obtain vector integrable nonlinear differential equations from the hierarchy of the
Gerdjikov–Ivanov vector equation. The first equations from this hierarchy have the form

ipt1 − pxx + 2i(ptqx)p − 2(ptq)2p = 0,

iqt1 + qxx + 2i(qtpx)q + 2(ptq)2q = 0

and
pt2 + pxxx − 3i(pt

xqx)p − 3i(ptqx)px + 3(ptq)(pt
xq)p + 3(ptq)2px = 0,

qt2 + qxxx + 3i(pt
xqx)q + 3i(qtpx)qx + 3(ptq)(qt

xp)q + 3(ptq)2qx = 0.

If we replace vectors with scalars in these equations, we obtain the Gerdjikov–Ivanov
equation and one of the forms of the mKdV equation.

In Section 3, we consider solutions in the form of plane waves. We show that there
are two types of plane waves that differ in the properties of their spectral curves. If
p(x, t) = p(x, t)k, where k is a constant vector, then the equation of the spectral curve does
not depend on the direction of the vector p, in another case, the equation of the spectral
curve depends on the direction of the vector p. In the case when the direction of the vector
p is fixed, the corresponding spectral curve splits into separate components.

In the fourth section, the simplest nontrivial solutions of the Gerdjikov–Ivanov vector
equation are investigated. In this case, the function u is an elliptic function or its degeneracy,
and the function v̂ depends on the function u according to the following formula:

v̂ = A sin(κ(θ + t1)) + B,

where ∂xθ = ±u−1. Note that the simplest nontrivial solutions are also divided into two
types. If A = 0, then the direction of the vector p is fixed, only its length changes. The
spectral curve of such a solution also splits into two components. If A ̸= 0, then the vector
makes small fluctuations near the direction given by the equality v̂ = B. The amplitude of
these oscillations satisfies the condition |A| < ||B| − 1|. Therefore, if |B| < 1, then |v̂| < 1,
and from |B| > 1 follows the inequality |v̂| > 1.

2. The Monodromy Matrix

Let the Lax operator have the form

iΨx = UΨ, (4)

where

U = −λ2 J + λQ + R, (5)

J =
1
3

2 0 0
0 −1 0
0 0 −1

, Q =

(
0 pt

−q 0

)
, R =

(
−ptq 0t

0 qpt

)
, (6)

pt = (p1, p2), qt = (q1, q2).
Let us consider Equations (4) and (5) with matrices (6). The monodromy matrix M is a

polynomial of the spectral parameter λ, and satisfies the equation (see, for example, [1,31])

iMx + MU − UM = 0 (7)
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From Equation (7), the following structure of the matrix M follows:

M = Vn +
n−1

∑
k=1

ckVn−k + cnU + cn+1V−1 + Jn, (8)

where V1 = λU + V0
1 , Vj+1 = λVj + V0

j+1, V−1 = −λJ + Q,

V0
2k−1 =

(
0 Ht

k
Gk O

)
, V0

2k =

(
−Fk 0t

0 Fk

)
, Fk = Tr Fk, k ≥ 1,

Jn =

−2cn+2 0 0
0 cn+2 + cn+3 cn+4
0 cn+5 cn+2 − cn+3

.

The elements of the matrix V0
k satisfy the following recurrence relations

H1 = −ipx, G1 = −iqx,

Hk+1 =
(

Ft
k +Fk I

)
p −

(
pqt + (ptq)I

)
Hk − i∂xHk,

Gk+1 = −(Fk +Fk I)q −
(
qpt + (qtp)I

)
Gk + i∂xGk,

∂xFk = q∂xHt
k − ∂xGkpt − i

(
qpt + (qtp)I

)
Gkpt

− iqHt
k
(
qpt + (qtp)I

)
.

(9)

In particular,

F1 = i
(
qxpt − qpt

x
)
− (qpt)2,

F1 = i
(
ptqx − qtpx

)
− (ptq)2,

H2 = −pxx + 2i(ptqx)p − 2(ptq)2p,

G2 = qxx + 2i(qtpx)q + 2(ptq)2q,

F2 = −2(qpt)3 − (qpt
xx + qxxpt) + qxpt

x

− i(pt
xs0p)qqts0 + i(qts0qx)s0ppt,

F2 = −2(ptq)3 − (qtpxx + ptqxx) + pt
xqx,

H3 = ipxxx + 3(pt
xqx)p + 3(ptqx)px + 3i(ptq)(pt

xq)p + 3i(ptq)2px,

G3 = iqxxx − 3(pt
xqx)q − 3(qtpx)qx + 3i(ptq)(qt

xp)q + 3i(ptq)2qx,

where

s0 =

(
0 1
−1 0

)
.

From Equation (7), in addition to the recurrent relations (9), stationary equations also
follow. Any m-phase solution for m ≤ n and for all values of t and z satisfies these sta-
tionary equations. As in the case of scalar derivative nonlinear Schrödinger equations [20],
stationary vector equations form two groups. For n > 1, stationary vector equations have
the form

(
i∂xV0

n + [V0
n , R]

)
+

n−1

∑
k=1

ck

(
i∂xV0

n−k + [V0
n−k, R]

)
+ icn∂xR + cn+1(i∂xQ + [Q, R]) + [Jn, R] = 0

and(
i∂xV0

n−1 + [V0
n−1, R] + [V0

n , Q]
)
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+
n−2

∑
k=1

ck

(
i∂xV0

n−1−k + [V0
n−1−k, R] + [V0

n−k, Q]
)

+ cn−1

(
i∂xR + [V0

1 , Q]
)
+ icn∂xQ + [Jn, Q] = 0.

Note that since the structure of matrices V0
n depends on parity, the scalar stationary

equations for even and odd n have a different form. The compatibility of this overridden
system of equations imposes restrictions on the constants ck.

Other stationary equations, which are satisfied by multiphase solutions, can be ob-
tained from the equations of the spectral curve. Recall that the equation of the spectral curve
of the multiphase solution is the characteristic equation of the monodromy matrix [31]:

Γ : R(µ, λ) = det(µI − M) = 0.

From Formula (8), it follows that the equation of the spectral curve Γ has the form

R(µ, λ) = µ3 +A(λ)µ + B(λ) = 0, (10)

where

A(λ) = −1
3

λ2n+4 − 2c1

3
λ2n+3 +

2n+4

∑
k=2

Akλ2n+4−k,

B(λ) = 2
27

λ3n+6 +
2c1

9
λ3n+5 +

3n+6

∑
k=2

Bkλ3n+6−k.

3. Integrable Nonlinear Equations

Let us define the second equation of the Lax pair by the equation

iΨtk = V2kΨ. (11)

Then, the following integrable nonlinear evolutionary equations:

ptk = iHk+1, qtk = iGk+1 (12)

follow from the Lax pair compatibility condition.
Thus, the first equations from this hierarchy have the forms

ipt1 − pxx + 2i(ptqx)p − 2(ptq)2p = 0,

iqt1 + qxx + 2i(qtpx)q + 2(ptq)2q = 0
(13)

and
pt2 + pxxx − 3i(pt

xqx)p − 3i(ptqx)px + 3(ptq)(pt
xq)p + 3(ptq)2px = 0,

qt2 + qxxx + 3i(pt
xqx)q + 3i(qtpx)qx + 3(ptq)(qt

xp)q + 3(ptq)2qx = 0.
(14)

For pj(x, t1) = k j p(x, t1) and qj(x, t1) = k jq(x, t1), where k j ∈ R, k2
1 + k2

2 = 1/2,
Equations (13) and (14) transform to coupled Gerdjikov–Ivanov equations

ipt1 − pxx + ip2qx −
1
2

p3q2 = 0,

iqt1 + qxx + iq2 px +
1
2

p2q3 = 0.

and to coupled complex mKdV equations

pt2 + pxxx − 3iqx px p +
3
2

p2q2 px = 0,
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qt2 + qxxx + 3ipxqxq +
3
2

p2q2qx = 0.

Since any solutions of the equations from the Gerdjikov–Ivanov hierarchy, after multi-
plying them by a constant vector (k1, k2)

t, will satisfy Equations (13) and (14), then these
equations can be considered as vector forms of the Gerdjikov–Ivanov and mKdV equations.
These equations, as well as the Manakov [1], Kundu–Eckhaus [30], and Kulish–Sklyanin
equations, are invariant with respect to the orthogonal transformation T of solutions. The
proof can be found in [30]. Since the transformation T is simultaneously a transformation
of the similarity of the monodromy matrix M, we can assume that the matrix Jn is diagonal.
Solutions with a non-diagonal matrix Jn can be obtained by orthogonal transformation
of solutions corresponding to the diagonal matrix Jn. Note that the equations of spectral
curves of multiphase solutions of equations from this hierarchy are also invariant with
respect to this transformation.

4. Solutions in the Form of Plane Waves

Let n = 0. Then, M = U + c1V−1 + J0, where J0 = diag(−2c2, c2 + c3, c2 − c3), ck ∈ R.
The first set of stationary equations has the form

i∂x p1 − (3c2 + c3)p1 = 0,

i∂x p2 − (3c2 − c3)p2 = 0,

− i∂xq1 − (3c2 + c3)q1 = 0,

− i∂xq2 − (3c2 − c3)q2 = 0.

Solving these equations, we have

p1(x, t) = p10(t)e−i(3c2+c3)x,

p2(x, t) = p20(t)e−i(3c2−c3)x,

q1(x, t) = q10(t)ei(3c2+c3)x,

q2(x, t) = q20(t)ei(3c2−c3)x.

(15)

It follows from Equations (1) and (15) that the functions uk(x, t) do not depend on x:

uk(x, t) = pk(x, t)qk(x, t) = pk0(t)qk0(t) = uk(t) ∈ R.

Substituting (15) into the second set of stationary equations, we obtain the following
equalities:

c1(3c2 + c3 + 2u1 + 2u2) = 0,

c1(3c2 − c3 + 2u1 + 2u2) = 0.

Therefore, the system of stationary equations is compatible only if one of the two
conditions is met. Or c1 = 0, or c2 = −2u/3 and c3 = 0.

From Equation (13), the equalities ∂t1 uk = 0 and

p1(x, t1) =
√

u1eiα1(x,t1), q1(x, t1) =
√

u1e−iα1(x,t1),

p2(x, t1) =
√

u2eiα2(x,t1), q2(x, t1) =
√

u2e−iα2(x,t1),
(16)

follow. Hence (see (2)), ∂t1 u = 0, ∂t1 v = 0, and

α1(x, t1) = −(3c2 + c3)x +
(
(3c2 + c3)

2 − 6c2u − 2c3v − 2u2
)

t1,

α2(x, t1) = −(3c2 − c3)x +
(
(3c2 − c3)

2 − 6c2u − 2c3v − 2u2
)

t1.
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It is not difficult to see that the solutions (16) satisfy the reduction

qj = sign(uj)p∗j .

Thus, for n = 0, the solution of Equation (13) is plane waves of constant amplitude |p|
and constant direction. But there can be two types of plane waves.

For n = 0, c3 ̸= 0 and c1 = 0, the coefficients of the equation of the spectral curve (10)
are equal

A(λ) = −1
3

λ4 − 2c2λ2 − 3c2
2 − c2

3 − 3c2u − c3v − u2,

B(λ) = 2
27

λ6 +
2c2

3
λ4 +

1
3
(6c2

2 − 2c2
3 + 3c2u + c3v + u2)λ2

+ (2c2 + u)(c2
2 − c2

3 + c2u − c3v).

(17)

Since the discriminant of the polynomial R(µ) with coefficients (17) is a polynomial
of λ of degree 8

∆(λ) = 4c2
3λ8 + 4c3(12c2c3 + 3c2v + c3u + uv)λ6 + . . . ,

then the curve (10), (17) has eight branching points. Using the Riemann–Hurvitz formula,
we obtain that the genus of the spectral curve Γ is equal to 2. Therefore, in this case, the
coefficients pk0 are functions of the constants determined by the parameters of the curve Γ
of genus g = 2, invariant under the involution.

τ : (µ, λ) → (µ,−λ).

So, apparently, the solution is determined by the parameters of the curve Γ/τ.
Note that in this case the complex phases αj of the components pj depend on v, i.e., on

the direction of the vector p.
For n = 0, c1 ̸= 0, and c3 = 0, c2 = −2u/3, the equation of the spectral curve (10)

takes the form

R(µ, λ) =

(
µ − 1

3
λ2 − c1

3
λ +

2u
3

)
×
(

µ2 +
1
3

µ(λ2 + c1λ − 2u)− 2
9

λ4 − 4c1

9
λ3

−2
9
(c2

1 − 4u)λ2 +
17
9

c1uλ +
1
9

u(9c2
1 + u)

)
= 0. (18)

Therefore, in this case, the spectral curve decomposes into two components. These
components are described by the solutions of Equation (18):

µ =
1
3
(λ2 + c1λ − 2u),

µ = −1
6
(λ2 + c1λ − 2u)± (λ + c1)

2

√
λ2 − 4u

Hence, in this case, the genus of both components is zero.
Note that in this situation, the complex phases αj of the components pj coincide and do

not depend on the direction of the vector p. That is, when c3 = 0, the solution to the vector
equation of Gerdjikov–Ivanov is a product of the solution to the scalar Gerdjikov–Ivanov
equation and a constant vector.

Also, these two types of plane waves differ in the dependence of the spectral curve
equation on the direction of the vector p. When c3 ̸= 0, the equation of the spectral curve
depends on the direction of the vector p, while when c3 = 0, the equation of the spectral
curve does not depend on the direction of the vector p.



Symmetry 2024, 16, 60 8 of 20

5. Solutions for n = 1

Let n = 1. Then, M = V1 + c1U + c2V−1 + J1, where J1 = diag(−2c3, c3 + c4, c3 − c4),
ck ∈ R.

The first set of stationary equations has the form

ic1∂x p1 − (3c3 + c4)p1 = 0,

ic1∂x p2 − (3c3 − c4)p2 = 0,

− ic1∂xq1 − (3c3 + c4)q1 = 0,

− ic1∂xq2 − (3c3 − c4)q2 = 0.

Solving these equations for c1 ̸= 0, we obtain

p1(x, t) = p10(t)e−i(3c̃3+c̃4)x,

p2(x, t) = p20(t)e−i(3c̃3−c̃4)x,

q1(x, t) = q10(t)ei(3c̃3+c̃4)x,

q2(x, t) = q20(t)ei(3c̃3−c̃4)x,

(19)

where c̃3,4 = c3,4/c1.
Substituting (19) into the second set of stationary equations, we obtain the conditions:

c̃4 = 0 and c̃3 = c2/3 (c̃3 = −2u/3). Since this case is analogous to the second case from
the previous paragraph, we will omit it.

For c1 = 0, the first set of stationary equations is satisfied when c3 = c4 = 0, and the
second set takes the form

pxx + i
(
c2 − (ptq)

)
px − i(qtpx)p + 2c2(ptq)p = 0,

qxx − i
(
c2 − (ptq)

)
qx + i(ptqx)q + 2c2(ptq)q = 0

or
∂2

x p1 + i(c2 − 2p1q1 − p2q2)∂x p1 − ip1q2∂x p2 + 2c2(p1q1 + p2q2)p1 = 0,

∂2
x p2 + i(c2 − p1q1 − 2p2q2)∂x p2 − ip2q1∂x p1 + 2c2(p1q1 + p2q2)p2 = 0,

∂2
xq1 − i(c2 − 2p1q1 − p2q2)∂xq1 + ip2q1∂xq2 + 2c2(p1q1 + p2q2)q1 = 0,

∂2
xq2 − i(c2 − p1q1 − 2p2q2)∂xq2 + ip1q2∂xq1 + 2c2(p1q1 + p2q2)q2 = 0.

(20)

Let us make the substitution into Equation (20):

pj =
√

uj exp

{
−
∫ wj

2uj
dx

}
, qj =

√
uj exp

{∫ wj

2uj
dx

}
, (21)

where uj = pjqj, wj = pj∂xqj − qj∂x pj.
After simplification, we obtain

w1 = i(c2 − u1 − u2)u1 + ic5,

w2 = i(c2 − u1 − u2)u2 + ic6,
(22)

and
2u1∂2

xu1 − (∂xu1)
2 + 3u4

1 + (4c2 + 6u2)u3
1

+ (c2
2 − 2(c5 + c6) + 4c2u2 + 3u2

2)u
2
1 − c2

5 = 0,

2u2∂2
xu2 − (∂xu2)

2 + 3u4
2 + (4c2 + 6u1)u3

2

+ (c2
2 − 2(c5 + c6) + 4c2u1 + 3u2

1)u
2
2 − c2

6 = 0,

(23)

where c5, c6 ∈ R are constants of integration.
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The transformation of (23) using relations (2) gives us the following equalities:

u∂2
xv + v∂2

xu − (∂xu)(∂xv) + (c2
2 − 2(c5 + c6) + 4c2u + 3u2)uv

+ c2
6 − c2

5 = 0,

2u∂2
xu + 2v∂2

xv − (∂xu)2 − (∂xv)2 + (c2
2 − 2(c5 + c6) + 4c2u + 3u2)(v2 + u2)

− 2(c2
5 + c2

6) = 0.

(24)

To obtain additional relations for the functions u and v, let us consider the coefficients
of the spectral curve Equation (10), which in this case are equal to

A(λ) = −1
3

λ6 − 2c2

3
λ4 −

c2
2 + 3(c5 + c6)

3
λ2 +A3,

B(λ) = 2
27

λ9 +
2c2

9
λ7 +

2c2
2 + 3(c5 + c6)

9
λ5 + B3λ3 + B4λ,

(25)

where
A3 =

1
4
(u + c2)(u2 + c2u − 2(c5 + c6))

+
(2(c2

5 + c2
6) + (∂xu)2 + (∂xv)2)u − 2(c2

5 − c2
6 + (∂xu)(∂xv))v

4(u2 − v2)
,

B3 = −1
3
A3 +

(2c2
2 + 9(c5 + c6))c2

27
,

B4 = − c2

3
A3 −

((c5 + c6)
2 + (∂xu)2)v2 + ((c5 − c6)

2 + (∂xv)2)u2

4(u2 − v2)

−
(c2

5 − c2
6 + (∂xu)(∂xv))uv
2(u2 − v2)

.

(26)

It is easy to see that the spectral curve (10), (25) possesses a holomorphic involution:

τ1 : (µ, λ) → (−µ,−λ).

That is, this spectral curve has symmetry.
Usage the additional integrals (26) allows us to proceed from Equation (24) to the

following equations:

∂2
xu = −2u3 − 3c2u2 − (c2

2 − 2(c5 + c6))u + 2A3 + c2(c5 + c6) (27)

and

6v∂2
xv − 3(∂xv)2 + 3(c2

2 − 2(c5 + c6) + 4c2u + 3u2)v2

− 12B4 − 4c2A3 − 3(c5 − c6)
2 = 0. (28)

Integrating (27), we obtain

(∂xu)2 = −u4 − 2c2u3 − (c2
2 − 2(c5 + c6))u2 + (4A3 + 2c2(c5 + c6))u + c7, (29)

where c7 ∈ R is a constant of integration.
Therefore, the function u(x) ≡ σ|p|2 is an elliptic function or its degeneration. From

Equations (24), (26), and (29), it follows that

c7 =
4
3

c2A3 + 4B4 − (c5 + c6)
2 or B4 =

1
4

c7 +
1
4
(c5 + c6)

2 − 1
3

c2A3.
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Let us replace the function v with v̂ = v/u in Equation (28). From relations (24),
(27)–(29), it follows that the function v̂ satisfies the equation

(∂x v̂)2 =
c7v̂2 + 2(c2

5 − c2
6)v̂ − c7 − 2(c2

5 + c2
6)

u2 .

From this equation, it follows that the function v̂ has the form

v̂ =

√
((c5 + c6)2 − κ2)((c5 − c6)2 − κ2)

k2 sin(κθ) +
c2

5 − c2
6

κ2 , (30)

where ∂xθ = ±u−1, c7 = −κ2.
It is easy to see that if κ2 = (c5 + c6)

2 or κ2 = (c5 − c6)
2, the direction of the vector p

is fixed (v̂ = (c2
5 − c2

6)/κ2). In other cases, it depends on its length |p| =
√

σu according to
the formula (30).

It is obvious that the coefficients in Equation (30) are real in one of the two cases.
In the first case:

κ2 > (c5 + c6)
2 and κ2 > (c5 − c6)

2.

Then, κ2 >
∣∣c2

5 − c2
6

∣∣, which implies that |v̂| < 1 for continuous real θ.
In the second case:

κ2 < (c5 + c6)
2, κ2 < (c5 − c6)

2,

and κ2 <
∣∣c2

5 − c2
6

∣∣. Therefore, in this case, for continuous real θ, the inequality |v̂| > 1 holds.
From Equation (13), it follows that for n = 1, the dynamics of the functions u(x, t1)

and v(x, t1) is described by the following relations:

∂t1 u = −c2∂xu,

∂t1 v = −c2∂xv + (u∂xv − v∂xu),

∂t1 v̂ = (u − c2)∂x v̂.

(31)

Therefore,
u(x, t1) = f (X1),

where X1 = x− c2t1, and the function f (x) satisfies Equation (29). Substituting (30) into (31),
we obtain

∂t1 θt1 = (u − c2)∂xθ = ±1 − c2∂xθ.

Therefore,
θ(x, t1) = θ̂(X1)± t1,

where θ̂(x) is a solution to the equation ∂xθ = ±u−1. Thus, if v̂ ̸= const, then the dynamics
of the vector direction differ from the dynamics of its length.

5.1. Case of Elliptic Function u(x)

Let
u = dn(X1)− b2 < 0, (32)

where X1 = x − c2t1, and dn(x) is the Jacobi elliptic function [32,33], satisfying the equation

[dn′(x)]2 = (1 − dn2(x))(dn2(x)− 1 + k2).

Then,

c2 = 2b2, c5,6 =
2 − k2 − 2b4

4
± m, c7 = (1 − b4)(b4 − 1 + k2), A3 = 0,
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where b > 1, m > 0, 0 < k < 1, and Equation (29) takes the form

(∂xu)2 = −(u2 + 2b2u + b4 − 1)(u2 + 2b2u + b4 − 1 + k2).

In this case,

v̂ =
k2
√

4m2 − (b4 − 1)(b4 − 1 + k2)

2(b4 − 1)(b4 − 1 + k2)
sin(κθ)− (2b4 − 2 + k2)m

(b4 − 1)(b4 − 1 + k2)
, (33)

where κ =
√
(b4 − 1)(b4 − 1 + k2), and θ satisfies the equation

∂xθ =
±1

b2 − dn(x)
. (34)

Since κ2 − (c5 + c6)
2 = −k4/4 < 0, for the reality of the solution, it is necessary to set

κ2 − (c5 + c6)
2 = (b4 − 1)(b4 − 1 + k2)− 4m2 < 0

or m > κ/2. In this case, the solution will satisfy the reductions (3).
From Equation (34), the following equalities follow:

θ = ±
∫ dx

b2 − dn(x)
= ±

∫
(b2 + dn(x))dx

b4 − dn2(x)

= ±


∫ b2dx

b4 − dn2(x)︸ ︷︷ ︸
I1

+
∫ dn(x)dx

b4 − dn2(x)︸ ︷︷ ︸
I2

.

The calculation of the integral I2 yields the following result:

I2 =
∫ dn(x)dx

b4 − dn2(x)
=
∫ dn d(dn)

(b4 − dn2)
√
(1 − dn2)(dn2 −1 + k2)

=
i√

(b4 − 1)(b4 − 1 + k2)
arctanh

 √
b4 − 1√

b4 − 1 + k2

√
dn2 −1 + k2

dn2 −1


=

1√
(b4 − 1)(b4 − 1 + k2)

arctan

( √
b4 − 1√

b4 − 1 + k2

cn(x)
sn(x)

)

To calculate the integral I1, we will use the following identity:

dn2(x) =
2 − k2

3
− ℘(x̃), x̃ = x + ω3.

where ℘(x) is the Weierstrass elliptic function satisfying the equation

[℘′(x)]2 = 4℘3(x)− g2℘(x)− g3 = 4
3

∏
j=1

(℘(x)− ej).

Here,

g2 =
4(1 − k2 + k4)

3
, g3 =

4(2 − 3k2 − 3k4 + 2k6)

27
,

e1 =
1
3
(2 − k2), e2 =

1
3
(2k2 − 1), e3 = −1

3
(1 + k2).
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Continuing the calculations in terms of Weierstrass elliptic functions, we have

I1 =
∫ b2dx

b4 − dn2(x)
=
∫ b2dx

℘(x̃)− ℘(a)

=
b2

℘′(a)

∫
(ζ(x̃ − a)− ζ(x̃ + a) + 2ζ(a))dx

=
1

2i
√
(b4 − 1)(b4 − 1 + k2)

(
ln

σ(x̃ − a)σ(ω3 + a)
σ(x̃ + a)σ(ω3 − a)

+ 2ζ(a)x
)

.

Here,

℘(a) = (2 − k2 − 3b4)/3,

℘′(a) = 2ib2
√
(b4 − 1)(b4 − 1 + k2).

Since ℘(a) < e3, then Re a = 0. Consequently, a ∈ (0, ω3), a∗ = −a, (ζ(a))∗ = −ζ(a)
and

(σ(x̃ + a))∗ = (σ(x + ω3 + a))∗ = σ(x − ω3 − a)

= −e−2η3(x−a)σ(x + ω3 − a) = −e−2η3(x−a)σ(x̃ − a),

where η3 = ζ(ω3), Re η3 = 0.
Since

σ(x̃ + a) = −e2η3(x+a)(σ(x̃ − a))∗,

then

ln
σ(x̃ − a)σ(ω3 + a)
σ(x̃ + a)σ(ω3 − a)

= −2η3x + 2i arg σ(x̃ − a)− iπ,

and

κθ = arctan

( √
b4 − 1√

b4 − 1 + k2

cn(X1)

sn(X1)

)
+ arg(σ(X1 +ω3 − a)) − i(ζ(a)− η3)X1 − κt1 −

π

2
,

where X1 = x − 2b2t1.
Since this solution is given by quite intricate expressions, we will not explicitly write

out the formulas for the components pj and qj.
The spectral curve of this solution is determined by Equation (10), where

A(λ) = −1
3

λ6 − 4b2

3
λ4 +

1
2
(3k2 − 6 + 6b2 − 8b4)λ2,

B(λ) = 2
27

λ9 +
4b2

9
λ7 +

1
18

(6 − 6b2 + 16b4 − 3k2)λ5

+
b2

27
(18 − 18b2 + 16b4 − 9k2)λ3

+
1

16
(k4 + 4b2(k2 − 2)− 4b4(k2 − 3)− 4b8)λ.

The discriminant of the polynomial R(µ) is a polynomial of degree 14 in the spectral
parameter λ with a double root at λ = 0. Therefore, the spectral curve is a degeneration of
an algebraic curve of the genus 5.

5.2. Case of a Rational Function u(x)

Let

u = −a2 − 2b2

1 + b4X2
1
< 0, (35)
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where X1 = x − c2t1. Then,

c2 = 2a2 + b2, c5,6 =
b4 − 2a2b2 − 2a4

4
± m, c7 = −(a2 + 2b2)a6, A3 = −1

4
b6,

where a > 0, b > 0, m > 0. With these values of constants, Equation (29) takes the form

(∂xu)2 = −(u + a2)3(u + a2 + 2b2).

Since

κ2 − (c5 + c6)
2 =

1
4
(4a2 − b2)b6,

κ2 − (c5 − c6)
2 = a6(a2 + 2b2)− 4m2,

then, for b < 2a and 2m < a3
√

a2 + 2b2 the condition |v̂| < 1 is satisfied. If b > 2a and
2m > a3

√
a2 + 2b2, then |v̂| > 1.

In this case,

v̂ =
b4 − 2a2b2 − 2a4

a6(a2 + 2b2)
m +

b3
√
(4a2 − b2)(a8 + 2a6b2 − 4m2)

2a6(a2 + 2b2)

× sin
(

a
√

a2 + 2b2X2 − 2 arctan
(

ab2X1√
a2 + 2b2

))
, (36)

where X2 = x −
(

c2 +
κ

a
√

a2 + 2b2

)
t1. Simplifying Equation (36), we obtain

v̂ =
b4 − 2a2b2 − 2a4

a6(a2 + 2b2)
m +

b3
√
(4a2 − b2)(a8 + 2a6b2 − 4m2)

2a6(a2 + 2b2)

×
(
(a2 + 2b2 − a2b4X2

1)

a2 + 2b2 + a2b4X2
1

sin
(

a
√

a2 + 2b2X2

)
− 2ab2

√
a2 + 2b2X1

a2 + 2b2 + a2b4X2
1

cos
(

a
√

a2 + 2b2X2

))
. (37)

In the case of b = 2a or m =
1
2

a3
√

a2 + 2b2 the function v̂ is constant. If b = 2a, then

u = −9a2 + 16a4x2

1 + 16a4x2 , v̂ =
2m
3a4

and

c2 = 6a2, c5,6 =
3
2

a4 ± m, c7 = −9a8,

A3 = −16a6, B3 =
82
3

a6, B4 = 32a8.



Symmetry 2024, 16, 60 14 of 20

The relations (21), (22), and (2) imply the following equalities:

p1 = i

√
3a4 + 2m(1 − 4ia2X)(3 − 4ia2X)√

6a(1 + 16a4X2)
e−2ia2x+6ia4t1 ,

p2 = i

√
3a4 − 2m(1 − 4ia2X)(3 − 4ia2X)√

6a(1 + 16a4X2)
e−2ia2x+6ia4t1 ,

q1 = i

√
3a4 + 2m(1 + 4ia2X)(3 + 4ia2X)√

6a(1 + 16a4X2)
e2ia2x−6ia4t1 ,

q2 = i

√
3a4 − 2m(1 + 4ia2X)(3 + 4ia2X)√

6a(1 + 16a4X2)
e2ia2x−6ia4t1 ,

(38)

where X = x−6a2t1. The dependence of the solution (38) on t1 was found from Equation (13).
It is easy to see that when 3a4 > 2m the solution (38) satisfies the reductions qj = −p∗j .

The amplitudes of the solution components are depicted in Figure 1.

|p1(x, t1)| |p2(x, t1)|

Figure 1. The amplitudes of the solution (38) for a = 1, m = 1.

The equation of the spectral curve for solution (38) takes the form

R(µ, λ) =

(
µ − 1

3
λ3 − 2a2λ

)
×
(

µ2 +

(
1
3

λ3 + 2a2λ

)
− 2

9
λ6 − 8

3
a2λ4 − 11a4λ2 − 16a6

)
= 0. (39)

Note that since the solution components p1 and p2 are linearly dependent, the spectral
curve splits into two. The first one is rational and is defined by the equation

µ =

(
1
3

λ2 + 2a2
)

λ.

The equation for the second component of the curve is given by

µ̃2 = (λ2 + 4a2)3, µ =
1
2

µ̃ − 1
6

λ3 − a2λ.

In other words, the second component of the curve (39) represents a degenerate
hyperelliptic curve of genus g = 2. The presence of branch points of the third order on the
spectral curve corresponds to the existence of solutions in terms of rational functions.

If the function v̂ is defined by Equation (37) and v̂ ̸= const, then

u1 = −
(a8 + 2a6b2 − 2a4m − 2a2b2m + b4m)(2b2 + a2(1 + b4X2

1))

2a6(a2 + 2b2)(1 + b4X2
1)
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+
b5
√
(4a2 − b2)(a8 + 2a6b2 − 4m2)X1

2a5
√

a2 + 2b2(1 + b4X2
1)

cos
(

a
√

a2 + 2b2X2

)
−

b3
√
(4a2 − b2)(a8 + 2a6b2 − 4m2)(2b2 + a2(1 − b4X2

1))

4a6(a2 + 2b2)(1 + b4X2
1)

× sin
(

a
√

a2 + 2b2X2

)
,

u2 = −
(a8 + 2a6b2 + 2a4m + 2a2b2m − b4m)(2b2 + a2(1 + b4X2

1))

2a6(a2 + 2b2)(1 + b4X2
1)

− (b5
√
(4a2 − b2)(a8 + 2a6b2 − 4m2)X1

2a5
√

a2 + 2b2(1 + b4X2
1)

cos
(

a
√

a2 + 2b2X2

)
+

(b3
√
(4a2 − b2)(a8 + 2a6b2 − 4m2)(2b2 + a2(1 − b4X2

1))

4a6(a2 + 2b2)(1 + b4X2
1)

× sin
(

a
√

a2 + 2b2X2

)
,

where
X1 = x − (2a2 + b2)t1 + X10, X2 = x − (3a2 + b2)t1 + X20.

Here, X10 = X1(0, 0) and X20 = X2(0, 0) are initial phases.
Equation (13) is two-phased and represents a nonlinear superposition of rational and

trigonometric functions. In other words, the solution is a traveling rational wave on a
trigonometric background. Expressions for the components pj and qj can be obtained from
Equations (21) and (22). The amplitudes of the components of this solution are shown in
Figure 2.

|p1(x, t1)| |p2(x, t1)|

Figure 2. The amplitudes of the components of the traveling rational wave on a trigonometric
background for a = 1, b = 1, m = 1/2, X10 = X20 = 0.

In this case, the equation of the spectral curve has the form given in (10), where

A(λ) = −1
3

λ6 − 2(2a2 + b2)

3
λ4 − 2a4 + 2a2b2 + 5b4

6
λ2 − b6

4
,

B(λ) = 2
27

λ9 +
2(2a2 + b2)

9
λ7 +

10a4 + 10a2b2 + 7b4

18
λ5

+
35b6 + 48a2b4 − 12a4b2 − 8a6

108
λ3 +

7b8 − 4a2b6

48
λ.

(40)

The discriminant of the polynomial R(µ) with coefficients given by (40) is equal to

D(λ) =
1

256
(4a2λ2 + b4)3(4(a2 + 2b2)λ4 + (16a4 + 40a2b2 + 13b4)λ2 + 16b6).
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Therefore, the spectral curve (10), (40) is degenerate. It has two branch points of the
third order and four branch points of the first order. The presence of branch points of the
third order indicates a dependence of the solution on rational functions.

5.3. Case of the Function u(x) in the Form of a Soliton

Let
u = −b2 − a sech(aX1) < 0, (41)

where X1 = x − c2t1. Then,

c2 = 2b2, c5,6 =
a2 − 2b4

4
± m, c7 = (a2 − b4)b4, A3 = 0,

where a > 0, b > 0, m > 0.
With these values of constants, Equation (29) takes the form

(∂xu)2 = −(u + b2)2(u2 + 2b2u + b4 − a2).

Since

κ2 − (c5 + c6)
2 = −1

4
a4 < 0,

κ2 − (c5 − c6)
2 = b4(b4 − a2)− 4m2,

Then, the solution will be real when 4m2 > b4(b4 − a2). In other words, Function (41)
corresponds to the inequality |v̂| > 1.

In this case, Equation (30) can be written in the following form:∫ dv̂√
−a4 − 16m2 + 8(a2 − 2b4)mv̂ + 4b4(a2 − b4)v̂2

=
1
2

∫ dx
b2 + a sech(ax)

.

Both integrals in this equality depend on the relationship between a and b2.
Let a < b2 and 2m > b2

√
b4 − a2. Then the solution of Equation (30) has the form

v̂ =
(2b4 − a2)m

b8 − a2b4 +
a2
√

4m2 − b8 + a2b4

2(b8 − a2b4)

×
(

b2 + a cosh(aX1)

a + b2 cosh(aX1)
sin
(√

b4 − a2X2

)
+

(a2 − b4) sinh(aX1)√
b4 − a2(a + b2 cosh(aX1)

cos
(√

b4 − a2X2

))
. (42)

From Equations (2) and (42), it follows that

u1 = − (−a2b4 + b8 + a2m − 2b4m)(b2 + a sech(aX1))

2b4(b2 − a)(a + b2)

−
a2
√

a2b4 − b8 + 4m2(b2 sech(aX1) + a) sin
(√

b4 − a2X2

)
4b4(b2 − a)(a + b2)

+
a2
√

a2b4 − b8 + 4m2 tanh(aX1) cos
(√

b4 − a2X2

)
4b4

√
b4 − a2

,

u2 = − (−a2b4 + b8 − a2m + 2b4m)(b2 + a sech(aX1))

2b4(b2 − a)(a + b2)

+
a2
√

a2b4 − b8 + 4m2(b2 sech(aX1) + a) sin
(√

b4 − a2X2

)
4b4(b2 − a)(a + b2)
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−
a2
√

a2b4 − b8 + 4m2 tanh(aX1) cos
(√

b4 − a2X2

)
4b4

√
b4 − a2

,

where X1 = x − 2b2t1 + X10, X2 = x − 3b2t1 + X20. The amplitudes of the components of
this solution are shown in Figure 3.

|p1(x, t1)| |p2(x, t1)|

Figure 3. The amplitudes of the solitonic solution for a = 3, b = 2, m = 6, X10 = X20 = 0.

In this case, the equation of the spectral curve has the form (10), where

A(λ) = −1
3

λ6 − 4b2

3
λ4 − 3a2 + 2b4

6
λ2,

B(λ) = 2
27

λ9 +
4b2

9
λ7 +

3a2 + 10b4

18
λ5 +

b2(9a2 − 2b4)

27
λ3 +

a4

16
λ.

(43)

The discriminant of the polynomial R(µ) with coefficients (43) is equal to

D(λ) =
1

256
λ2(4b2λ2 + a2)2(16(b4 − a2)λ4 + (64b6 − 72a2b2)λ2 − 27a4).

Therefore, the spectral curve (10), (43) is degenerate. It has three branch points of the
second order and four branch points of the first order.

5.4. Case of the Function u(x) in the Form of a Dark Soliton

Let

u =
2ab2(1 + b2)

tanh2(abX1) + b2
− k2 < 0 (44)

where X1 = x − c2t1 + X10. Then,

c2 = 2k2 − a(1 + 3b2), c5,6 =
1
4

(
(1 − 2b2 − 3b4)a2 + (1 + 3b2)ak2 − 2k4

)
± m,

c7 = (2a(1 + b2)− k2)(k3 − 2ab2k)2, A3 = −1
4

a3(b2 − 1)(b2 + 1)2,

where a > 0, b > 0, m > 0, k > 0. With these values of constants, Equation (29) takes the
form

(∂xu)2 = −(u + k2)(u + k2 − 2a(1 + b2))(u + k2 − 2ab2)2.

Since

κ2 − (c5 + c6)
2 =

1
4

a3(b2 + 1)2(4(b2 − 1)k2 − a(1 − 3b2)2),

κ2 − (c5 − c6)
2 = (k2 − 2a(1 + b2))(k3 − 2ab2k)2 − 4m2,
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Therefore, the inequality |v̂| < 1 is true under the following conditions:

b > 1, k2 >
a(1 − 3b2)2

4(b2 − 1)
,

k2 > 2a(1 + b2), 4m2 < (k2 − 2a(1 + b2))(k3 − 2ab2k)2.

With these parameter values, Equality (30) takes the form

v̂ =
a3/2(b2 + 1)

√
4(b2 − 1)k2 − a(1 − 3b2)2

2(k2 − 2a(1 + b2))(k3 − 2ab2k)2

×
√
(k2 − 2a(1 + b2))(k3 − 2ab2k)2 − 4m2 sin(κθ)

− (a2(−1 + 2b2 + 3b4)− 2a(1 + 3b2)k2 + 2k4)m
(k2 − 2a(1 + b2))(k3 − 2ab2k)2

where

κθ = 2 arctan

(
k tanh(abX1)

b
√

k2 − 2a(b2 + 1)

)
+ k
√

k2 − 2a(b2 + 1)
(

X1 − (k2 − 2ab2)t1

)
.

Using trigonometric identities, we obtain the following relation:

sin(κθ) =
2bk
√

k2 − 2a(b2 + 1) tanh(abX1)

(k2 − 2a(b2 + 1))b2 + k2 tanh2(abX1)
cos(X2)

+
(k2 − 2a(b2 + 1))b2 − k2 tanh2(abX1)

(k2 − 2a(b2 + 1))b2 + k2 tanh2(abX1)
sin(X2),

where
X2 = k

√
k2 − 2a(b2 + 1)(x − (3k2 − a(1 + 5b2))t1) + X20.

In Figure 4, the amplitudes of the solution components are depicted, where the length
of the solution is equal to |p| =

√
−u, and u is determined by Equation (44).

|p1(x, t1)| |p2(x, t1)|

Figure 4. The amplitudes of the dark solitonic solution for a = 8, b = 2, k = 9, m = 76, X10 = X20 = 0.

The coefficients of the equation of the spectral curve (10) in this case are

A(λ) = −1
3

λ6 +
2
3
(a(1 + 3b2)− 2k2)λ4

− 1
6
(a2(5 + 6b2 + 9b4)− 2a(1 + 1b2)k2 + 2k4)λ2 − 1

4
a3(b2 − 1)(b2 + 1)2,

B(λ) = 2
27

λ9 − 2
9
(a(1 + 3b2)− 2k2)λ7
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+
1
18

(a2(7 + 18b2 + 27b4)− 10a(1 + 3b2)k2 + 10k4)λ5

− 1
108

(a3(35 + 99b2 + 45b4 + 45b6)− 48a2k2 − 12a(1 + 3b2)k4 + 8k6)λ3

+
1
48

a3(1 + b2)2(a(7 − 10b2 + 15b4)− 4(−1 + b2)k2)λ.

The discriminant of the polynomial R(µ) with these coefficients is

D(λ) =
1

256

(
a2(1 + b2)2 + 4(k2 − 2ab2)λ2

)2
(6a5(−1 + b2)3(1 + b2)2

+a2(−a2(1 + b2)2(−13 − 10b2 + 131b4) + 8a(−13 − 5b2 + 13b4 + 5b6)k2

+16(−1 + b2)2k4)λ2 + 8(a3(1 + b2)2(−1 + 3b2) + a2(7 + 30b2 + 23b4)k2

−4a(5 + 7b2)k4 + 8k6)λ4 + 16k2(−2a(1 + b2) + k2)λ6).

Therefore, in this case, the spectral curve is also degenerate. It has two complex
conjugate branch points of the second order and three pairs of complex conjugate branch
points of the first order.

6. Concluding Remarks

The investigation of simple nontrivial solutions of the vector Gerdjikov–Ivanov equa-
tion has revealed the following properties:

• This equation is invariant under orthogonal transformations of solutions. The spectral
curves of multiphase solutions are also invariant under orthogonal transformations of
solutions. In other words, the direction of the wave vector cannot be determined from
the spectral curve.

• The procedure for constructing simple nontrivial solutions of these equations has
shown that an equation for the length of the vector appears first. Then, from additional
relations, an equation determining the dependence of the vector’s direction on its
length follows. Thus, the solution of the equation is determined not so much by the
dynamics of its components as by the dynamics of the vector’s length and direction.

• For all vector equations, there are parameter values for which the direction of the vector
is fixed. In these cases, the spectral curve breaks down into separate components, and
the evolution of the vector is determined by a curve of a lower genus than in the case
when the vector’s direction is not fixed.

Therefore, it is necessary to take into account the presence of these symmetries when
reconstructing a signal from its spectral data.
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