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Abstract: A seminumerical approach proposed many years ago for describing gravitational collapse
in the post-quasi-static approximation is modified in order to avoid the numerical integration of the
basic differential equations the approach is based upon. For doing that we have to impose some
restrictions on the fluid distribution. More specifically, we shall assume the vanishing complexity
factor condition, which allows for analytical integration of the pertinent differential equations and
leads to physically interesting models. Instead, we show that neither the homologous nor the quasi-
homologous evolution are acceptable since they lead to geodesic fluids, which are unsuitable for
being described in the post-quasi-static approximation. Also, we prove that, within this approxima-
tion, adiabatic evolution also leads to geodesic fluids, and therefore, we shall consider exclusively
dissipative systems. Besides the vanishing complexity factor condition, additional information is
required for a full description of models. We shall propose different strategies for obtaining such
an information, which are based on observables quantities (e.g., luminosity and redshift), and/or
heuristic mathematical ansatz. To illustrate the method, we present two models. One model is
inspired in the well-known Schwarzschild interior solution, and another one is inspired in Tolman
VI solution.

Keywords: relativistic fluid; gravitational collapse; dissipative systems

1. Introduction

In the study of self–gravitating systems, there are three possible regimes of evolution.
The simplest one is the static (stationary when rotations are allowed) regime, which is
characterized by the existence of a time-like Killing vector forming a vorticity-free congru-
ence (in the stationary case, the congruence is not vorticity-free). In the coordinate system
adapted to this congruence, the metric and the physical variables are invariant with respect
to translations along the time axe.

Next, we have the quasi-static regime (QSR), in which case the system is assumed to
evolve, but slowly enough, so that it can be considered to be in equilibrium at each moment
(the TOV equation is satisfied at all times). This implies that the fluid distribution changes
on a time scale that is very long as compared to the hydrostatic time scale [1,2] (sometimes,
this time scale is also referred to as the dynamical time scale, e.g., [3]). Thus, in this regime,
the evolution of the fluid may be regarded as a sequence of static models, where the time
between any two states of equilibrium is neglected (see [4–6] for applications).

The QSR applies to a large variety of scenarios due to the fact that the hydrostatic time
scale is very small during many phases of the life of the star [2], e.g., it is of the order of
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27 min, 4.5 s and 10−4 s, respectively, for the Sun, a white dwarf and a neutron star of one
solar mass and 10 Km radius.

Finally, we have the dynamic regime where the system is out of equilibrium, meaning
that the TOV equation is not satisfied. The system changes on a time scale that is smaller
than the hydrostatic time scale.

All this having been said, the following question is in order: Can we approach the
non-equilibrium by means of successive approximations? Or, equivalently: Is there life
between quasi-equilibrium and non-equilibrium?

As it has been proved in the past (see [7–10] and references therein), the answer to the
above questions is affirmative (in some cases at least), the corresponding regime is called
post-quasi-static (PQSR), and can be regarded as the closest, non-equilibrium, regime to
QSR. Before proceeding farther, some important remarks are in order.

1. First of all, it should be stressed that the main motivation to consider the PQSR is to
have the possibility to study, in the simplest possible way, those aspects of the object
directly related to the non-equilibrium situation, which for obvious reasons cannot be
described within the QSR.

2. Since we are assuming the fact that we can approach the non-equilibrium by means of
successive approximations, it goes without saying that not any self-gravitating fluid
will satisfy this requirement. In particular, it is meaningless, from the physical point
of view, to consider geodesic fluids in PQSR, since these fluids are always in the full
dynamic regime (the only interaction in this case being the gravitational one).

3. It also should be clear that unlike the two precedent regimes, there is not a unique
definition for PQSR. Here, we shall assume the definition proposed in [7–10].

Let us now elaborate on the main motivation of our endeavor with this work.
To provide an accurate description of the gravitational collapse of a supermassive star,

including the final fate of such process (naked singularities, black holes, anything else), the
mechanism behind a type II supernova event [11–17] or the structure and evolution of the
compact object resulting from such a process [18–20], is a task of utmost relevance.

We have available three approaches to study the gravitational collapse in the context
of general relativity. On the one hand, numerical methods [21–24] allow for including more
realistic equations of state. Nevertheless, the obtained results, in general, may be highly
model-dependent. Moreover, difficulties associated with numerical solutions of partial
differential equations in presence of shocks may complicate further the problem.

Alternatively, one may resort to analytical solutions to Einstein equations, which
are more suitable for general discussions, and may be relatively simple to analyze, still
containing some of the essential features of a realistic situation (see for example [25–35] an
references therein). However, often they resort to heuristic assumptions, whose justification
is unclear.

Between the two aforementioned approaches, we have seminumerical techniques,
which may be regarded as a “compromise” between the analytical and numerical ap-
proaches. These techniques are based on the PQSR approximation mentioned above, and
were developed in [7–10] (see also [36,37]).

This third approach allows to reduce the initial system of partial differential equations
into a system of ordinary differential equations (referred to as surface equations) for
quantities evaluated at the boundary surface of the fluid distribution.

The approach relies on a set of conveniently defined variables (referred to as “effective”
variables) plus an heuristic ansatz on the latter, whose rationale and justification become
intelligible within the context of the PQSR.

So far, the above-mentioned approach has been used by solving numerically the
surface equations. In this work, we complement the approach with a sensible physical
condition, allowing us to avoid numerical integration, resorting exclusively to analyti-
cal methods. Such a condition appears to be the vanishing of the complexity factor, as
defined in [38,39]. Other plausible conditions, such as the homologous [39] and the quasi-
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homologous [40] conditions, have been considered, but were dismissed due to the facts
that they, within the PQSR, lead to geodesic fluids.

Besides the vanishing complexity factor condition, we have to resort to additional
sources of information in order to obtain a full description of the collapsing system. The
number of possible strategies for carrying that out is very large. Here, we emphasize, on
the one hand, on conditions suggested by observables such as the luminosity profile and
the gravitational redshift. On the other hand, we propose some heuristic mathematical
constrains, justified by previous experience on finding time-dependent solutions to Einstein
equations, or, simply, by the fact that they allow a simple analytical integration.

The organization of the manuscript is as follows. In the next section, we introduce
the basic variables and definitions, as well as the Einstein and the transport equations. In
Section 3, we detail the junction conditions with the exterior spacetime, which is Vaidya.
The complexity factor and the homologous and quasi-homologous evolution are defined
in Section 4. A review of the approach is outlined in Section 5, and some examples are
analyzed in Section 6. Finally, we include a discussion of the results and some concluding
remarks in the last section.

2. Basic Variables and Equations
2.1. The Metric

We consider a spherically symmetric distribution of collapsing fluid, bounded by
a spherical surface Σ. The fluid is assumed to be locally anisotropic (principal stresses
unequal) and undergoing dissipation in the form of heat flow (to model dissipation in the
diffusion approximation). Physical arguments to consider such fluid distributions in the
study of gravitational collapse may be found in [41–44] and references therein.

Using comoving coordinates, we write the line element in the form

ds2 = −A2dt2 + B2dr2 + R2(dθ2 + sin2 θdϕ2), (1)

where A, B and R are functions of t and r and are assumed positive. We number the
coordinates x0 = t, x1 = r, x2 = θ and x3 = ϕ.

2.2. Energy–Momentum Tensor

The matter energy–momentum tensor Tαβ inside Σ has the form

Tαβ = (µ + P⊥)VαVβ + P⊥gαβ + (Pr − P⊥)KαKβ

+ qαVβ + Vαqβ, (2)

where µ is the energy density, Pr is the radial pressure, P⊥ is the tangential pressure, qα

is the heat flux, Vα is the four-velocity of the fluid and Kα is a unit four-vector along the
radial direction. These quantities satisfy

VαVα = −1, Vαqα = 0, KαKα = 1,

KαVα = 0.

Since we assume the metric (1) to be comoving, then

Vα = A−1δα
0 , qα = qB−1δα

1 , Kα = B−1δα
1 , (3)

where q is a function of t and r.

2.3. Kinematical Variables

The four-acceleration aα and the expansion Θ of the fluid are given by

aα = Vα;βVβ, Θ = Vα
;α, (4)
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and its shear σαβ by

σαβ = V(α;β) + a(αVβ) −
1
3

Θhαβ, (5)

where hαβ = gαβ + VαVβ.
We do not explicitly add bulk viscosity to the system because it can be absorbed into

the radial and tangential pressures, Pr and P⊥, of the collapsing fluid.
From (4) with (3), we have for the four-acceleration and its scalar a

a1 =
A′

A
, a2 = aαaα =

(
A′

AB

)2

, (6)

where aα = aKα, and for the expansion

Θ =
1
A

(
Ḃ
B
+ 2

Ṙ
R

)
, (7)

where the prime stands for r differentiation and the dot stands for differentiation with
respect to t. With (3), we obtain for the shear (5) its non zero components

σ11 =
2
3

B2σ, σ22 =
σ33

sin2 θ
= −1

3
R2σ, (8)

and its scalar
σαβσαβ =

2
3

σ2, (9)

where

σ =
1
A

(
Ḃ
B
− Ṙ

R

)
. (10)

Then, the shear tensor can be written as

σαβ = σ

(
KαKβ −

1
3

hαβ

)
. (11)

2.4. Transport Equations

In the dissipative case, we shall need a transport equation in order to find the tem-
perature distribution and its evolution. Assuming a causal dissipative theory (e.g., the
Israel–Stewart theory [45–47]) the transport equation for the heat flux reads

τhαβVγqβ;γ + qα = −khαβ
(
T,β + Taβ

)
− 1

2
kT2

(
τVβ

κT2

)
;β

qα, (12)

where k, T and τ denote thermal conductivity, temperature and relaxation time, respectively.
In the spherically symmetric case under consideration, the transport equation has only

one independent component, which may be obtained from (12) by contracting with the
unit spacelike vector Kα, it reads

τVαq,α + q = −k(KαT,α + Ta)− 1
2

kT2
(

τVα

κT2

)
;α

q. (13)

2.5. Field Equations

The Einstein field equations for the interior spacetime (1) can be written as

8πµA2 =

(
2

Ḃ
B
+

Ṙ
R

)
Ṙ
R
−

(
A
B

)2
[

2
R

′′

R
+

(
R′

R

)2

− 2
B′

B
R′

R
−

(
B
R

)2
]

, (14)
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4πqAB =

(
Ṙ′

R
− Ḃ

B
R′

R
− Ṙ

R
A′

A

)
, (15)

8πPrB2 = −
(

B
A

)2[
2

R̈
R
−

(
2

Ȧ
A

− Ṙ
R

)
Ṙ
R

]
+

(
2

A′

A
+

R′

R

)
R′

R
−

(
B
R

)2
, (16)

8πP⊥R2 = −
(

R
A

)2[ B̈
B
+

R̈
R
− Ȧ

A

(
Ḃ
B
+

Ṙ
R

)
+

Ḃ
B

Ṙ
R

]
+

(
R
B

)2[ A′′

A
+

R′′

R
− A′

A
B′

B
+

(
A′

A
− B′

B

)
R′

R

]
. (17)

At this point, the following remark is in order: The knowledge of A(t, r), B(t, r) and
R(t, r) casts the system above in an algebraic system of four equations for the four unknown
functions µ, q, Pr and P⊥ which, in such a case, can be obtained without further information.

2.6. Mass and Areal Velocity

Following Misner and Sharp [48], let us now introduce the mass function m(t, r) (see
also [49]), defined by

m =
R3

2
R23

23 =
R
2

[(
Ṙ
A

)2

−
(

R′

B

)2

+ 1

]
. (18)

It is useful to introduce the proper time derivative DT given by

DT =
1
A

∂

∂t
, (19)

and the proper radial derivative DR,

DR =
1
R′

∂

∂r
, (20)

where R defines the areal radius of a spherical surface inside Σ (as measured from its area).
Using (19), we can define the velocity U of the collapsing fluid as the variation of the

areal radius with respect to proper time, i.e.,

U = DT R. (21)

Then, (18) can be rewritten as

E ≡ R′

B
=

(
1 + U2 − 2m

R

)1/2
. (22)

Using (14)–(16) with (19) and (20), we obtain from (18)

DTm = −4π(PrU + qE)R2, (23)

and

DRm = 4π

(
µ + q

U
E

)
R2. (24)

Next, the three-acceleration DTU of an in-falling particle inside Σ can be obtained by
using (16), (18) and (22), producing

DTU = − m
R2 − 4πPrR + E

A′

AB
, (25)
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or
A′

A
=

4πRB
E

(
DTU
4πR

+
m

4πR3 + Pr

)
. (26)

Finally, from the Bianchi identities, we obtain

(µ + Pr)DTU = −(µ + Pr)
( m

R2 + 4πPrR
)
− E2

[
DRPr +

2
R
(Pr − P⊥)

]
− E

[
DTq + 2q

(
2U
R

+ σ

)]
. (27)

The physical meaning of different terms in (27) has been discussed in detail in [43,44].
Suffice to say, at this point, the first term on the right-hand side describes the gravitational
force term.

3. The Exterior Spacetime and Junction Conditions

Outside Σ, we assume that we have the Vaidya spacetime (i.e., we assume that all
outgoing radiation is massless), described by

ds2 = −
[

1 − 2M(v)
ρ

]
dv2 − 2dρdv + ρ2(dθ2 + sin2 θdϕ2), (28)

where M(v) denotes the total mass and v is the retarded time.
The matching of the full non-adiabatic sphere (including viscosity) to the Vaidya

spacetime, on the surface r = rΣ = constant, was discussed in [50].
Now, from the continuity of the first differential form, it follows that (see [50] for·details)

Adt Σ
= dv

(
1 − 2M(v)

ρ

)
Σ
= dτ, (29)

R Σ
= ρ(v), (30)

and (
dv
dτ

)−2
Σ
=

(
1 − 2m

ρ
+ 2

dρ

dv

)
, (31)

where τ denotes the proper time measured on Σ.
The continuity of the second differential form produces

m(t, r) Σ
= M(v), (32)

and

2
(

Ṙ′

R
− Ḃ

B
R′

R
− Ṙ

R
A′

A

)
Σ
= − B

A

[
2

R̈
R
−

(
2

Ȧ
A

− Ṙ
R

)
Ṙ
R

]
+

A
B

[(
2

A′

A
+

R′

R

)
R′

R
−

(
B
R

)2
]

, (33)

where Σ
= means that both sides of the equation are evaluated on Σ (observe a misprint in

Equation (40) in [50] and a slight difference in notation).
Comparing (33) with (15) and (16), one obtains

q Σ
= Pr. (34)

Thus, the matching of (1) and (28) on Σ implies (32) and (34).
Also, we have

q Σ
=

L
4πρ2 , (35)



Symmetry 2024, 16, 341 7 of 22

where LΣ denotes the total luminosity of the sphere as measured on its surface and is
given by

L Σ
= L∞

(
1 − 2m

ρ
+ 2

dρ

dv

)−1
, (36)

and where

L∞ = −dM
dv

Σ
= −

[
dm
dt

dt
dτ

(
dv
dτ

)−1
]

, (37)

is the total luminosity measured by an observer at rest at infinity.
The boundary redshift zΣ is given by

dv
dτ

Σ
= 1 + z, (38)

with
dv
dτ

Σ
=

(
R′

B
+

Ṙ
A

)−1

. (39)

Therefore, the time of formation of the black hole is given by(
R′

B
+

Ṙ
A

)
Σ
= E + U Σ

= 0. (40)

Also, observe that from (31), (36) and (39), it follows that

L Σ
=

L∞

(E + U)2 , (41)

and from (21), (22), (31) and (39),

dρ

dv
Σ
= U(U + E). (42)

4. The Complexity Factor

The condition we shall impose on our system in order to integrate analytically the
ensuing differential equations is the vanishing of the complexity factor. This is a scalar
function that has been proposed in order to measure the degree of complexity of a given
fluid distribution [38,39], and is related to the so-called structure scalars [51].

As shown in [38,39], the complexity factor is identified with the scalar function YTF,
which defines the trace-free part of the electric Riemann tensor (see [51] for details).

Thus, let us define tensor Yαβ by

Yαβ = RαγβδVγVδ, (43)

which may be expressed in terms of two scalar functions YT , YTF, as

Yαβ =
1
3

YThαβ + YTF

(
KαKβ −

1
3

hαβ

)
. (44)

Then, after lengthy but simple calculations, using field equations, we obtain (see [39,40]
for details)

YTF = −8πΠ +
4π

R3

∫ r

0
R3

(
DRµ − 3q

U
RE

)
R′dr̃. (45)

In terms of the metric functions, the scalar YTF reads

YTF =
1

A2

[
R̈
R
− B̈

B
+

Ȧ
A

(
Ḃ
B
− Ṙ

R

)]
+

1
B2

[
A′′

A
− A′

A

(
B′

B
+

R′

R

)]
. (46)
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The Homologous and Quasi-Homologous Evolution

Another set of possible conditions, which might be considered in order to avoid
numerical integration, are conditions on the pattern of evolution.

One of these conditions is represented by the homologous evolution (H). In [39], it
was assumed that the H evolution describes the simplest mode of evolution of the fluid
distribution. Such a condition is defined by

U = ã(t)R, ã ≡ UΣ

RΣ
, (47)

and
RI
RI I

= constant, (48)

where RI and RI I denote the areal radii of two concentric shells (I, I I) described by
r = rI = constant and r = rI I = constant, respectively.

These relationships are reminiscent of the homologous evolution in Newtonian hydro-
dynamics [1–3].

The important point that we want to stress here is that in the relativistic regime, (47)
does not imply (48).

Indeed, (47) implies that for two comoving shells of fluids I, I I, we have

UI
UI I

=
AI I ṘI

AI ṘI I
=

RI
RI I

, (49)

which implies (48) only if the fluid is geodesic (A = constant). However, in the nonrelativis-
tic regime, (48) always follows from the condition that the radial velocity is proportional to
the radial distance.

Another possible condition (less restrictive) could be represented by the so called
“quasi-homologous” regime (QH), characterized by condition (47) alone, which implies
(see [40] for details)

4π

R′ Bq +
σ

R
= 0. (50)

Thus the H condition implies (48) and (50), while the QH condition only requires (50).
However both conditions lead (within the PQSR) to geodesic fluids, which, as already

mentioned, are physically without interest.
Indeed, writing (15) as

4πqB =
1
3
(Θ − σ)′ − σ

R′

R
, (51)

and combining with condition (50), we obtain

(Θ − σ)′ = 0, (52)

whereas using (7) and (10), we obtain

(Θ − σ)′ =

(
3
A

Ṙ
R

)′
= 0. (53)

But in the PQSR, we have (see Equation (65) in Section 5.3 below) R = κ(t)r where κ
is an arbitrary function of t, producing at once that

A′ = 0, (54)

implying that the fluid is geodesic, as it follows from (6).
Thus, from physical considerations, we must exclude the H or the QH conditions for

the mode of evolution.
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We shall next define mathematically the three regimes of evolution mentioned in the
introduction in order to understand the rationale behind the proposed approach.

5. Evolution Regimes

Let us now express the three possible regimes of evolution, in terms of the metric and
physical variables.

5.1. Static Regime

In this case, all time derivatives vanish, implying the following:

q = U = Θ = σ = 0. (55)

Since B = B(r); A = A(r); R = R(r), reparametrizing r, we may write the line element
in the following form:

ds2 = −A2dt2 + B2dr2 + r2(dθ2 + sin2 θdϕ2). (56)

Thus, the “dynamic Equation (27) becomes the well-known TOV equation of hydro-
static equilibrium for an anisotropic fluid:

P′
r +

2
r
(Pr − P⊥) = − (µ + Pr)

r(r − 2m)
(m + 4πPrr3). (57)

The Einstein equations in this case read as follows:

8πµA2 = −
(

A
B

)2
[(

1
r

)2
− 2

B′

Br
−

(
B
r

)2
]

, (58)

8πPrB2 =

(
2

A′

A
+

1
r

)
1
r
−

(
B
r

)2
, (59)

8πP⊥r2 =
( r

B

)2
[

A′′

A
− A′

A
B′

B
+

(
A′

A
− B′

B

)
1
r

]
. (60)

Also, for the mass function, we have

m =
r
2

(
1 − 1

B2

)
⇒ B2 =

(
1 − 2m

r

)−1
, (61)

or
m = 4π

∫ r

0
µr2dr, (62)

and for the metric function A, we have from (26)

ln
(

A
AΣ

)
=

∫ r

rΣ

(m + 4πr3Pr)

r(r − 2m)
dr. (63)

The important point to keep in mind is that if the radial dependence of µ and Pr is
known, the metric functions are determined from (61)–(63).

5.2. Quasi-Static Regime (QSR)

As mentioned before, in this regime, the system is assumed to evolve but suffi-
ciently slow that it can be considered to be in equilibrium at each moment (Equation (57)
is satisfied).

This implies the following for U, the metric and the kinematical functions:
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• The areal velocity U and the kinematical variables are small, (of order O(ϵ), with
|ϵ| << 1), which in turn implies that dissipative variables and all first-order time
derivatives of metric functions are also small, implying that we shall neglect terms of
order ϵ2 and higher.

• From the above and the fact that the system always satisfies the equation of hydrostatic
equilibrium, it follows from (27) that the second-order time derivatives of metric
functions can be neglected.

Thus, in QSR, we have

O(U2) = Ȧ2 = Ḃ2 = ȦḂ = R̈ = B̈ ≈ 0 (64)

and the radial dependence of the metric functions as well as that of physical variables is
the same as in the static case. The only difference with the latter case is that these variables
depend upon time according to Equation (15).

5.3. Post-Quasi-Static Regime (PQSR)

Let us now move one step forward into non-equilibrium, and let us assume that (57)
is not satisfied.

Then, the question arises: What is the closest situation to QSR not satisfying Equation (57)?
Such a situation is described by what we call PQSR.

Since in both the static and QSR regimes the radial dependence of metric variables is
the same, we shall keep that radial dependence as much as possible, but of course, the time
dependence of those variables is such that now (64) is not satisfied.

Then, from the above we write

R = rκ(t), (65)

where κ is an arbitrary (dimensionless) function of t, to be determined later.
Taking into account (22) and (65), we rewrite the metric as follows:

ds2 = −A2dt2 + κ2[E−2dr2 + r2(dθ2 + sinθ2dϕ2)]. (66)

Next, defining the effective mass as

me f f ≡ m − 1
2

RU2, (67)

we obtain

E2 = 1 −
2me f f

R
. (68)

Then, Equations (24) and (26) can be written as

1
κ

m′
e f f = 4πR2µe f f , (69)

1
κ
(ln A)′ =

4πR2Pe f f + me f f /R
R − 2me f f

, (70)

with

µe f f = µ +
qU
E

− UDRU
4πR

− U2

8πR2 , (71)

Pe f f = Pr +
DTU
4πR

+
U2

8πR2 , (72)

where we have followed the terminology used in [8–10] and call µe f f and Pe f f the “effective
density” and the “effective pressure”, respectively. The meaning of these variables will
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become clear in the discussion below; however, we remark at this point that in the static
and QSR cases, the effective variables coincide with the corresponding physical variables
(in what concerns their radial dependence).

Next, from (69)–(72), with (65), we may write

1
κ3 me f f =

∫ r

0
4πr2µe f f dr, (73)

1
κ

ln
(

A
AΣ

)
=

∫ r

rΣ

[
4πR3Pe f f + me f f

R(R − 2me f f )

]
dr. (74)

From the above, we see at once that if R = κ(t)r and µe f f have the same radial
dependence as µ in the static case, then the radial dependence of me f f will be the same as
in the static case. On the other hand, if besides the assumption above, we assume that Pe f f
shares the same radial dependence as Pr static, then it follows from (74) that A shares the
same radial dependence as in the static case.

All these considerations provided the rationale for the algorithm as exposed in [10].
Thus, the proposed method, starting from any interior (analytical) static spherically sym-
metric (“seed”) solution to Einstein equations, leads to a system of ordinary differential
equations for quantities evaluated at the boundary surface of the fluid distribution, whose
solution (numerical), allows for modeling, dynamic self-gravitating spheres, whose static
limit is the original “seed” solution.

In this work, motivated by our interest in resorting to purely analytical methods, we
shall modify the algorithm described in [10].

Specifically, the main steps of the formalism we propose may be summarized as follows.

1. Take an interior (“seed”) solution to Einstein equations, representing a fluid distribu-
tion of matter in equilibrium, with a given

µst = µst(r); Prst = Prst(r).

2. Assume that the r dependence of the effective density is the same as that of µst, and
R = rκ(t).

3. Impose the vanishing complexity factor condition.
4. From the two conditions above, we are able to determine the metric functions up to

two arbitrary functions of t.
5. For these functions of t, one has the junction condition (33).
6. In order to determine the remaining function and to integrate analytically (33), we have

a large number of possible strategies. Here, we shall mention some of them, which
may be based on the information obtained from the observables of the collapsing
star. Such observables are the luminosity and the redshift. Alternatively, we may
assume additional heuristic constraints on some other physical variables, or ad hoc
mathematical conditions based in previous works on gravitational collapse, or simply
justified by the fact that it allows for a simple integration of (33). We list below some
possible strategies of the kind mentioned above.

• Assuming a specific luminosity profile obtained from observations and using
(36) or (37), we obtain a relationship between the two arbitrary functions of t
mentioned above, thereby reducing (33) to an ordinary differential equation for
one variable.

• Assuming a specific form for the evolution of the redshift, we obtain again a
relationship between the two arbitrary functions of t.

• We may consider a specific pattern evolution of the areal radius of the star, or
equivalently of its velocity (UΣ). This could be useful if for example we want to
check the possibility of a bouncing of the boundary surface.
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• Assuming different profiles of either one of the two arbitrary functions of t, we
can look for conditions allowing the formation (or not) of a horizon, according
to (40).

6. Modeling

We shall now proceed to implement the approach for modeling that we propose, and
illustrate it by means of two examples.

Let us first write the general expressions for the field equations and YTF. Using
(14)–(17), (46) and (65), we obtain

8πµ =
1

A2

(
2Ḃ
B

+
κ̇

κ

)
κ̇

κ
− 1

B2

(
1
r
− 2B′

B

)
1
r
+

1
r2κ2 , (75)

4πq =
1

AB

(
κ̇

rκ
− Ḃ

rB
− A′κ̇

Aκ

)
, (76)

8πPr = − 1
A2

[
2κ̈

κ
−

(
2Ȧ
A

− κ̇

κ

)
κ̇

κ

]
+

1
B2

(
2A′

A
+

1
r

)
1
r
− 1

r2κ2 , (77)

8πP⊥ = − 1
A2

[
B̈
B
+

κ̈

κ
− Ȧ

A

(
Ḃ
B
+

κ̇

κ

)
+

Ḃκ̇

Bκ

]
+

1
B2

[
A′′

A
− A′B′

AB
+

(
A′

A
− B′

B

)
1
r

]
, (78)

and

YTF =
1

A2

[
κ̈

κ
− B̈

B
+

Ȧ
A

(
Ḃ
B
− κ̇

κ

)]
+

1
B2

[
A′′

A
− A′

A

(
B′

B
+

1
r

)]
. (79)

Let us first consider the q = 0 case, which using (76) produces

1
r

(
κ̇

κ
− Ḃ

B

)
− A′κ̇

Aκ
= 0. (80)

Since at r = 0, A is different from zero, we must impose

κ̇

κ
=

Ḃ
B

, ⇒ B separable, (81)

and
A′κ̇

Aκ
= 0, ⇒ A = A(t), (geodesic). (82)

Since the geodesic case in the PQSR should be dismissed by reasons exposed before,
we shall consider exclusively dissipative systems.

Then, since q ̸= 0, it follows from (76) that B is separable

B(r, t) = κ(t)β(r), (83)

where β is an arbitrary dimensionless function of r, and

4πq = − 1
Aκβ

(
A′κ̇

Aκ

)
. (84)
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It is worth stressing that using (83) in (10), it follows at once that σ = 0. Thus, all our
models will be shear-free.

Next, assuming YTF = 0, we obtain from (79)

A′′

A′ =
β(r)′

β(r)
+

1
r

, (85)

whose solution reads
A = α

∫
β(r)rdr + f (t), (86)

where f is arbitrary function of integration, and by reparametrizing t, another function of
integration has been put equal to α = constant = 1, with dimensions [1/r2].

Then, Equations (75)–(78) take the form

8πµ =
1

A2
3κ̇2

κ2 − 1
β2rκ2

(
1
r
− 2β′

β

)
+

1
r2κ2 , (87)

4πq = − αrκ̇

A2κ2 , (88)

8πPr = − 1
A2

(
2κ̈

κ
− 2 ḟ κ̇

Aκ
+

κ̇2

κ2

)
+

1
β2rκ2

(
2αβr

A
+

1
r

)
− 1

r2κ2 , (89)

8πP⊥ = − 1
A2

(
2κ̈

κ
− 2 ḟ κ̇

Aκ
+

κ̇2

κ2

)
+

1
β2κ2

(
2αβ

A
− β′

rβ

)
, (90)

where A is given by (86).
Also, from (89) and (90),

8π(Pr − P⊥) =
1

β2κ2r

(
1
r
+

β′

β

)
− 1

κ2r2 . (91)

Using (65) and (83), we can write

µe f f = µ +
qrβκ̇

A
− κ̇2

8πA2κ2

(
3 − 2αr2β

A

)
, (92)

Pe f f = Pr +
1

4πA2

(
κ̈

κ
− κ̇ ḟ

κA

)
+

κ̇2

8πA2κ2 , (93)

where A is given by (86).
We shall now use the equations above to present some analytical models of collapsing

objects. It should be stressed that the obtained models are presented with the sole purpose
of illustrating the method, and not to describe any specific astrophysical scenario.

6.1. A Model with Homogenous Effective Energy Density

The first model, is obtained by taking as our “seed” solution the well known Schwarzschild
interior solution characterized by homogeneous energy density and isotropic pressure.

Thus, assuming µe f f = F(t), where F(t) is an arbitrary function with units [1/r2], we
obtain from (73)

me f f =
4πr3κ3F(t)

3
, (94)
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and with (22) and (68), we have

1
r2

(
1 − 1

β2

)
=

8πκ2F(t)
3

, (95)

then
β2 =

1
1 − cr2 , (96)

where c is a constant, with the same units as F(t), given by

c =
8πκ2F(t)

3
. (97)

With this we have for A

A = f (t)− α

c

√
1 − cr2, (98)

and for the field equations

8πµ =
3c2κ̇2(

c f − α
√

1 − cr2
)2

κ2
+

3c
κ2 , (99)

4πq = − αc2rκ̇(
c f − α

√
1 − cr2

)2
κ2

, (100)

8πPr = 8πP⊥ = − c2(
c f − α

√
1 − cr2

)2

2κ̈

κ
− 2c ḟ κ̇(

c f − α
√

1 − cr2
)

κ
+

κ̇2

κ2


+

2cα
√

1 − cr2(
c f − α

√
1 − cr2

)
κ2

− c
κ2 . (101)

On the surface Σ, from (33) or (34), we obtain

2κκ̈ − 2c ḟ κκ̇(
c f − α

√
1 − cr2

) + κ̇2 − 2αrκ̇
Σ
= 4α f

√
1 − cr2 − c f 2 −

3α2(1 − cr2)
c

. (102)

Redefining α as

α =
c√

1 − cr2
Σ

, (103)

Equations (98)–(102) become

A = f −
√

1 − cr2

1 − cr2
Σ

, (104)

8πµ =
3κ̇2(

f −
√

1−cr2

1−cr2
Σ

)2
κ2

+
3c
κ2 , (105)

4πq = − crκ̇√
1 − cr2

Σ

(
f −

√
1−cr2

1−cr2
Σ

)2
κ2

, (106)
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8πPr = 8πP⊥ = − 1(
f −

√
1−cr2

1−cr2
Σ

)2

2κ̈

κ
− 2 ḟ κ̇(

f −
√

1−cr2

1−cr2
Σ

)
κ

+
κ̇2

κ2

+

2c
√

1−cr2

1−cr2
Σ(

f −
√

1−cr2

1−cr2
Σ

)
κ2

− c
κ2 , (107)

and

2κκ̈ − 2 ḟ κκ̇

( f − 1)
+ κ̇2 − 2crΣκ̇√

1 − cr2
Σ

= 4 f c − c f 2 − 3c. (108)

Introducing the new variable

X ≡
√

c( f − 1), (109)

(108) reads

2κκ̈ − 2Ẋκκ̇

X
+ κ̇2 − 2crΣκ̇√

1 − cr2
Σ

= −X2 + 2
√

cX. (110)

Next, using (30), (35) and (106), we obtain for the luminosity on the surface

LΣ = −
cr3

Σκ̇√
1 − cr2

Σ( f − 1)2
, (111)

or using (41), we obtain for the luminosity at infinity

L∞ = −
cr3

Σκ̇√
1 − cr2

Σ( f − 1)2

(√
1 − cr2

Σ +
κ̇rΣ

f − 1

)2
. (112)

Also, observe that using (38) for this model, we obtain for the redshift at the boundary

z =
( f − 1)(βΣ − 1)− κ̇rΣβΣ

f − 1 + κ̇rΣβΣ
, (113)

and the time for the formation of a horizon is determined by the equation

κ̇

f − 1
= − 1

βΣrΣ
. (114)

Thus, the model is completely determined up to two functions of t ( f and κ). As
mentioned before, in order to determine these two functions, we have a large number of
possible strategies. Here, we shall resort to heuristic mathematical conditions in order to
fully determine the system.

As a first example, we shall assume a heuristic mathematical condition on κ. Thus, we
shall next consider the case where κ has the linear form

κ = κ0t + κ1, (115)

where κ0 and κ1 are arbitrary functions. Then, introducing (115) in (110), we obtain

2 ḟ κ0

c( f − 1)( f + b1)( f + b2)
=

1
κ0t + κ1

, (116)
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whose solution is

( f − 1)b1−b2( f + b1)
b2+1( f + b2)

−(b1+1) =

C(κ0t + κ1)

c(b1+1)(b2+1)(b1−b2)

2κ2
0 , (117)

where C is a constant and b1 and b2 have the following values:

b1 = −2 ±
√

1 − κ0κ2

c
, (118)

b2 = −2 ∓
√

1 − κ0κ2

c
, (119)

with
κ2 ≡ κ0 −

2crΣ√
1 − cr2

Σ

. (120)

In order to obtain f , we have to solve the algebraic Equation (117) for any given set
of constants.

Thus, for example, for b1 = 0, which implies b2 = −4, Equation (117) reads

( f − 1)4

f 3( f − 4)
= C(κ0t + κ1)

−6c
κ2

0 . (121)

In general, for the particular solution (117), the physical variables read

8πµ =
1

(κ0t + κ1)2

 3κ2
0(

f −
√

1−cr2

1−cr2
Σ

)2 + 3c

, (122)

4πq = − crκ0√
1 − cr2

Σ(κ0t + κ1)2
(

f −
√

1−cr2

1−cr2
Σ

)2 , (123)

8πPr = 8πP⊥ =
2κ0 ḟ

(κ0t + κ1)

(
f −

√
1−cr2

1−cr2
Σ

)3 −
κ2

0

(κ0t + κ1)2
(

f −
√

1−cr2

1−cr2
Σ

)2 (124)

+
1

(κ0t + κ1)2

 2c
√

1−cr2

1−cr2
Σ(

f −
√

1−cr2

1−cr2
Σ

) − c

, (125)

whereas for the luminosity, we obtain

LΣ = −
cr3

Σκ0√
1 − cr2

Σ( f − 1)2
. (126)

Observe that in this particular case, the condition for the formation of the horizon as
implied by (114) implies f = constant, which obviously contradicts (121). Thus, no black
hole results from the evolution of such a model.

As a second example, we shall next consider the particular case X = constant, for
which (110) becomes

2κκ̈ + κ̇2 − 2ϵκ̇ = ξ, (127)
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where

ϵ ≡
cr2

Σ√
1 − cr2

Σ

, ξ ≡ r2
Σ(−X2 + 2

√
cX), (128)

and now, the dot denotes differentiation with respect to the dimensionless variable t/rΣ.
By introducing the variable

κ̇ = z ⇒ κ̈ = κ̇
dz
dκ

= z
dz
dκ

, (129)

the equation above becomes

2κ
dz
dκ

+
1
κ
(z2 − 2ϵz) =

ξ

κ
, (130)

whose solution reads

z ≡ κ̇ =
ξ1/2

√
κ + h√
κ

, (131)

where

h =
2
γ

[
ln κ ±

√
1 + γκ2 ∓ ln

∣∣∣∣∣1 +
√

1 + γκ2

κγ1/2

∣∣∣∣∣
]

, (132)

and γ is an arbitrary constant.
We shall not elaborate further on these models, since the resulting expressions are

too cumbersome, and our sole purpose here is to illustrate the way of using the proposed
formalism, and not describe any specific astrophysical scenario.

6.2. A Model Obtained from Tolman VI as Seed Solution

Our next model is inspired in the well-known Tolman VI solution [52], whose equation
of state for large values of µ approaches that for a highly compressed Fermi gas.

Thus we assume

µe f f =
g(t)
r2 , (133)

where g is an arbitrary (dimensionless) function of t. Using the above expression in (69)
it follows that

me f f = 4πκ3g(t)r, (134)

and replacing (134) into (68), we obtain

1
β2 = 1 − 8πκ2g(t) = 1 − c, (135)

where c and β are dimensionless constants.
Then using (65), (83), (86) and (135), and redefining the constant α as

α =
2
√

1 − c
r2

Σ
, (136)

the metric variables for this model read

A = f (t) +
(

r
rΣ

)2
, (137)

B =
κ√

1 − c
= βκ, (138)

R = κ(t)r, (139)
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and the expressions for the physical variables are

8πµ =
3κ̇2

κ2( r2

r2
Σ
+ f )2

+
β2 − 1
r2κ2β2 , (140)

4πq = − 2rκ̇

κ2βr2
Σ(

r2

r2
Σ
+ f )2

, (141)

8πPr = − 1

( r2

r2
Σ
+ f )2

2κ̈

κ
− 2 ḟ κ̇

κ( r2

r2
Σ
+ f )

+
κ̇2

κ2


+

4

κ2β2r2
Σ(

r2

r2
Σ
+ f )

− β2 − 1
β2κ2r2 , (142)

8π(Pr − P⊥) = − β2 − 1
β2κ2r2 , (143)

whereas the junction condition, the luminosity and the redshift read

2κ̈κ − 2 ḟ κ̇κ

( f + 1)
+ κ̇2 − 4

κ̇

βrΣ
=

4
β2r2

Σ
( f + 1)− β2 − 1

β2r2
Σ

( f + 1)2 (144)

LΣ = − 2rΣκ̇

β( f + 1)2 , (145)

L∞ = −2rΣκ̇( f + 1 + βrΣκ̇)2

β3( f + 1)4 , (146)

and

z =
( f + 1)(β − 1)− κ̇rΣβ

f + 1 + κ̇rΣβ
, (147)

implying that the time for the formation of a horizon is determined by the equation

κ̇

f + 1
= − 1

βrΣ
. (148)

It would be convenient to write (144) in terms of the dimensionless variable t̄ ≡ t/rΣ;
it reads

2κ̈κ − 2 ḟ κ̇κ

( f + 1)
+ κ̇2 − 4

κ̇

β
=

4
β2 ( f + 1)− (β2 − 1)

β2 ( f + 1)2, (149)

where now, the dots denote derivatives with respect to t̄.
As in the precedent case, we have a large number of possible strategies to obtain the

two functions of t determining the whole system. Thus, we could consider, for example,
the f = constant case, or the assumption of the linearity of κ. In both cases, the procedure is
very similar to the preceding case. Instead, we shall propose a different approach here.

Specifically, we shall split (149) into two equations, as follows:

2κ̈κ + κ̇2 − 4
κ̇

β
= 0, (150)

− 2 ḟ κ̇κ

( f + 1)
=

4
β2 ( f + 1)− (β2 − 1)

β2 ( f + 1)2. (151)
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Equation (150) may be integrated, producing

−2ωb
√

κ + b2κ + 2ω2 ln (ω + b
√

κ)

b3 = t + γ, (152)

where ω and γ are two integration constants and b ≡ 4/β.
Solving the above transcendental equation for κ and feeding the result back into (151),

we obtain f .
Once the functions of time are determined, we have to resort to a transport equation

(e.g., (12)) in order to find the distribution and evolution of the temperature.
As in the previous example, the resulting expressions are too burdensome and not

very illuminating, so we shall not elaborate further on them.

7. Discussion and Conclusions

We have proposed an analytical approach to describe spherical collapse within the
context of PQSR. To avoid the numerical integration of differential equations appearing
in the algorithm put forward in [7–10], we have assumed the vanishing complexity factor
as the cornerstone of the proposed method. As far as we are aware, this is the first
approach for modeling gravitational collapse that includes both the PQSR and the vanishing
complexity conditions. Doing so, starting with a given “seed” static analytical solution to
the Einstein equation, we are led to a situation where the whole system is determined by
two arbitrary functions of t. These functions are related through the junction condition (33).
For the additional information required to obtain the above-mentioned functions, we have
presented a list of possible strategies, based on either information obtained from observables
such as luminosity and gravitational redshift, or from ad hoc heuristic mathematical
conditions imposed on the system. It goes without saying that the presented list is not
exhaustive, and much more possibilities can be considered. In this work, and with the sole
purpose to illustrate the method, we have resorted to heuristic mathematical restrictions.
It must be clear that the full potential of the approach may only be deployed when the
missing information is provided by either of the observables mentioned above. Although
this last issue remains one the most important pending question regarding our approach, it
is out of the scope of this manuscript.

Invoking the vanishing complexity factor as the main assumption behind the proposed
approach is not arbitrary, and its rationale becomes intelligible when we remember that the
complexity factor has been shown to be a good measure of the degree of complexity of a
fluid distribution. Thus, assuming such a condition, we ensure that we are dealing with
the “simplest” fluid distributions available within the PQSR, in concord with one of the
main goals of our endeavor, consisting of describing gravitational collapse in the simplest
possible way.

There is an additional argument reinforcing the assumption of a vanishing complexity
factor within the context of PQRS. Indeed, as we have seen, all models obtained with the
approach here presented are necessarily shear-free. On the other hand, as shown in [53], the
shear-free condition is unstable in the presence of pressure anisotropy and/or dissipation.
However, writing the complexity factor in terms of kinematical variables as

YTF =
a′

B
− a

R′

RB
+ a2 − σ̇

A
− σ2

3
− 2

3
Θσ, (153)

it can be shown that the vanishing of the complexity factor implies the stability of the
shear-free condition in the geodesic case (seen [53] for details). In the non-geodesic static
case, the combination of the first three terms on the right of (153) must be equal to zero if we
assume the vanishing of the complexity factor, implying in its turn that such combination
must remain nonvanishing but small (bounded) in the PQSR. In such a case, we may
safely conclude that the quasi-stability of σ = 0 is ensured (see the discussion between
Equations (63) and (67) in [53]).
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Conditions on the complexity of the pattern of evolution, such as H and QH, appear
to be too strong, and have to be excluded since they lead to geodesic fluids, which, as
mentioned before, are physically incompatible with the very idea behind the PQSR.

Also, the adiabatic condition implies that the fluid is geodesic; accordingly, we have
considered exclusively dissipative fluids.

In order to illustrate the method, we have presented two models. One is based on
the interior Schwarzschild solution as the “seed” solution, whereas the other is inspired in
the well-known Tolman VI solution. The purpose of these calculations was to show how
the algorithm works. In order to provide the missing information, we have resorted to
some mathematical ansatz. We would like to emphasize once again that the optimal path to
display the power of the presented method would be to supply such information through
physical data obtained from astrophysical observations, among which the luminosity and
the gravitational redshift appear to be the most relevant. We harbor the hope that some of
our colleagues will be able to succeed in such an endeavor.

Author Contributions: All authors contributed equally to this work. Conceptualization, L.H.;
methodology, L.H., A.D.P., J.O.; software, J.O.; formal analysis, L.H., A.D.P., J.O.; writing—original
draft preparation, L.H. writing—review and editing, L.H., A.D.P., J.O.; funding acquisition, L.H., J.O.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Spanish Ministerio de Ciencia, Innovación, under
Research Project No. PID2021-122938NB-I00.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Schwarzschild, M. Structure and Evolution of the Stars; Dover: New York, NY, USA, 1958.
2. Kippenhahn, R.; Weigert, A. Stellar Structure and Evolution; Springer: Berlin, Germany, 1990.
3. Hansen, C.; Kawaler, S. Stellar Interiors: Physical Principles, Structure and Evolution; Springer: Berlin/Heidelberg, Germany, 1994.
4. Herrera, L.; Di Prisco, A. Two effects in slowly evolving dissipative self-gravitating spheres. Phys. Rev. D 1997, 55, 2044–2050.

[CrossRef]
5. Yousaf, Z.; Bamba, K.; Bhatti, M.; Farwa, U. Quasi–static evolution of compact objects in modified gravity. Gen. Rel. Grav. 2022,

54, 7. [CrossRef]
6. Yousaf, Z.; Bhatti, M.; Farwa, U. Quasi–static approximation in the study of compact stars. Chin. J. Phys. 2022, 77, 2014. [CrossRef]
7. Herrera, L.; Jiménez, J.; Ruggeri, G. Evolution of radiating fluid spheres in general relativity. Phys. Rev. D 1980, 22, 2305–2316.

[CrossRef]
8. Herrera, L.; Núñez, L. Evolution of radiating spheres in general relativity: A seminumerical approach. Fundam. Cosm. Phys. 1990,

14, 235–319.
9. Herrera, L.; Barreto, W.; Di Prisco, A.; Santos, N.O. Relativistic gravitational collapse in non-comoving coordinates: The

post-quasi-static approximation. Phys. Rev. D 2002, 65, 104004-15. [CrossRef]
10. Herrera, L.; Barreto, W. Relativistic gravitational collapse in comoving coordinates: The post-quasi-static approximation. Int. J.

Mod. Phys. D 2011, 20, 1265–1288. [CrossRef]
11. Colgate, S.; White, R. The Hydrodynamic Behavior of Supernovae Explosions. Astrophys. J. 1966, 143, 626. [CrossRef]
12. Bethe, H.; Wilson, J. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 1985, 295, 14. [CrossRef]
13. Arnett, W.; Bahcall, J.; Kirshner, R.; Woosley, S. Supernova 1987A. Ann. Rev. Astron. Astrophys. 1989, 27, 629. [CrossRef]
14. McRay, R. Supernova 1987A revisited. Ann. Rev. Astron. Astrophys. 1993, 31, 175. [CrossRef]
15. Marek, A.; Janka, H. Delayed Neutrino-Driven Supernova Explosions Aided by the Standing Accretion-Shock Instability.

Astrophys. J. 2009, 694, 664. [CrossRef]

http://doi.org/10.1103/PhysRevD.55.2044
http://dx.doi.org/10.1007/s10714-021-02887-z
http://dx.doi.org/10.1016/j.cjph.2021.11.016
http://dx.doi.org/10.1103/PhysRevD.22.2305
http://dx.doi.org/10.1103/PhysRevD.65.104004
http://dx.doi.org/10.1142/S0218271811019426
http://dx.doi.org/10.1086/148549
http://dx.doi.org/10.1086/163343
http://dx.doi.org/10.1146/annurev.aa.27.090189.003213
http://dx.doi.org/10.1146/annurev.aa.31.090193.001135
http://dx.doi.org/10.1088/0004-637X/694/1/664


Symmetry 2024, 16, 341 21 of 22

16. Murphy, J.; Ott, C.; Burrows, A. A Model for Gravitational Wave Emission from Neutrino-Driven Core-Collapse Supernovae.
Astrophys. J. 2009, 707, 1173. [CrossRef]

17. Badenes, C. X-Ray Studies of Supernova Remnants: A Different View of Supernova Explosions. Proc. Nat. Acad. Sci. USA 2010,
107, 7141–7146. [CrossRef] [PubMed]

18. Burrows, A.; Lattimer, J. The Birth of Neutron Stars. Astrophys. J. 1986, 307, 178. [CrossRef]
19. Macher, J.; Schaffner-Bielich, J. Phase transitions in compact stars. Eur. J. Phys. 2005, 26, 341. [CrossRef]
20. Sagert, I.; Hempel, M.; Greinert, C.; Schaffner-Bielich, J. Compact stars for undergraduates. Eur. J. Phys. 2006, 27, 577. [CrossRef]
21. Lehner, L. Numerical relativity: A review. Class. Quantum Grav. 2001, 18, R25. [CrossRef]
22. Alcubierre, M. The status of numerical relativity. In General Relativity and Gravitation; Florides, P., Nolan, B., Ottewill, A., Eds.;

World Scientific: London, UK, 2005; p. 3.
23. Papadopoulos, P.; Font, J.A. Relativistic hydrodynamics on space-like and null surfaces: Formalism and computations of

spherically symmetric spacetimes. Phys. Rev. D 2000, 61, 024015. [CrossRef]
24. Font, J.A. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity. Living Rev. Relativ. 2008, 11, 7. [CrossRef]
25. Thirukkanesh, S.; Maharaj, S.D. Radiating relativistic matter in geodesic motion. J. Math. Phys. 2009, 50, 022502. [CrossRef]
26. Thirukkanesh, S.; Maharaj, S.D. Mixed potentials in radiative stellar collapse. J. Math. Phys. 2010, 51, 072502. [CrossRef]
27. Govender, M.; Bogadi, R.; Sharma, R.; Das, S. Gravitational collapse in spatially isotropic coordinates. Gen. Relativ. Gravit. 2015,

47, 25. [CrossRef]
28. Ivanov, B. A different approach to anisotropic spherical collapse with shear and heat radiation. Int. J. Mod. Phys. D 2016, 25,

1650049. [CrossRef]
29. Naidu, N.F.; Govender, M.; Thirukkanesh, S.; Maharaj, S.D. Radiating fluid sphere immersed in an anisotropic atmosphere. Gen.

Relativ. Gravit. 2017, 49, 95. [CrossRef]
30. Paliathanasis, A.; Govender, M.; Leon, G. Temporal evolution of a radiating star via Lie symmetries. Eur. Phys. J. C 2021, 81, 718.

[CrossRef]
31. Herrera, L.; Di Prisco, A.; Ospino, J. Non–static fluid spheres admitting a conformal Killing vector: Exact solutions. Universe 2022,

8, 296. [CrossRef]
32. Herrera, L.; Di Prisco, A.; Ospino, J. Expansion–free dissipative fluid spheres: Analytical models. Symmetry 2023, 15, 754.

[CrossRef]
33. Govender, M.; Bogadi, R.; Sharma, R.; Das, S. Radiating stars and Riccati equations in higher dimensions. Eur. Phys. J. C 2023 83,

160.
34. Bhatti, M.Z.; Yousaf, Z.; Sabir, I. Expansion free spherical anisotropic solutions. Int. J. Mod. Phys. D 2023, 32, 2350082. [CrossRef]
35. Jaryal, S.; Chatterjee, A.; Kumar, A. Effects of electromagnetic field on a radiating star. Eur. Phys. J. C 2024, 84, 11. [CrossRef]
36. Zahra, A.; Mardan, S. Five dimensional analysis of electromagnetism with heat flow in the post-quasi-static approximation. Eur.

Phys. J. C 2023, 83, 231. [CrossRef]
37. Zahra, A.; Mardan, S.; Noureen, I. Analysis of heat flow in the post-quasi-static approximation for gravitational collapse in five

dimensions. Eur. Phys. J. C 2023, 83, 51. [CrossRef]
38. Herrera, L. New definition of complexity for self–gravitating fluid distributions: The spherically symmetric case. Phys. Rev. D

2018, 97, 044010. [CrossRef]
39. Herrera, L.; Di Prisco, A.; Ospino, J. Definition of complexity for dynamical spherically symmetric dissipative self–gravitating

fluid distributions. Phys. Rev. D 2018, 98, 104059. [CrossRef]
40. Herrera, L.; Di Prisco, A.; Ospino, J. Quasi–homologous evolution of self–gravitating systems with vanishing complexity factor.

Eur. Phys. J. C 2020, 80, 631. [CrossRef]
41. Herrera, L.; Santos, N.O. Local anisotropy in self–gravitating systems. Phys. Rep. 1997, 286, 53–130. [CrossRef]
42. Herrera, L. Stabilty of the isotropic pressure condition. Phys. Rev. D 2020, 101, 104024. [CrossRef]
43. Herrera, L.; Santos, N.O. Dynamics of dissipative gravitational collapse. Phys. Rev. D 2004, 70, 084004. [CrossRef]
44. Di Prisco, A.; Herrera, L.; Le Denmat, G.; MacCallum, M.; Santos, N.O. Nonadiabatic charged spherical gravitational collapse.

Phys. Rev. D 2007, 76, 064017. [CrossRef]
45. Israel, W. Non-stationary irreversible thermodynamics: A causal relativistic theory. Ann. Phys. 1976, 100, 310–331. [CrossRef]
46. Israel, W.; Stewart, J. Thermodynamic of non-stationary and transient effects in a relativistic gas. Phys. Lett. A 1976, 58, 213–215.

[CrossRef]
47. Israel, W.; Stewart, J. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [CrossRef]
48. Misner, C.; Sharp, D. Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse. Phys. Rev. 1964, 136,

B571. [CrossRef]
49. Cahill, M.; McVittie, G. Spherical Symmetry and Mass–Energy in General Relativity. I. General Theory. J. Math. Phys. 1970, 11,

1382. [CrossRef]
50. Chan, R. Collapse of a radiating star with shear. Mon. Not. R. Astron. Soc. 1997, 288, 589–595. [CrossRef]
51. Herrera, L.; Ospino, J.; Di Prisco, A.; Fuenmayor, E.; Troconis, O. Structure and evolution of self–gravitating objects and the

orthogonal splitting of the Riemann tensor. Phys. Rev. D 2009, 79, 064025. [CrossRef]

http://dx.doi.org/10.1088/0004-637X/707/2/1173
http://dx.doi.org/10.1073/pnas.0914189107
http://www.ncbi.nlm.nih.gov/pubmed/20404206
http://dx.doi.org/10.1086/164405
http://dx.doi.org/10.1088/0143-0807/26/3/003
http://dx.doi.org/10.1088/0143-0807/27/3/012
http://dx.doi.org/10.1088/0264-9381/18/17/202
http://dx.doi.org/10.1103/PhysRevD.61.024015
http://dx.doi.org/10.12942/lrr-2008-7
http://dx.doi.org/10.1063/1.3076901
http://dx.doi.org/10.1063/1.3456081
http://dx.doi.org/10.1007/s10509-015-2616-9
http://dx.doi.org/10.1142/S0218271816500498
http://dx.doi.org/10.1007/s10714-017-2258-z
http://dx.doi.org/10.1140/epjc/s10052-021-09521-x
http://dx.doi.org/10.3390/universe8060296
http://dx.doi.org/10.3390/sym15030754
http://dx.doi.org/10.1142/S0218271823500827
http://dx.doi.org/10.1140/epjc/s10052-023-12357-2
http://dx.doi.org/10.1140/epjc/s10052-023-11383-4
http://dx.doi.org/10.1140/epjc/s10052-023-11205-7
http://dx.doi.org/10.1103/PhysRevD.97.044010
http://dx.doi.org/10.1103/PhysRevD.98.104059
http://dx.doi.org/10.1140/epjc/s10052-020-8202-5
http://dx.doi.org/10.1016/S0370-1573(96)00042-7
http://dx.doi.org/10.1103/PhysRevD.101.104024
http://dx.doi.org/10.1103/PhysRevD.70.084004
http://dx.doi.org/10.1103/PhysRevD.76.064017
http://dx.doi.org/10.1016/0003-4916(76)90064-6
http://dx.doi.org/10.1016/0375-9601(76)90075-X
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1103/PhysRev.136.B571
http://dx.doi.org/10.1063/1.1665273
http://dx.doi.org/10.1093/mnras/288.3.589
http://dx.doi.org/10.1103/PhysRevD.79.064025


Symmetry 2024, 16, 341 22 of 22

52. Tolman, R. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys. Rev. 1939, 55, 364. [CrossRef]
53. Herrera, L.; Di Prisco, A.; Ospino, J. On the stability of the shear–free condition. Gen. Relativ. Gravit. 2010, 42, 1585. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1007/s10714-010-0931-6

	Introduction
	Basic Variables and Equations
	The Metric
	Energy–Momentum Tensor
	Kinematical Variables
	Transport Equations
	Field Equations
	Mass and Areal Velocity

	The Exterior Spacetime and Junction Conditions
	The Complexity Factor
	Evolution Regimes
	Static Regime
	Quasi-Static Regime (QSR)
	Post-Quasi-Static Regime (PQSR)

	Modeling
	A Model with Homogenous Effective Energy Density
	A Model Obtained from Tolman VI as Seed Solution

	Discussion and Conclusions
	References

