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Abstract: The inherent stochasticity of electric operation vehicle (EOV) charging poses challenges
to the stability and efficiency of regional power distribution networks. Existing charging behavior
decision-making models often prioritize revenue considerations, neglecting the influence of multi-
time-span characteristics and the potential irrationality of EOV owners. To address these limitations,
this study proposes a comprehensive framework encompassing three aspects. First, operational data
are statistically analyzed to reconstruct EOV operation scenarios, establishing a dynamic charging
scheme tailored to multi-time-span characteristics. Second, an improved ITCH model is developed
using operational equivalent change to incorporate both gains and losses. Third, a WFL framework
is employed to integrate the perceptual attenuation of revenue into the ITCH model. Simulation
results show that decision-makers (DMs) demonstrate a preference for charging schemes with high
equivalent perceived revenues and low time costs. Moreover, when the charging price is doubled,
revenue perception attenuation leads decision-makers to postpone their charging behavior. Compared
to other models, the equivalent perception intertemporal choice heuristics (EP-ITCH) charging model
results in reduced load peaks, valleys, and variances on the grid side. This study highlights the
model’s effectiveness and accuracy in optimizing EOV charging infrastructure.

Keywords: intertemporal choice heuristics model; Weber–Fechner law; charging behavior analysis;
irrationality; perceptual attenuation; multi-time-span characteristics

1. Introduction

In recent years, electric vehicles (EVs) have become highly regarded for their char-
acteristics such as “electricity instead of fuel”, environmental cleanliness, low emissions,
and high efficiency. However, the increasing penetration rate of EVs brings enormous
panoramic situational awareness data, which poses new challenges for power grid plan-
ning and scheduling, stability control, and operation [1–4]. The large-scale integration of
EVs will lead to an increase in peak-to-valley differences in electricity demand, affecting
the stable operation of networks [5–7]. In addition, the chaotic charging behavior of EV
owners, which form charging clusters, can result in the irrational allocation of electric
power resources. Clusters of electric operation vehicles (EOVs) exhibit characteristics such
as greater charging frequencies and charging power compared to conventional EV clusters.
They have a more significant impact on the stable operation of power grids, making the
study of charging-related issues for EOVs of great significance.

In the research on EV charging schemes, Chen et al. and Wang et al. simulated
EV charging schemes using the Monte Carlo method [8,9]. However, due to the lack of
modeling based on real operational data, the schemes and the charging strategies still need
further validation. H. Al-Alwash et al. considered user preferences in waiting time and
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charging prices and established a real-time interaction model based on software-defined
networking and cloud computing [10]; however, the issue of operational losses for EV
owners was neglected. Feng et al. constructed charging schemes by considering both
arrival times and left-over battery charge [11]; however, the research failed to organically
integrate charging schemes and the value function of charging behaviors.

In terms of modeling charging decisions, Chakraborty A. points out that exponential
discounting is widely used in economics to balance alternative scenarios obtained at
different time points [12]. However, discounting models are rooted in economic theory and
cannot fully explain the psychological principles and cognitive processes that influence
intertemporal decision making. Feng et al. introduced the cumulative prospect theory,
which considers the heterogeneity of the reference point that describes the irrational factors
of charging decisions [11]. However, the theory only considers the impact of revenues
and losses on decision making, while charging decisions are influenced by both time and
revenue. J M. Clairand et al. took the impact of charging prices on EV charging into account
and argued that the time cost is the primary factor influencing the travel choices of EV
owners [13–18]. Marzilli Ericson et al. introduced the time factor into the conventional
value function model and established the intertemporal choice heuristics model (ITCH
model), which balances the influences of time and revenue by setting different weight
coefficients [19].

In the research on psychological perception, the smart grid features comprehensive
panoramic situational awareness; thus, when EV clusters integrate into the smart grid,
they require access to real-time operational data. Using these data and considering their
operational demands, EOV operators make decisions that are congruent with their psycho-
logical perceptions. As these data are not directly accessible, they significantly influence the
operation and charging decisions of EOV owners [20]. Arslan et al. extended the conven-
tional VIKOR method using the Weber–Fechner Law (WFL) [21], which is applicable for the
quantification of subjective perceptual attenuation by DMs. This provides an opportunity
for behavioral psychology to become a decision-making tool. Hou et al. introduced the
WFL to quantify the psychological effects of EV owners’ concerns about the inability to
travel [22]. However, the model only treated this as a constraint condition in the mathemat-
ical model without delving into the irrational aspects of the owners’ psychology. Long et al.
introduced the regret theory to establish a value function, providing a theoretical basis for
owners to choose charging stations [23,24]. However, they did not consider the issue of
psychological perception attenuation that owners may experience when choosing charging
stations. Li et al. established a user responsiveness model based on the WFL, demonstrating
owners’ responses to state of charge (SOC) and electricity prices [25]. Nevertheless, the
EOV owners were not considered. The advantages and disadvantages of the above research
are summarized in Table 1.

Table 1. Existing literature comparison.

Category Approach Advantage Disadvantage

Charging schemes [8,9] Monte Carlo simulation Lacks actual operational data

[10,11] Real-time interactive model considering
arrival time and remaining battery level

The model lacks consideration of
operational losses for the vehicle owner and
does not integrate charging schemes with
charging behavior

Charging decision
model [12] Discounting models are widely used in the

field of economics

It cannot effectively explain
the psychological principles and cognitive
processes of multi-time-scale
decision making

[11] Improving cumulative prospect theory Does not consider the impact of the timing
of returns on scheme selection
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Table 1. Cont.

Category Approach Advantage Disadvantage

[13–18]
Established an optimization function with
the objective of maximizing the benefits for
the vehicle owner

Psychological
Perception Research [21] Extended the traditional VILOR method

using Weber–Fechner law
Lacks verification of subjects’ JNDs variations
in multiple different environments

[22] Used the Weber–Fechner law to evaluate the
psychological impact on vehicle owners.

The Weber–Fechner law is used just as a
constraint condition

[23,24] Used regret theory to establish
a value function

Does not take into account the perceptual
attenuation issue of vehicle owners

[25] Established a user response model using the
Weber–Fechner law

Does not consider vehicle owners’ irrational
decision making

The existing research on EV charging schemes, modeling charging decisions, and
psychological perceptions has several limitations:

1. Oversimplified assumptions
Most existing research on EV charging behavior modeling relies on oversimplified as-

sumptions. These include the lack of real operational data, the neglect of operational losses,
and the failure to integrate charging schemes with a broader value function encompassing
the overall travel needs of vehicle owners.

2. Prioritizing Revenue over Time Considerations
Existing models often prioritize the impact of revenue on decision making while

neglecting the equally important influence of time considerations on charging choices.
3. Insufficient Focus on Psychological Factors
Research has inadequately addressed the psychological perception attenuation of

vehicle owners and their responsiveness to factors such as SOC (state of charge) and
electricity prices, limiting the ability to accurately predict charging behavior.

This paper addresses the shortcomings of prior research on EV charging behavior
as follows:

1. To overcome the oversimplified assumptions that most studies hold, we developed
a novel multi-time-scale EOV scenarios model and charging scheme sets. This approach
captures the key characteristics of EV operation and charging behavior, offering a more
comprehensive and realistic framework for analysis.

2. We propose an innovative equivalent perception intertemporal decision-making
charging model. This model overcomes limitations in existing approaches by incorporating
time cost, accounting for owners’ perception attenuation, and simultaneously considering
both benefits and losses within the decision-making process.

This paper unfolds as follows. In Section 2, the framework of this article is delineated.
In Section 3, a characteristic analysis is conducted on the operational revenue data of EOVs.
Revenue characteristics for operational events are extracted, and on this basis, a revenue
framework for the operational scenarios of EOVs is reconstructed. In Section 4, utilizing the
WFL, a psychological scale is constructed to describe EOVs owners’ perceptual attenuation
to operational revenue. An ITCH model with equivalent perception is also established,
which refines the application of the WFL. Section 5 presents an empirical evaluation of
the proposed model by analyzing the charging behaviors of EOV owners in a southern
Chinese city. The efficaciousness and validity of the model are corroborated by findings
that demonstrate its capability to accurately depict owners’ charging behaviors, thereby
offering valuable decision-making insights for the operation of power grids. The meanings
of all symbols in this article can be found in the Appendix A.

2. Materials and Methods

The structure of the equivalent perception intertemporal choice heuristics (EP-ITCH)
charging model based on the WFL is shown in Figure 1.
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Figure 1. EP-ITCH charging model based on WFL.

(1) Construction of Dynamic Solution Sets and Calculation of EOVs Revenue
Combining the processing and analysis of the typical daily operating EOV owner

income data set, we model the operating process of EOVs, extract and quantify the operating
characteristics of EOVs, and construct a revenue framework for the operating scenarios
of EOVs.

Considering the factors such as arrival time, remaining power, and alert power thresh-
old, the dynamic psychological safety power is calculated to divide the charging demand
of operational vehicles under different peak and off-peak electricity pricing; then, we can
calculate the revenue of different scenarios under the revenue framework of operation
scenarios, and the dynamic charging scheme set is constructed.

(2) An EP-ITCH Charging Model for EOVs
To comprehensively measure the relationship between the dynamic charging scheme

revenue and charging time, we consider the phenomenon that EOV owners have a per-
ceptual attenuation of the operational revenue in their daily operation. We construct a
psychological scale based on the WFL and establish an EP-ITCH charging model.

3. Construction of Dynamic Charging Scheme Set for EOVs
3.1. Preprocessing the Historical Data

To extract the operational features of the historical data, the whole day is segmented
into time slices with intervals of ε duration (in particular, ε = 10 min in this study), and
the frequencies of all the operational events occurring in the corresponding time period
for each slice in the historical data are counted. Thus, a typical-day historical passenger
order frequency table can be constructed. Then, we can reformulate the operational process
using the frequency table and the operational events. The frequency and corresponding
features are defined below.

We define the frequency of the operational event mw,h,i as f w,h,i, where f w,h,i is derived
from the typical daily operational events table Fw×h×i extracted from historical data. w
(w∈{ 1, . . . , ζ}) is the index of current slicing interval; h is the event type, which, in this
study, was defined as the duration of the event; here, set H = {1, 2, . . . , k} (the duration each
element in the set H can be calculated as k × 10 min, and particularly for the simplicity of
the problem, k = 6 in this study), h ∈ H; i ∈ {0,1}, in which 0 and 1 denote without/with a
passenger, respectively, e.g., f 2,3,1 represents the frequency of a passenger-carrying event
lasting 30 min that occurred during the second time slice.
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3.2. Reconstruct the Operational Scenarios Revenue Framework

In charging decision making, the EOV owner faces a dilemma between two symmet-
rical schemes: (1) charging immediately at time t1 to obtain the revenue of an equivalent
charging duration Tc at a future time t2; or (2) charging at a future time t2 to obtain the
revenue of an equivalent charging duration Tc immediately at time t1.

The first scheme reduces concerns regarding battery depletion by promptly initiating
the charging process. However, it does carry the potential risk of revenue loss due to the
uncertainty surrounding future revenue. On the other hand, the alternative scheme poses
the risk of future battery depletion in exchange for immediate revenue retrieval. To make
informed decisions, decision-makers (DMs) must first reconstruct the operational scenarios.
This involves evaluating the equivalent operational revenue associated with two charging
moments, t1 and t2, as well as the charging time Tc.

The operational time Tc can be segmented into several scenarios, each consisting of a
unique combination of operational events mw,h,i. To reconstruct the operational scenarios
and calculate the expected revenue J within the operational duration, three features are
required: (1) the frequency of events occurring in each scenario; (2) the probability of each
operational scenario; and (3) the average revenue of each operational event. The following
provides detailed steps as shown in Figure 2.
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Figure 2. Scenarios revenue framework.

Step 1. The event frequency matrix Qn×k within the operational duration
The operational scenarios s (where s ∈ S, S = {1, . . . , n}) can be decoupled into several

repeatable permutations of independent events ms,w,h,i. The sum Σh of the durations h of
all independent events in s scenarios equals the operational scenario duration. Therefore,
the event frequency matrix Qn×k is arrived at, consisting of k passenger-carrying events for
each one in n scenarios. Qn×k can be expressed as follows:
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Qn×k =

q1,1
...

qn,1

· · ·

· · ·

q1,k
...

qn,k

 (1)

where qn,k denotes the frequency of the kth passenger-carrying event in the sth scenario.
Step 2. The scenario probability vector P
To calculate the possibilities of each event ms,w,h,i in operational scenario s, the fre-

quency f w,h,i of the historical event is concerned.
Given the charging arrival time Ta and charging duration Tc, the time slices when

charging starts and ends can be obtained from the table Fw×h×i, which contains ζ slices.

pw,h,i =
mw,h,i

fw
(2)

where pw,h,i is the possibility of mw,h,i and f w is the total occurrences of all events that may
possibly occur within the remaining operational time.

Knowing the types and the occurrences q′ (total occurrences of all the events in
current scenario) of events ms,w,h,i under corresponding scenarios of the charging time
Tc, these independent operational events can be modeled as the irretrievable “fetching-
ball experiment” procedure. For each experiment, the balls are taken out one by one
(an operational event happens), and the sequence of the balls is recorded (the sequence

∏
q′
1 pw,h,i of operational events is recorded). When all of the balls (events) are taken out

(all events happen), the experiment completes (a possible combination of the events under
one scenario). The “fetching-ball experiment” is repeated until no new sequences (γ)
are generated. Thus, the probabilities of each operational scenario under all possible
combinations (Ps) are recorded and calculated.

pγ =
q′

∏
1

pw,h,i (3)

ps =
γ

∑
1

pγ (4)

Then, the scenario probability vector P is shown below:

P =
(

p1 · · · ps
)

(5)

Step 3. The average revenue vector I is shown below:

I =
(
i1 · · · ik

)
(6)

where ik is the average revenue generated by the kth passenger-carrying event during the
Tc time period, as obtained from historical data.

Step 4. The expected return J is shown below:

J = P
(

Qn×k IT
)

(7)

The expected revenue J is reconstructed by combining the three features extracted
from the historical operational data, which represent the operational behavior for time
duration Tc.

3.3. Charging State Analysis of EOVs

Since EOVs are usually operated by both day-shift drivers and night-shift drivers, and
the capacity of the vehicle batteries is limited, charging usually occurs several times in a
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day. Given that night-shift drivers typically charge their vehicles after their shifts end in
the early morning, this study focuses on the EV charging during daytime hours.

The EV charging hours Tc are usually defined as follows:

Tc =
W × (Blea − BN)

PEV × θc
(8)

where W is the rated capacity of the vehicle battery; BN is the initial battery state of charge
(i.e., remaining charge) when arriving at the station; Blea is the battery state of charge
upon completion of charging; PEV is the EV charging power; and θc is the EV charging
efficiency [26].

Assuming that Bsaf is the dynamic psychological safety battery of each EOV owner
for its remaining charge, and Bmin is the alert power threshold at which the vehicle battery
must be charged immediately, when the remaining charge BN upon arrival is larger than
Bsaf, the owner chooses not to charge. When it is lower than Bsaf, the owner chooses to
charge to a value state that ensures the charge at turnaround time is greater than Bmin. Bsaf
varies with the time period during the owner’s daily operation. The computation of Bsaf is
established as follows.

Bsaf = BN + Tc × Vc (9)

where Vc is the average charging speed.
For charging demand, the charging time can be expressed as follows:

Tc =
(Td − Ta)× Vr + W × Bmin − BN

Vc + Vr
(10)

where Td is the number of minutes from the start of operation to the end of the shift on the
current day; Ta is the time of the owner’s arrival at the charging station; Vr is the average
discharge rate; and W is the capacity of the vehicle battery. It is necessary to ensure that the
remaining charge at the end of charging is not less than Bsaf.

The charging duration is related to the charging start moment, the remaining charge,
and Bsaf. While different DMs prefer different values of Bsaf, different charging durations
are derived from Equation (9). Additionally, the peak and off-peak pricing electricity prices
are also important influencing factors. The whole day is divided into multiple charging
decision intervals based on the peak and off-peak pricing periods (in the following text, the
peak electricity price periods will be referred to as peak periods, and the flat electricity price
periods will be referred to as flat periods). When BN < Bsaf, the EOV owners contemplate
charging. At this point, the charging schemes that EOV owners can choose form a dynamic
set, as the number of schemes in the set varies due to the different time points at which
each owner generates charging ideas; In addition, the charging scheme is influenced by
various factors, including {Bsaf, Ta, BN, Tc, J, D}, where J represents the expected benefit
calculated based on Tc and D represents the charging cost calculated based on Tc. These
schemes, influenced by changes in Bsaf, constitute the set of dynamic charging schemes for
EOVs. The dynamic charging scheme set is established as follows.

Scheme 1 is defined as charging immediately upon contemplating the need to charge.
Some EOV owners may prefer to first accrue operational revenue before considering
charging; thus, Scheme 2 involves waiting until the next charging decision interval to
initiate charging. Instances where charging is postponed based on the owner’s preferences
constitute the scenario of first obtaining operational revenue before charging. Scheme 3
involves waiting until the subsequent charging decision interval, and this pattern continues
to generate multiple alternative schemes. When the shift time falls within a specific
charging decision interval, where BN approaches Bmin, the EOV owners must execute a
charging operation. Therefore, the scheme corresponding to this decision interval becomes
the final scheme.
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4. EP-ITCH Model
4.1. ITCH Model for Charging EOVs

The ITCH model refers to the process of weighing the costs and revenue of values
at different moments, and then making a choice. For EOV owners, immediate charging
reduces range anxiety but risks losing current revenue, while symmetrically delayed
charging risks running out of battery power to gain potentially greater revenue. Therefore,
this is a typical ITCH problem.

As shown in Figure 3, we defined two alternative charging intervals, u and v, in which
tv > tu and xv > xu. If while charging at the time of tu, a gain of xu is obtained, then charging
at the time of tv helps us earn xv. The different choices fall into symmetrical operational
behaviors. Therefore, DM faces the dilemma problem of choosing to charge now and obtain
revenue later, or to obtain revenue now but charge later.
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From the perspective of the two symmetry schemes for the DM, revenue xu is expressed
as the sum of the order revenue Jv obtained in interval v and the avoidable charging cost
Dv in interval v. Then, the revenue xu and xv are given by the following:

xu = Jv + Dv (11)

xv = Ju + Du (12)

D = Tc × Ec (13)

where Ju and Jv denote the expectancy order revenues in interval u and interval v, respec-
tively; Du and Dv denote the charging costs in interval u and interval v, respectively; and
Ec represents the electricity price for the corresponding time period.

Let us define the inter-period probability P(LL) of the owner’s charging choice as follows:

P(LL) = L
(

β1 + βxA(xv − xu) + βxR
xv − xu

x∗
+ βtA(tv − tu) + βtR

tv − tu

t∗

)
(14)

where x* = (xu + xv)/2, t* = (tu + tv)/2, and L (•) = 1/(1 + e−•) is the cumulative distribution
function of the logistic distribution with mean 0 and variance 1, and β1, βxA, βxB, βtA, and
βtR are the weights. When the value of P(LL) is greater than σ, the option with a larger
revenue at a later moment is selected. Otherwise, the option with lower revenue at an
earlier moment is selected.
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4.2. WFL of Perception

The WFL is a law that indicates the relationship between psychological and physical
quantities and can characterize the nonlinear perceptions of DMs. For moderate stimuli,
the response level η of the human body is proportional to the logarithm of the objective
stimuli φ and is expressed as follows:

η =
1

lg(1 + c)
lg

φη

φ0
(15)

where η denotes a natural number such that η = 0, . . . , α, with α representing the maximum
response level on the psychological scale. The term φη is defined as the psychological scale
threshold corresponding to the physical intensity threshold that is perceived at a response
level of η, where c is the constant of proportionality, and φ0 is the smallest physical intensity
that can be felt.

Given a response level of η, it follows from the above equation that φη is given by
the following:

φη = (1 + c)η φ0 (16)

By substituting all values of η, one can obtain the psychological scale that manifests
the intensity of an individual’s psychological response.

In this study, the passenger-carrying events with the lowest and the highest revenue per
passenger are defined as imin and imax, respectively, corresponding to the minimum physical
intensity φ0 and the psychological scale threshold φa in Equation (15), respectively. From this,
the psychological scale of the EOV owner’s perception of revenue can be established.

Furthermore, to account for the variability in DMs’ sensitivity to revenue, psycho-
logical scales reflective of their heterogeneous sensitivity can be constructed by choosing
different response levels η.

4.3. EP-ITCH Charging Model

Due to an owner’s perceptual attenuation of operational revenue, the owner’s revenue
x for their charging decision can be processed using the psychological scale thresholds
as boundaries for segmented perception. The flowchart of the EP-ITCH charging model
is shown in Figure 4. The two charging schemes involved in each decision include two
elements, which are time and revenues.

We define the Weber–Fechner operator for computing the perceived revenue X as follows:

X = A[x] = φη

(
φη < x < φη+1

)
(17)

where x represents the revenue within the charging duration Tc.
By substituting the results of the operator calculations into Equation (12), it yields

the following:

P(LL) = L
(

β1 + βxA(A[xv]− A[xu]) + βxR
A[xv]− A[xu]

A∗ + βtA(tv − tu) + βtR
tv − tu

t∗

)
(18)

with
A∗ = (A[xu] + A[xv])/2 (19)

t∗ = (tu + tv)/2 (20)

where P(LL) represents the probability of opting for “the smaller, closer option”. By default,
when the value of P(LL) exceeds σ, the choice of the DM falls on charging in interval u;
conversely, when the value of P(LL) is less than σ, charging in interval v is selected.
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5. Case Study
5.1. Data Preparation

The time periods in this case were divided with reference to the peak and off-peak
electricity pricing in a certain city in southern China. We set the study time as 9:00–16:00. The
time segments were defined as follows: 9:00–10:00 as the flat period T1, 10:00–12:00 as the
peak period T2, 12:00–14:00 as the flat period T3, and 14:00–16:00 as the peak period T4. The
charging schemes available to the owners were divided as shown in Table 2. In addition, the
parameter settings for the different time periods in this study are shown in Table 3.

According to the research, the BYD E6 EV is a widely used EOV in the city, with a
battery capacity of 45 kWh [27]; the charging stations in the city have a charging power of
35 kW [28], with a charging efficiency of θc of 0.95 [29].
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Table 2. Charging schemes table.

Situation Time Bsaf Charging Schemes

1 9:00–9:59 0.5 Scheme 1: Charging in T1 or charging from T1–T2 across time
Scheme 2: Charging in T2 or from T2–T3 across time

Scheme 3: Charging in T3
2 10:00–11:59 0.6 Scheme 1: Charging in T2 or from T2–T3 across time

Scheme 2: Charging in T3 or from T3–T4
Scheme 3: Charging in T4

3 12:00–13:59 0.35 Scheme 1: Charging in T3 or from T3–T4
Scheme 2: Charging in T4

Table 3. Parameterization.

9:00–10:00 10:00–12:00 12:00–14:00 14:00–16:00

Electricity price/[CNY•(kw•h)−1] 1 1.3553 1 1.3553
Power consumption rate/kw•h•(min)−1 0.093066

For the starting time of charging Ta, we fit a distribution based on the vehicle quantity
curve in the commercial scenario described in reference [30]. We obtained an extension of
the normal distribution known as the epsilon-skew normal distribution, which includes an
additional parameter to control its skewness. The epsilon-skew normal distribution func-
tion is used as the probability density function for the starting time of charging for EOVs.

f ( pt|22.7879, 5.66158, 0.855894) =
2

5.66158
φt

(
9 − 22.7879

5.66158

)
ϕt

(
0.855894 × 9 − 22.7879

5.66158

)
(21)

where φt and Φt are the probability density function and cumulative distribution function
of the standard normal distribution, respectively.

For the power data, to ensure that the situation in the scheme exists, there are upper
and lower limits on the residual power BN, which are taken uniformly within the power
limit and are recorded in fractional form. That is, 0.5 represents 50 percent of the charge.

When using psychological scales, we defaulted to a psychological scale with α = 7
(Figure 4), with a maximum guest revenue of 134.7 and a minimum guest revenue of 10.

According to [18], in the ITCH model, the default parameters are set to β1 = 0, βxA = 0.1,
βxB = 0.1, βtA = −0.1, βtR = −0.1, and σ = 0.5.

For calculating the passenger revenue of EOVs according to the EOVs charge standard
of a city in the south, the billing formula can be obtained as follows:

Rprice =


10, 0 ≤ G < 2000(

10 + G−2000
1000

)
× 2.7, 2000 ≤ G < 25,000(

10 + G−2000
1000

)
× 2.7 × 1.3, 25,000 ≤ G < 50,000

(22)

where Rprice is the cost of the passenger order, G is the actual mileage driven by the
passenger order, the unit of revenue of the passenger order is CNY, and the unit of operating
mileage is meters.

5.2. Case Design

The dataset used in this study consists of over 40,000,000 rows of historical operational
data of over 1800 EOVs in a southern city in China, including car ID, time, latitudinal
and longitudinal coordinates, and with/without passenger status. The coordinates were
recorded using the WGS84 coordinate system.

The effectiveness of the proposed model in solving the multi-time-span decision-
making problem was verified by horizontally comparing the charging decision-making
results of the expected utility theory (EUT), the ITCH model, and the EP-ITCH model.
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The effectiveness of the proposed model in quantifying the influence of irrational and
objective factors was verified by vertically comparing the charging decision results of
different psychological scales in the EP-ITCH model and under different electricity prices.

We completed the feature extraction of the frequency operational events, the prob-
ability of each operational scenario, and the average revenue of each operational event
mentioned in Section 3. This was achieved by writing SQL programs in ClickHouse. In
Section 4, we established the EP-ITCH model by writing macro programs in Excel, along
with conducting the necessary calculations and analysis. Finally, all of the plotting was
completed using Origin.

The structure of the case design is shown in Table 4.

Table 4. Case structure.

Cases Issues Discussed Approach Psychological Scales Electricity Price

I With/without considering EP
factor in ITCH model [11]/[19]/EP-ITCH α = 7 1-fold

II Influence on decision-making for
DM with different sensitivities

Establishing psychological
scales at different levels

α = 6 1-fold
α = 9 1-fold

III
Different Electricity prices

influence on charging decision
analysis and power shift

[19]/EP-ITCH α = 7 1-fold/2-fold

Case I: Charging decision analysis under three different models.
Besides the conventional EUT model [11], the ITCH [19] and EP-ITCH models were

employed to model and analyze the charging problem of EOVs. A comparative analysis
was conducted on the final charging schemes chosen by EVO owners under the three
models, as illustrated in Figure 5.
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Figure 5. Psychological scale with α = 7.

In Situation 1 (Figure 6), the fully rational owner under the EUT model will choose
the scheme with the largest revenue, prioritizing Scheme 3 > Scheme 2 > Scheme 1. The
growth of the remaining power BN has a limited impact on this choice.

On the other hand, the ITCH model introduces weight parameters to model the value
of the impact of revenue and time, which provides a tool for modeling irrational decision-
making behavior [19]. By default, the ITCH model shows that a DM will be more inclined
to choose the charging scheme with larger revenues and lower time costs. Since Scheme 1
has the lowest time cost, it becomes increasingly likely to be chosen. This effect becomes
even more pronounced as the remaining power BN increases.
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The Weber–Fechner operator in the EP-ITCH model grades the difference between
expected returns, leading to two phenomena:

1. When the perceived expected benefits exceed the perceived threshold, the disparity
in benefits increases, which raises the probability of choosing the first charging option.

2. When the perceived expected returns are similar, differences in the expected returns
are smoothed out, highlighting the impact of electricity costs on decision making.
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Compared to the ITCH model without considering perceptual attenuation, a DM
under the EP-ITCH model tends to choose charging schemes with lower average electricity
prices and larger equivalent perceived revenues. The differences in the choices of the
EP-ITCH model are because EP-ITCH introduces the Weber–Fechner operator to describe
the perceptual attenuation in decision making, which leads to irrational factors in decision
making. Therefore, it can capture irrational behaviors in decision making more accurately.

In Situation 2 and Situation 3, since the revenue decreases significantly with increased
time, a DM will undoubtedly choose to charge immediately with Scheme 1, which comes
with larger revenues and earlier times, and there is no difference in the owner’s decision
under the three models.

To sum up, the fully rational owner under the EUT will directly choose the charging
scheme with larger revenues, and the growth of the remaining power BN has little effect on
the choice. Partially rational owners under the ITCH model will hesitate under the two
options of “smaller revenue and earlier time” and “larger revenue and later time”, because
of immediate gratification. Compared with the EUT, the ITCH model takes into account the
problem of time cost between the time spans of the different schemes, so that EOV owners
are more inclined to choose the charging scheme with higher gains and smaller time costs,
and the weakening effect of the instantaneous effect will gradually become obvious with
the growth of the BN. The EP-ITCH model describes the phenomenon that the owner has
an attenuated grading of the subjective perception of revenue, and EOV owners will be
more inclined to choose the charging scheme with a lower average electricity price and
higher equivalent perceptual revenue.

Case II: Analysis of different psychological scales on EOV owners’ charging decisions
To compare the differences in charging decisions of owners with varying perceptual

acuity, the psychological scales of low acuity (α = 6) and high acuity (α = 9) were incorpo-
rated herein. The operational time remained 9:00–16:00 h to obtain the charging decisions
of owners with three different psychological scales. Since it is known in Case I that in
Situation 2 and Situation 3, all of them will choose Scheme 1, which has larger revenue at
an earlier time; only the change in the psychological scales under Situation 1 was discussed
in Case II.

In the EP-ITCH model, the decision is determined by time and revenue, and the
revenue consists of expected returns and average electricity costs. Since the psychological
scale grades the expected return, changes in the expected return under Situation 1 are
analyzed first. According to the typical data analysis, the expected return is in the range of
CNY 30–50 and decreases gradually with the growth of Ta and BN.

The expected returns with the same threshold in psychological scale were transformed
into perceived expected return through the Weber–Fechner operator, which are perceived
as the same perceived expected return. When we focus on the change in average electricity
cost in Situation 1, several conclusions can be drawn.

When we focus on the arrival time Ta, the trend in electricity fee variation is illustrated
in Figure 7.

When Ta is small, Scheme 2 will charge during peak hours or start from peak hours
and end in flat hours. Thus, Scheme 3 is chosen, because its average electricity cost is
initially lower than that of Schemes 1 and 2.

When the charging decision time Ta is postponed, the peak-to-flat ratio of the average
electricity cost calculation changes, resulting in an increase in the peak period ratio of Scheme 1,
and the electricity cost gradually exceeds that of Scheme 2. The relationship between the average
electricity costs of the schemes becomes Scheme 1 > Scheme 2 > Scheme 3.

When Ta increases to a certain value, one needs to charge for extra time to reach the
dynamic psychological safety battery Bsaf, which supports the operation of the vehicle
until handover time. Therefore, Scheme 3 will experience extended charging time, and
its charging time Tc will increase, as well as the electricity cost, when the electricity cost
of Scheme 3 exceeds that of Scheme 2 and Scheme 1. The final relationship between the
average electricity costs of the schemes becomes Scheme 1 > Scheme 3 > Scheme 2.



Symmetry 2024, 16, 374 15 of 22
Symmetry 2024, 16, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 7. BN = 0.37227, the trend in electricity fee varies with Ta. 

When Ta is small, Scheme 2 will charge during peak hours or start from peak hours 

and end in flat hours. Thus, Scheme 3 is chosen, because its average electricity cost is ini-

tially lower than that of Schemes 1 and 2. 

When the charging decision time Ta is postponed, the peak-to-flat ratio of the average 

electricity cost calculation changes, resulting in an increase in the peak period ratio of 

Scheme 1, and the electricity cost gradually exceeds that of Scheme 2. The relationship 

between the average electricity costs of the schemes becomes Scheme 1 > Scheme 2 > 

Scheme 3.  

When Ta increases to a certain value, one needs to charge for extra time to reach the 

dynamic psychological safety battery Bsaf, which supports the operation of the vehicle un-

til handover time. Therefore, Scheme 3 will experience extended charging time, and its 

charging time Tc will increase, as well as the electricity cost, when the electricity cost of 

Scheme 3 exceeds that of Scheme 2 and Scheme 1. The final relationship between the av-

erage electricity costs of the schemes becomes Scheme 1 > Scheme 3 > Scheme 2. 

When we focus on the remaining battery power BN, the trend in electricity fee varia-

tion is illustrated in Figure 8. 

 

Figure 8. Ta = 9:00, the trend in electricity fee varies with BN. 

When BN increases, Tc becomes shorter, and the difference in the average cost of elec-

tricity between the schemes decreases. 

When α = 6 (Figure 9a), the EOV owner’s sensitivity to the expected return is lowest 

compared with the case where α is greater than 6.  

09:00 09:15 09:30 09:45 10:00

25

30

35

40

45

E
le

ct
ri

ci
ty

 f
ee

Arrival time Ta

 Scheme 1 electricity fee

 Scheme 2 electricity fee

 Scheme 3 electricity fee

0.36 0.38 0.40 0.42 0.44 0.46 0.48
20

25

30

35

40

45

E
le

ct
ri

ci
ty

 f
ee

Remaining charge BN

 Scheme 1 electricity fee

 Scheme 2 electricity fee

 Scheme 3 electricity fee

Figure 7. BN = 0.37227, the trend in electricity fee varies with Ta.

When we focus on the remaining battery power BN, the trend in electricity fee variation
is illustrated in Figure 8.
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Figure 8. Ta = 9:00, the trend in electricity fee varies with BN.

When BN increases, Tc becomes shorter, and the difference in the average cost of
electricity between the schemes decreases.

When α = 6 (Figure 9a), the EOV owner’s sensitivity to the expected return is lowest
compared with the case where α is greater than 6.

In this case, the weight of the electricity cost is much greater than that of the revenue. When
Ta and BN are smaller, Tc is longer because of a smaller BN, resulting in a large gap between
the revenue of each scheme. Compared to the revenue, the influence of the time cost can be
ignored; Scheme 3, which has low electricity costs and large revenues is the best option.

When BN is fixed and Ta increases, decision making will prioritize Scheme 2 due to its
lower electricity costs.

When Ta is fixed and BN increases, the probability of choosing Scheme 1 increases due
to the reduced difference in electricity costs and the impact of time costs.

When α = 7 (Figure 6), the owner’s sensitivity to revenue increases, and the effect of
the psychological scale thresholds on the expected return gradually emerges. When Ta is in
the 9:00–9:30 time period and BN is in the 0.38–0.46 battery power interval, the expected
return of different schemes will locate between two different levels of 3 (30.486–44.205) and
4 (44.205–64.097) in the α = 7 psychological scale, which widens the gap of the revenue
between the schemes, at which point the time cost effect is insufficient to compensate for
the gap between the revenues, and the probability of choosing Scheme 1 with the largest
perceived revenues increases.
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Figure 9. EP-ITCH results under different psychological scales for Situation 1. 
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When α = 9 (Figure 9b), the larger revenue difference between the schemes makes the
time cost impact insufficient to compensate for it. Thus, the decision tends to favor the
scheme with the highest perceived revenue. For example, when Ta is in the 9:00–9:30 time
period and BN is in the 0.39–0.48 range, the expected return of the different schemes will
be in the α = 9 psychological scale between the two different levels of 4 (32.24–43.2) and
5 (43.2–57.89). In this case, Scheme 1 comes with the greatest revenue; therefore, Scheme 1
is chosen over the other two options.

The results show that in Situation 1, as the level of the psychological scale increments,
the more the expected return is graded by the psychological scale, the higher the probability
that the scheme of charging first and obtaining later is selected. The results show that
decision making is influenced by the thresholds of perception, which exhibit significant
irrational characteristics. Different psychological scales that represent different sensibilities
result in different irrational decision-making options.

Case III: Charging decision analysis and power shift of EOV owners subject to different
electricity prices

As it is known from previous cases that the price of electricity influences decision
making, it is valuable to discuss the differences in charging decisions under different
electricity prices. The operational time was kept at 9:00–16:00, in order to obtain the
charging decisions of owners under different electricity prices, and the change in average
electricity cost in Situation 1 was analyzed, as shown in Case II.

In Figure 10, we can see that the probability of choosing Scheme 2 under electricity at
twice the price increases when Ta is in the 9:30–9:59 time period compared to the original
price, which is consistent with the trend that the prices of Scheme 2 are eventually become
lower than the other schemes when Ta is delayed; the probability of choosing Scheme 3
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under electricity at twice the price increases when Ta is in the 9:00–9:40 time period, and BN
is in the ranges of 0.38–0.43 and 0.44–0.48 compared to the original price. The probability
of Scheme 3 increases, which is consistent with the pattern that was discussed in Case II.
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Figure 10. EP-ITCH results under different electricity prices for Situation 1.

In Situation 1, with the increase in electricity prices, the difference in revenue becomes
larger. However, compared with the significant changes in electricity costs, the time cost
change remains constant, and its impact on decision making is greatly reduced. Therefore,
the probability of choosing the scheme with the lowest average electricity cost increases.

To better observe the impact of differentiated electricity price settings on the charging
behavior of EOV owners and the impact of the settings on the power grid, we plotted the
cumulative charging load curves (Figure 11) of EOV clusters under different electricity
price settings.

Under the EP-ITCH model, compared with the original electricity price, the load
transfer at double the electricity price is shown in Table 5. The load demands in the two
time periods of 9:00–10:47 and 12:57–17:00 are transferred to 10:48–12:56. Under the ITCH
model, compared with the original electricity price, the load transfer at double the electricity
price is shown in Table 6. The load demands in the two time periods of 9:00–10:47 and
12:58–17:00 are transferred to 10:48–12:57.

Table 5. EP-ITCH modeling load shifting volume.

Time Period Load Shift (KW)

9:00–10:47 −1.30
10:48–12:56 1.46
12:57–17:00 −0.16

Table 6. ITCH modeling load shifting volume.

Time Period Load Shift (KW)

9:00–10:47 −1.37
10:48–12:57 1.48
12:58–17:00 −0.11

From the load curve, compared to the ITCH model, the load under the EP-ITCH
model is shifted from the peak hours to the flat hours. It can be seen from the amount of
load transfer that, due to the increase in the gap between the revenues of higher electricity
prices, the objective factor of time cost reduces the charging cost impact on the owner, and
the owner is more inclined to obtain revenues first and then charge, so the load demand
is shifted backward. The load reaches a peak at 11:00, which is in line with the law of
electricity consumption during peak hours, but due to the impact of peak hours electricity
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prices, the load demand growth is not large; due to the price of electricity entering into the
usual section at 12:00, and considering the increased possibility of EOV owners obtaining
revenue first and charging later, compared with the original price, the load demand of the
2-fold price rises sharply around 12:40.
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Figure 11. Load profiles under different tariffs in the ITCH model and the EP-ITCH model. (a) The
comparison of load curves between EP-ITCH model and ITCH model under default the prices. (b) The
comparison of the load curves of the EP-ITCH model under default the prices and double the prices.

From Tables 7 and 8, it is evident that with the same model, an increase in electricity
price exacerbates grid fluctuations. When electricity prices are the same, compared to
the ITCH model, the EP-ITCH model exhibits smaller peak–valley differences and grid
fluctuation variances. Therefore, the charging decision model proposed in this study results
in smaller fluctuations for the grid and has less of an impact on grid stability.

The results show that compared with the use of the ITCH model, the EP-ITCH model
can, to a certain extent, help EOV owners avoid peak electricity consumption, improve
their economic revenue, promote the rational utilization of charging equipment and electric
power resources, and attenuate the impacts of large-scale EOV grid connections on the
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network. At the same time, in the EP-ITCH model, through the reasonable regulation of
price changes, the load side of the regulation and scheduling can be realized.

Table 7. The load peak–valley difference under different electricity prices for the ITCH and EP-ITCH models.

Model The Peak–Valley Difference in Load Demand under
the Original Electricity Price (KW)

The Peak–Valley Difference in Load Demand under
Twice the Electricity Price (KW)

ITCH 12.16994067 13.09297166
EP-ITCH 11.94369675 12.93333621

Table 8. The load fluctuation variance under different electricity prices for the ITCH and EP-ITCH models.

Model The Load Fluctuation Variance under the Original
Electricity Price

The Load Fluctuation Variance under Twice
the Electricity Price

ITCH 15.11410719 15.62816677
EP-ITCH 14.97649603 15.48112037

6. Conclusions

By combining objective constraints on charging behavior decisions across multiple
time spans with the subjective perception of vehicle owners, this study comprehensively
assessed the relationship between revenues and time costs. It established an EOV equivalent
perception intertemporal decision-making charging model based on WFL. Validation
through simulations was conducted using transportation data from a southern city in
China, leading to the following conclusions:

(1) Charging Scheme Selection Analysis:
Unlike the EUT model, which only considers revenues, the ITCH model incorporates

both revenues and time costs. Within this framework, decision-makers are more inclined
to choose charging schemes that offer higher revenues and lower time costs. Thus, EOV
owners are more likely to select Scheme 1, which has the lowest time costs, especially when
the remaining battery level (BN) increases.

The EP-ITCH model integrates the WFL method to account for irrational factors in
decision making, explaining the DMs’ perception attenuation of revenue. This model
makes DMs more likely to choose schemes with lower average electricity prices and higher
perceived revenues.

(2) Decision-Influencing Factor Analysis:
In the EP-ITCH model, the influence proportions of expected revenue and average

electricity price exhibit irrational characteristics with changes in the psychological scale
level. Different psychological scales represent EOV owner groups with different sensitivities
to income changes.

When the income is the same, EOV owners who are more sensitive to income changes
are more influenced by the expected revenue in their decision making, and they tend to
choose to charge first, then obtain revenue.

If EOV owners are not sensitive to income changes, the average electricity price and
time significantly affect their decision making, and they prefer to charge during periods
with lower electricity prices and the lowest time cost.

(3) Impact Analysis of different Electricity Prices:
After a price increase, the influence of revenue on decision making increases, and DMs

are more inclined to obtain revenue first, then charge.
It can be seen from the analysis of load demand under different models and different

electricity prices that the EP-ITCH model has smaller load peak–valley differences and
load fluctuation variances, indicating that the charging decisions made by the model are
more conducive to stable operation of the power grid, which demonstrates the superiority
of the model.
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Appendix A

Table A1. The related definition of symbols.

Notation Parameters Unit

Index of current slicing interval w minute
The duration of the operational event h minute
Without/with passenger i
Operational scenarios s
Number of scenarios n
passenger-carrying events k
Events sequences γ

Time slices ε minute
Operational event m
Frequency of operational events f
Charging time Tc minute
Expected revenue J yuan
Event frequency matrix Qn×k
The scenario probability vector P
Probability of operational scenarios Ps
Average revenue Vector I yuan
Rated capacity of vehicle battery W kW·h
Remaining charge BN kW·h
Charge completed battery level Blea kW·h
Charging power of EVs PEV kW
Charging efficiency of EVs θc
Dynamic psychological safety battery Bsaf kW·h
Alert power threshold Bmin kW·h
average charging speed Vc kW·h/min
Full day operation time Td minute
Arrival time at charging station Ta minute
average discharge rate Vr kW·h/min
Charging cost D yuan
Charging period v tv minute
Charging period u tu minute
Expected revenue v xv yuan
Expected revenue u xu yuan
Order revenue v Jv yuan
Order revenue u Ju yuan
Charging costs in period v Dv yuan
Charging costs in period u Du yuan
Inter-period probability P(LL)
Average revenue x* yuan
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Table A1. Cont.

Notation Parameters Unit

Average time t* minute
Intercept β1
The weight of absolute returns βxA
Weight on relative returns βxB
The weight of absolute time βtA
Weight on relative time βtR
Logical distribution function L
Discriminant threshold σ

Response level η

The psychological scale threshold Corresponding
to level η φη

Smallest physical intensity φ0
Constant of proportionality c
WFL operator X
Average equivalent perceived revenue A* yuan
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