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Abstract: We extend the Landau theory of bent-core mesophases and d-wave high-Tc 

superconductors by considering additional secondary pseudo-proper order parameters. 

These systems exhibit a remarkable analogy relating their symmetry groups, lists of phases, 

and an infinite set of physical tensors. This analogy lies upon an internal dual structure 

shared by the two theories. We study the dual operator transforming rotations into 

translations in liquid crystals, and gauge symmetries into rotations in superconductors. It is 

used to classify the bent-core line defects, and to analyze the electronic gap structure of 

lamellar d-wave superfluids. 
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1. Introduction  

The unconventional class of liquid crystals discovered one decade ago, which is constituted with 

non-chiral bent-core molecules [1], presents a rich polymorphism [2] with extraordinary features and 

symmetry properties, the most prominent being the spontaneous onset of chirality in the ordered 

smectic phases [3]. Despite many attempts to describe these phases with acrobatic combinations of 

classical order parameters [3-6], smectic density waves, polarization, and tilt vectors, a simpler and 

more elegant description involving a single vector-wave order parameter [7,8] seems to us necessary to 

account of the available experimental data [7-9]. In particular, from the thermodynamical point of view 
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the fact that a direct transition occurs commonly between the isotropic liquid and the ordered phases is 

much more likely when a single order parameter is involved. This permits us to predict the structure of 

the stable phases together with their thermodynamical behaviour [7,8], and more specifically the 

behaviour of several important physical tensors describing, for instance, the biaxiality, electro-optic 

response and chirality of the predicted structures. In addition, we have successfully extended our 

model to almost all observed bi-dimensionally and tri-dimensionally ordered bent-core phases [9]. 

This single order parameter can be equivalently spanned by either a polarization wave or a tilt 

wave, since they transform according to the same irreducible representation of the non-chiral euclidean 

group when the wave vector is different from zero. It combines thus in a single object the degrees of 

freedom involved by distinct classical order parameters. We have shown in Refs. [7,8] that this model 

permits to foresee the stabilization of four ordered phases, denoted by C, R, and EL corresponding, 

respectively, to linear, circular and elliptic polarizations of the order-parameter wave. R describes the 

smectic CP phase predicted in 1992 [10] and then observed in bent-core systems [10,11], EL describes 

the commonly observed B2 phase [12,13], and we have proposed that C is an unmodulated 

approximation of the intriguing B7 phase found in 1999 [2]. In these phases the polarization and tilt 

waves are "parallel", in a sense explained below. However, we shall show that when one permits the 

two waves to be "non parallel", i.e., relatively shifted along the smectic normal or relatively rotated, 

four additional phases can be stabilized. The reason of this unusual extension of the polymorphism, 

which is characteristic of transitions with continuous-symmetry breakdowns, has been described 

within the context of superconductivity in Ref. [14]. 

The bent-core theory exhibits a quite remarkable analogy [7] with the theory of d-wave 

superconductors in 2D systems [15], such as high-Tc lamellar superconductors or unconventional 

superfluid films. This analogy relies upon the fact that the two theories have the same "image group" 

[16], that is, the same set of matrices associated with the symmetries of the parent, isotropic or normal, 

phases. The main consequence of this peculiarity is that both systems have the same list of phases with 

analog symmetry groups, the same theoretical phase diagrams, and the same thermodynamic variations 

of the primary and secondary order parameters. At first sight the analogy is rather formal since a 

common matrix can be associated with distinct actual symmetry elements in each system. For instance, 

a gauge symmetry in superconductors yields the same matrix as a translation in liquid crystals. Thus, 

we do not expect a common behavior of the same physical quantities. However, the analogy is more 

subtle for it relates in fact the behaviors of distinct, but analog, tensors. For instance, the macroscopic 

polarization normal to the smectic planes exhibits exactly the same thermodynamic behavior as the 

linear magneto-electric suceptibility in superconductors. More precisely, both cancel in analog sets of 

ordered phases, with the same critical exponents.  

This universality property relating distinct systems is a well-known feature of the Landau theory of 

phase transitions [16-18]. When the image group is small, the physical consequences of the analogy 

are poor, and the number of analog systems is large, and conversely when the image group is large. For 

instance, deGennes used such an analogy between s-pairing superconductors and smectic A liquid 

crystals [19], on the one hand, and between neutral superfluids and smectic C [20], on the other hand. 

These two analogies bear much information because the image groups are continuous. In the first 

analogy gauge symmetries correspond to translations in Smectic A, while in the second analogy they 

correspond to rotations in Smectic C. In both cases the order parameter is bidimensional, describing 
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density waves, on the one hand, and the molecular tilt, on the other hand. deGennes extended further 

the former analogy by proposing a liquid crystal analog of the superconducting gauge-type coupling 

with the magnetic field [21-23], which goes much beyond the coincidence between image groups.  

In the case of bent-core mesophases the image group contains four connected bicontinuous parts 

[7,8]. This very large group yields thus a still more fruitful analogy, which permits to relate precisely 

the rich polymorphisms of the two systems, and an infinite set of tensors accounting for most of their 

physical properties. It mixes the two deGennes analogies since both rotations and translations are 

simultaneously broken in the bent-core ordered mesophases. We shall use this analogy to complete the 

d-wave theory, and to predict the behavior of its stable phases. In particular, we shall focus attention 

on the properties of the electronic excitation spectrum, which is a key physical feature of these systems 

crucially depending on symmetry considerations. 

The analogy is complicated by the dual internal structure of the two theories. Indeed, the image 

groups are products of two isomorphic one-dimensional subgroups, which can be interchanged without 

modifying the formal structure of the theories. This duality relates rotations and translation in the 

liquid crystal system, and rotations and gauge symmetries in superconductors. In both cases it defines 

an inner automorphism of the bicontinuous group, which is realized by a dual operator permuting its 

subgroups. The fact that the free energies are invariant under this operator yields many interesting 

consequences. Firstly, it permits to classify all the objects involved in these theories, phases, symmetry 

groups, and physical tensors, into either self-dual objects or dual-conjugated pairs, revealing many 

non-trivial features of these systems. Secondly, it provides a deep insight into both mathematical and 

physical aspects of the theories. We shall show in particular how the classification of line defects in 

bent-core phases results from the dual character of the order parameter. 

2. The Vector-Wave Model 

The primary order parameter of the vector-wave model describing ordered bent-core mesophases 

[7,8] is spanned by a transverse polarization wave 
  

� 

P (z): 

 

  

� 

P (z) = px  cos(kz+ ϕx)  
� 

e x  +  py  cos(kz+ ϕy)  
� 

e y       (1) 

 

where the axis Oz is parallel to the wave vector 
  

� 

k , so that its two components remain parallel to Ox 
and Oy. px, py, ϕ x  and ϕ y  are the real amplitudes and phases of the wave. The characteristic features 

of 
  

� 

P (z) may be more conveniently expressed in terms of the following complex amplitudes : 

 

η1 = ρ1e
iϕ1 = pxeiϕx − ipye

iϕ y   ,  η2 = ρ2 e
iϕ2 = pxe− iϕ x − ipye

− iϕ y    (2) 

 
Although this order parameter contains only four components, η1,η2,η1* ,η2 * , the vector wave 

belongs in fact to an infinite-dimensional irreducible representation of the Euclidean group O(3)× T3, 

where O(3) is the orthogonal group generated by rotations and inversion, and T3 is the 3D continuous 

translation group. It is spanned by an infinite set of waves propagating along all the directions of space. 

However, since for stabilizing ordered smectic-type phase one needs to consider only the two parallel 
wave vectors 

  

� 

k =k
  

� 

e z  and -
  

� 

k  appearing in Eq. (1), one can restrict the symmetry analysis to the 
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subgroup D∞h × T3  of O(3)× T3 leaving the set {
  

� 

k  and -
  

� 

k } invariant. D∞h × T3  is generated by the 

rotations Cϕ  around z, the space inversion I, one mirror plane σ x  parallel to 
  

� 

k  and the translations Tt 

parallel to Oz. The action of these symmetries on the complex amplitudes (η1,η2,η1*,η2 * ) is given by 

the matrices: 

U2x =

1

1

1

1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

     σ x =

−1

−1

−1

−1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Cϕ =

e− iϕ

e−iϕ

eiϕ

eiϕ

 

 

 
 
 
 
 

 

 

 
 
 
 
 

    Tt =

e−ikt

eikt

e−ikt

eikt

 

 

 
 
 
 
 

 

 

 
 
 
 
 

   (3) 

 

One can refine the description of the symmetry-breaking mechanism by considering a secondary 

wave 
  

� 

A (z) representing the mean tilt vector of the molecules located at position z :  

 

  

� 

A (z) = ax  cos(kz+ψx)  ˜ e x   +  ay  cos(kz+ψy)  ˜ e y       (4) 

 
where ̃  e x  and ̃  e y  form a basis of unit orthogonal axial vectors. The complex amplitudes of 

  

� 

A  are 

defined as in Eq. (2) :  

 

ξ1 = a1e
iψ1 = axe

iψ x − iaye
iψ y   ,  ξ2 = a2 e

iψ 2 = axe
−iψ x − iaye

− iψ y   (5) 

 
The corresponding matrices of D∞h × T3  are deduced from those in Eq. (3) by changing the signs of 

the inversion I and of the mirror plane σx . 

The presence of two continuous symmetries in (3) implies that the order parameters split into two 
“Goldstone angles” ϕ R and ϕT : 

 

ϕ R =
ϕR

P + ϕR
A

2
=

ϕ1 +ϕ2

4
+

ψ1 +ψ2

4

ϕT =
ϕT

P + ϕT
A

2
=

ϕ1 −ϕ2
4

+
ψ1 −ψ 2

4

       (6) 

 
and six “energetic components”: On the one hand, a1, a2 and ρ

1
,ρ

2
, which describe the shape of 

  

� 

A  

and 
  

� 

P  separately, and, on the other hand, ϕ R
P − ϕR

A,  ϕT
P −ϕT

A which describe the relative orientation 

and z-position of the two waves. ϕ R is naturally associated with the subgroup generated by rotations 

and the space inversion I since it transforms as:  
CφϕR = ϕR − φ  and Ttϕ R = ϕR  

σ xϕR = −ϕR and IϕR = ϕ R 

whereas ϕT  is associated with translations and the mirror plane σx  since: 
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CφϕT = ϕT  and TtϕT = ϕT − kt  

IϕT = −ϕT  and σ xϕT = ϕT  

In a single domain of any ordered phase ϕ R and ϕT  can be set to zero by suitably choosing the 

coordinate frame. In the sequel we shall often implicitly assume such a choice. 

Eight phases are stabilized. In a first set of four phases already described in Refs. [5] the two order 

parameters are “parallel” (in a broad sense indicating that the symmetry groups of 
  

� 

A (z) and 
  

� 

P (z) 

coincide). In this set all the phases, denoted by L, R, C and EL, satisfy the "parallelism" constraints: 

ϕ R
P = ϕR

A +
π
2

,  ϕT
P = ϕT

A +
π
2

  (mod .π ) . 

L : Isotropic liquid. 

R : Linear phase. 
  

� 

A  and 
  

� 

P  are both linearly polarized. The plane of polarization of 
  

� 

A  is normal to 

that of 
  

� 

P  and the maximums of the primary wave coincide with the nodes (zeroes) of the secondary 

wave, and reciprocally. Its symmetry is the non-chiral orthorhombic space group Pmma. 

C : Circular phase. The two waves are circularly polarized, and 
  

� 

A  is everywhere parallel to 
  

� 

P . Its 
chiral helical symmetry is ∞122 (generated by CφTφ / k  and U2x). 

EL : Elliptic phase: The two waves are elliptically polarized. The system of elliptic axes of 
  

� 

P  and 

  

� 

A  are parallel so that the two fields are parallel at positions where they are either maximum or 

minimum. The group is P2122. 

In the second set of four phases, which were not considered in [7,8], the polar and axial waves are 

no longer “parallel”: 

C’ :  The two waves are circularly polarized. 
  

� 

A (z) is shifted along z with respect to 
  

� 

P (z) so that 
they are turned everywhere to the same angle ψ 2 −ϕ2 . The group is ∞1. 

R’ : The two waves are still linearly polarized but the two corresponding planes are no longer 
perpendicular. The plane of 

  

� 

A  is rotated with respect to the plane of 
  

� 

P  by an angle ϕT
P − ϕT

A . The 

relationships between the maxima and the zeroes of the two waves in R persist in R’. The group is 

P21/m. 

R” : The converse situation occurs in R”. The two polarization planes are again perpendicular, but 

the maximums of one wave are now shifted along z with respect to the zeroes of the other wave to a 

distance 2k∆z = ϕR
P −ϕ R

A −
π
2

. The group is P21ma. 

EL’  : The two waves are elliptically polarized and oriented along independent directions. The group 

is P21. 

 

We present in Fig. 1 schemes of the molecular structures associated with the various ordered phases 

and the group-subgroup relationships characterizing this polymorphism. We have discussed in our 

previous articles the assignment of the observed phases with our predictions for unprimed phases and 

2D and 3D structures stabilized when one considers several waves with non-parallel wave vectors.  
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Figure 1. (a) Group-subgroup relationships between the ordered phases. (b) Scheme of the 

molecular organization in the various stable phases of the vector-wave model. The 

difference between R and R' is rather subtle: (i) The direction of the polarization in R' is 

not fixed by symmetry, so that the molecular plane can rotate when the temperature is 

changed. (ii) The molecular fluctuations are less symmetric in R', which cannot appear in 

the figure since we represent only the mean orientation at the positions of maximum 

density.  

 

Let us notice that our thermodynamical analysis is based on the homogeneous part of the free 

energy which does not contain the gradient invariants of the Ginzburg-Landau approach. The model 

yields only homogeneous stable states. For the inhomogeneous states it gives the access only to their 

local structure,  but not to the global one. We have shown in Ref. [7,8] that homogeneous single 

domains of the phases C and R can be stabilized, while EL, because of its spontaneous chirality, is 

automatically submitted to an incommensurate longitudinal deformation. We expect also that this 

phase presents transverse deformations, which could account for the complex inhomogeneous spatial 

structure reported experimentally in the bent-core phase B7. 

Numerous phases and subphases have yet been observed in bent-core systems. They are usually 

identified by characteristic textures, while their molecular organization and space groups are often not 

known exactly. In particular variants associated with a single texture can be associated, or not, with 

distinct symmetries, i.e. distinct phases. We have identified sixteen among the main phases and 
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subphases within the vector-wave model. On the one hand, most of them are two- or three- 

dimensional, so that waves with non-parallel wave vectors participate to the ordered structure. On the 

other hand, the one-dimensional phases are (provisionally) identified as follow: SmCP=R, B2=EL, C' 

or EL', B6=R' or R", B7= C, C' or EL', Sm0=EL', and B8 is a subphase of EL' obtained with an 

additional homogeneous order parameter. 

 

The physical behavior of each phase is characterized by a number of secondary tensors waves. 

Among the most important one may notice: (i) Density waves, which give the phases R, R’, R”, EL 

and EL’ the structure of layered smectic phases. (ii) Macroscopic polarization along Oz arising in R” 

and EL’. (iii) Anisotropic components of the optic tensor in the monoclinic and orthorhombic linear 

and elliptic phases.  

In order to classify the infinite set of tensors waves let us introduce the following convenient 

notation, in which in most cases two integers, namely [n,p], are sufficient: One [n] indicates its tensor 

properties, and the other [p] its wave vector. These numbers refer to the irreducible representations of 

the Euclidean group O(3)×T3. For non-zero wave vectors, the tensor waves are classified according to 

the 2D-rotation little group SO(2) of 
  

� 

k .  
(a) First, let us denote a 2D-tensor of rank n>0 with the symbol Γn  and, for n=0 by its parity ±  with 

respect to the mirror plane σ x  (scalar Γ0
+ , and pseudo scalar Γ0

- ). For instance, a polar vector 

(Vx,Vy,Vz), splits into one 2D-vector (Γ1 :Vx,Vy) plus one even 2D-scalar (Γ0
+ :Vz).  

(b) Since all the ordered phases are periodic the tensor waves have wave vectors 
  

� 

K =p
  

� 

k  (p integer). 

At p=0 there is a single homogeneous “wave”, which can be either even or odd under I. Hence, the 
classification of waves is similar to that of 2D-tensors in (a), and one may use the same symbols Γp≠0, 

Γ0
+ and Γ0

-  for representing the corresponding waves. 

We shall denote now symbolically by Γn
(±) ⊗Γp

(±) a tensor wave of rank n and wave vector p
  

� 

k . Its 

dimension is either 1 (Γ0
± ⊗ Γ0

± ), 2 (Γ0
± ⊗ Γp  or Γp ⊗ Γ0

± ) or 4 (Γn ⊗ Γp ). The index n indicates how the 

wave transforms under rotations, and p how it transforms under translations. For instance, there are 
two polar-vector waves with wave vector 

  

� 

k : One transverse wave (Γ1 ⊗Γ1 ) which coincides with the 

primary order parameter of our model, and one longitudinal wave (Γ0
+ ⊗Γ1).  

We classify these tensor waves with respect to the group GL= D∞h × T1, which is isomorphic to the 

abstract group O(2)⊗ O(2). The first copy of the 2D orthogonal group O(2) is C∞v , generated by the 

rotations about Oz and the mirror plane σ x . The second copy contains the group T1 of translations 

along Oz (mod. 2π /k since we consider only waves with wave vectors p
  

� 

k ) and the space inversion I. 

Thus the image group can be rewritten as:  

 
GL = D∞h × T1 =  (C∞ × CS)  ⊗  (T1 × Ci ) =  OR(2) ⊗  OT (2)     (7) 

 

where ×  indicates the semi-direct product, and ⊗  the direct product. The indices R and T denote the 
rotation and translation O(2)-subgroups of GL. CS={e, σ x } and Ci={e,I} (rigorously speaking the 
actual image group is rather GL/{e,Cπ Tπ / k } since Cπ Tπ / k  is represented by the identity matrix in 

Eq. (3)).  
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The previous classification of tensor waves is directly related to the representations of GL. The 
irreducible representations of OT(2) and OR(2) are both labeled Γ0

+ , Γ0
−  and Γ n (n positive integer). 

For OR(2), Γ 0
+ and Γ 0

– represent 2D-scalars, respectively even and odd with respect to σ x , and Γ n  

represents a 2D-tensor of rank n. In OT(2), Γ 0
+ and Γ 0

– represent homogeneous quantities respectively 

even and odd with respect to I, and Γ p represents a wave with wave vector p
  

� 

k . Then the full set of 

tensor waves can be classified according to the following irreducible representations of OR(2)⊗ OT(2) :  
Γ0

+ ⊗ Γ0
+  : homogeneous scalar, invariant under σ x  and I (e.g., density). 

Γ0
+ ⊗ Γ0

−  : homogeneous scalar, invariant under σ x  and odd under I (Pz
(0) ). 

Γ0
− ⊗ Γ0

+ : homogeneous scalar, odd under σ x and invariant under I (Az
(0) ). 

Γ0
− ⊗ Γ0

−  : homogeneous scalar, odd under σ x and I (chiral index χ ). 

Γ n⊗ Γ0
+  : homogeneous tensor of rank n, symmetric under I (A x

(0)
, A y

(0)
  for n=1). 

Γ n⊗ Γ0
−  : homogeneous tensor of rank n, odd under I (Px

(0)
, Py

(0)
  for n=1). 

Γ0
+ ⊗ Γ p : scalar wave with wave vector p

  

� 

k  (density wave or Pz(z) for p=1). 

Γ0
− ⊗ Γ p : pseudo-scalar wave with wave vector p

  

� 

k  (e.g., Az(z) for p=1). 

Γ n⊗ Γ p : tensor wave with rank n and wave vector p
  

� 

k  (e.g., order parameters 
  

� 

A (z) and 
  

� 

P (z) for 

n=p=1). 
The chiral index χ  is a pseudo scalar, which vanishes in non-chiral phases and changes its sign in 

two domains of opposite handedness in chiral phases. 
  

� 

A (0) and 
  

� 

P (0) are homogeneous axial and polar 

vectors, whereas 
  

� 

A (z) and 
  

� 

P (z) are axial and polar transverse vector waves with wave vector 
  

� 

k . The 
transverse components of the axial vector 

  

� 

A (0) represent the tilt vector. Its longitudinal component Az
(0)

 

can be interpreted as the component txxz+tyyz of the second-order electroclinic tensor tijk defined by 
δ A i

(0) =tijkEjEk, which describes the action of high electric fields on the homogeneous tilt vector. The 

dielectric and optic tensors {εxx − ε yy,ε xy } are examples of Γ 2 ⊗ Γ0
+ , whereas the first-order 

electroclinic tensor {εxx
c − εyy

c ,εxy
c }, where δ A i

(0) = ε ij 
c Ej , provides an example of Γ 2⊗ Γ0

− . 

These tensors permit also to visualize geometric (translational and rotational) aspects of the wave 

  

� 

P (z). To isolate its translational properties let us define the scalar function : 

 

 M(z) = P(z).P(z) = nL +AT Cos(2kz) + BT Sin(2kz)     (8) 

 
where nL the scalar ρ1

2 + ρ2
2, and [ AT ,BT ] = 2ρ1ρ2  [cos(φ1 − φ2),−sin(φ1 − φ2)]  transforms as Γ2 ⊗ Γ0

+ . 

To visualize M(z) we consider M and kz as the radial and angular polar coordinates, respectively, in an 

abstract plane where the function M(z) defines then a closed orthorhombic curve (Fig. 2a). It is 
invariant under a rotation Cϕ , and it rotates under a translation Tt. In the EL-phase the curve has the 

shape of a double balloon which becomes circular in the C-phase, and which splits into two parts in the 

R-phase. The splitting results from the cancellation of P(z) at periodic positions, denoted by “nodes” of 

the wave, along z in R. The presence of a node is associated with specific symmetry elements that we 

shall discuss below. Let us notice that a "dual" description of the angular properties of the wave is 
provided by the Γ2 ⊗ Γ0

+ –type tensor : [AR,BR] = 2ρ1ρ2[−cos(φ1 + φ2),sin(φ1 + φ2)] . Finally, these two 

tensors and corresponding figures can be similarly defined with the secondary wave 
  

� 

A (z) in order to 

distinguish graphically primed and unprimed phases. 
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All tensors and tensor waves (except density) vanish in the isotropic liquid and can get finite values 

in one or several ordered phases. The list of the corresponding "permitted" tensors is given in Table 1 

for all the ordered phases. 

 

Figure 2. (a) Graphic representation of the unprimed bent-core phases. The angular 

coordinate represents the position z in the unit cell (a complete rotation in the graphic 

plane is associated with a translation of one unit cell λ ), whereas the radial coordinate 

represents the modulus of the polarization at position z. In the circular C phase the 

polarization modulus does not vary with z. In EL the modulus varies periodically yielding 

a bean-shape curve, but it vanishes nowhere. In R the small axis of the bean vanishes along 

directions corresponding to the nodes of the polarization wave. (b) Angular variations of 

the wave function modulus in the superconducting states. It is isotropic in phase I, 

orthorhombic without nodes in phase III, and exhibits four nodes in phase II. 

 
 

Table 1. First line: Tensor-wave types. Second line: Physical meaning of the waves. The 

superscript (0) indicates that the tensor is homogeneous. For each tensor wave, the list of 

phases in which they take non-zero values is indicated in the third line. 

Γ 0
+⊗�Γ 0

– Γ 0
–

⊗ Γ 0
+ 

 

Γ 0
–⊗ Γ 0

– Γ 0
+⊗ Γ p

 

Γ n⊗ Γ 0
+ 

Γ 0
–⊗ Γ p

 

 

Γ n⊗ Γ 0
– Γ n⊗ Γ p 

polarization 
Pz

(0)  

tilt A z
(0)  chiral 

index χ  
Pz(z)  n=1 
A x

(0)
,A y

(0) p=1 
Az(z) p=1 Px

(0)
,Py

(0) n=1 
  

� 

A (z) or 
  

� 

P (z) 

n=p=1 

C’ R” EL’ C’ R’ 

EL’ 

C C’ EL  

EL’ 

n even:  

R,R’,R” 

EL,EL’ 

n even : 

R’,EL,EL' 

n even : 

R”,EL,EL’ 

 n+p even : 

R,EL,EL’,R’,R” 

n=p : C,C’ 
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One sees that if a phase is symmetric under the screw rotation Cπ Tπ / k , then the tensor waves with 

n+p odd vanish. This rule forbids, for instance, transverse ferrielectricity (because Px
(0) =Py

(0) =0) and 

ferriclinicity (A x
(0) =A y

(0) =0), on the one hand, and longitudinal antiferroelectricity (cancellation of the 

wave Pz(z) with period λ ), and anticlinicity (wave Az(z) with period λ ), on the other hand. Then, the 

ordered phases can only be transversely antiferro- and longitudinally ferro- electric or -clinic. 

Likewise, only even harmonics of the density wave can condense, so that the smectic character of the 

phases corresponds always to a bilayer ordering (smectic period = λ /2).  

More generally, Table 1 displays the main physical effects permitting one to distinguish 

experimentally the various ordered phases arising in the model : 

(i) In C, all the tensor waves with n=p condense and are circularly polarized. The corresponding 
polarization has, of course, always the same handedness as the structure. Since phase C is chiral, χ  

takes opposite values in domains with different handedness. C remains non-smectic (zero density 
wave), non-polar, and optically uniaxial. In contrast, in C’ a homogeneous polarization (Pz

(0) ) takes 

place along the helix axis. Moreover the presence of a homogeneous longitudinal tilt vector along Oz 
(A z

(0) ) leads to a macroscopic second-order electroclinic effect. 
(ii) R is smectic (with period λ /2), non-chiral, and optically biaxial (εxy). The R→R’ transition is 

characterized by the onset of a second-order electroclinic effect (txxz+tyyz). But, in contrast to C’, no 

homogeneous polarization arises along the helix axis. Conversely, at the R→R” transition the system 

becomes longitudinally ferroelectric, but without any second-order electroclinic effect.  
(iii) At the C→EL transition first-order electroclinic coefficients (ε ij

c) arise, and the phase becomes 

optically biaxial (ε ij ) and smectic. At the R→EL transition, the system becomes chiral (χ ) and first-

order electroclinic (ε ij
c). At the EL→ EL’ transition the system becomes homogeneously polarized 

along Oz, and begins to exhibit a second-order electroclinic effect (txxz+tyyz). Finally, at the R’→EL’ 

transition the system becomes chiral, polar along Oz with first-order electroclinicity, whereas at the 

R” →EL’ transition the chirality is accompanied by a longitudinal pseudo-scalar wave with period λ /2 

and a second-order electroclinic tensor. 

Table 1 exhibits spectacular regularities: In all the phases, except R’ and R”, if a tensor wave of the 
type Γ (R)⊗ Γ (T) (R, T=n, 0

+  or 0
- ) is permitted, then the “dual” tensor Γ (T) ⊗ Γ (R) is also permitted. 

Furthermore, if Γ (R)⊗ Γ (T) is permitted in R’ then Γ (T)⊗ Γ (R) is permitted in R”. Finally, all tensors of 

the symmetric type (Γ (T)⊗ Γ (T)) and only them, are permitted in C. The following section is devoted to 

explain and formalize these regularities that we shall denote by the rotation/translation dual character 

of the vector-wave model. 

3.  The Dual Symmetry 

The properties of the two Goldstone angles ϕT  and ϕ R shown in Eq. 6 together with the previous 

classification of tensor waves reveal the duality relating translations and rotations in the vector-wave 

model. This duality originates (i) in the structure of the image group GL (Eq. 7), in which the 
translation subgroup T1× Ci is isomorphic to the rotation subgroupC∞v , (ii) in the fact that the tensor-

wave representation associated with the order parameter 
  

� 

P (z) is Γ1 ⊗ Γ1, in which the indices have the 

same unit value (n=p=1) for its tensor (rotations) and wave (translations) aspects. This duality relates 
different symmetry operations (e.g., rotations Cφ  to translations Tφ / k ), different tensor fields (e.g., 
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Γ1 ⊗ Γ2 to Γ2 ⊗ Γ1) different components of the order parameter (ϕT  to ϕ R) and different phases (e.g. 

R’ to R”). It permits one to explain also various specific properties of “self-dual” objects such as 
CφTφ / k , Γ1 ⊗ Γ1or the C-phase.  

The duality idea can be rigorously formalized by means of a “dual operator” D, defined by the 
following matrix in the primary order-parameter space (η1,η2,η2*,η1 * ): 

 

              D  =  

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

                                                                 (9) 

 
and by the same matrix in the secondary (ξ1,ξ2 ,ξ2*, ξ1 * ) space. The fact that D transforms 

translation-like objects into rotation-like ones is made clear by using the following notation for the 
basis functions in the order-parameter spaces : 

  

± ± = e± ikz  
� 

e ± , where the first index ± is associated 

with the wave part (e±ikz) of the basis function (appearing in Eqs. (1) and (4)) and the second index 
with its vector part (

  

� 

e ± =
� 

e x ± i
� 

e y ). Then, D simply permutes the wave and vector indices: D ab = ba  

(note that any combination of D with a symmetry of GL might be used as well as the definition of a 

possible duality operator). Furthermore, D permutes also the elements of OR(2) with those of  OT(2):  

 
DCφTtD = CktTφ/k  , DID = σ x .        (10) 

 
If one combines D with GL, then one finds an “extended” group ˜ G L  which contains “dual-free” 

elements g (belonging to GL) together with dual combinations gD of D with dual-free operations. ̃ G L  

is not a symmetry group in the usual sense because D is a classificatory operation, which has a 

descriptive role, and not a dynamical symmetry constraining the physical properties of the system. 

However, the free energy of the vector-wave model is invariant under D, so that the list of low-

symmetry phases and their thermodynamic properties have well-defined dual features (e.g., dual pairs 

of phases appear in symmetric parts of the theoretical phase diagram). This makes a classification of 
the phases based on the duality operator consistent. We denote by ̃ G ph the extended symmetry group 

of the phase "ph" (=C, R, EL, R’…), defined as the subgroup of ̃  G L  leaving 
  

� 

P (z) and 
  

� 

A (z) invariant.  

In the domain obtained by canceling the angles ϕ R and ϕT  the extended groups of C, R, and EL 

contain D itself. This property is reminiscent of the “magnetic groups” in which the time-reversal 

operation (formally analogous to D in our approach) may be or not combined with spatial symmetries. 

When a group contains the time reversal, it characterizes the properties of a paramagnetic structure 

(denoted by G1’ in Shubnikov’s notation, where G is any space group). However, this classification is 

not directly relevant for duality because D can be present in the group of one domain of a phase and 

absent in another domain (where it is replaced by another possible duality operator gDg-1). Thus, it 

turns out to be more convenient to distinguish between “dual-free groups” (containing only dual-free 

operations) and “dual groups” (containing dual operations). The unprimed phases (R, C, EL) have dual 

groups while the primed phases (C’, R’, R”, EL’) have dual-free groups. In a phase with a dual group it 

is always possible to find one domain (by setting the two Goldstone phases to zero) in which D is 



Symmetry 2010, 2 

 

 

26 

present. Accordingly, we use the Shubnikov’s notation applied to this special domain for denoting the 
extended symmetry groups of the unprimed phase as ˜ G ph = Gph1' whereas in the primed phase 
˜ G ph = Gph. 

Unlike time reversal, D does not commute with all the elements of GL. It commutes only with the 
operations CφTt  provided that φ − kt = nπ  (n integer) and with the twofold axes U2x and U2y (or with a 

different pair of perpendicular twofold axes if one chooses another definition for D). We denote such 

operations as “self-dual” (they form a group coinciding with that of a cholesteric). For the non self-

dual operations g one can thus define their dual conjugate DgD  (DgD=g when g is self-dual, because 

D2 is the identity operation). This permits one to make a more subtle classification of the low-

symmetry groups that splits them into “self-dual groups” (which contain only self-dual operations), 
“globally self-dual groups” (such that D̃ G phD= ˜ G ph) and non-self-dual groups. In the latter case ˜ G ph 

is associated with its “dual-conjugate” D˜ G phD. Any dual group is automatically globally self-dual. C, 

C’, EL and EL’ are self-dual, R is globally self-dual, and R’ and R” are non-self-dual phases which are 

mutually dual conjugated. The analogy between duality and time reversal is correct only for the self-

dual groups, since in this case D is present in all the domains of the dual phases. C and EL are then 

analogous to paramagnetic structures whereas C’ and EL’ are analogous to ferromagnetics. 

In order to discuss the consequences of this classification let us first extend the duality idea to 
tensor waves. A set of measurable physical quantities transforming as Γa ⊗ Γb  (a,b=0

+ ,0
- ,1,2,3…) is 

either “self-dual” if a=b or associated with its “dual-conjugate” transforming as Γb ⊗ Γa . For instance, 

the order-parameter modulus (ρ1
2 + ρ2

2 , which transforms as Γ0
+ ⊗ Γ0

+ ) and the chiral index χ  are self-

dual scalars, whereas the order parameters 
  

� 

P (z) and 
  

� 

A (z) are self-dual vector waves. On the other 
hand, the homogeneous polarization Pz

(0)  and the homogeneous “tilt vector” Az
(0)  are dual-conjugated 

scalars. The homogeneous tilt vector in the x-y plane (Ax
(0) ,A y

(0) ) is dual-conjugated with the first 

harmonic (i.e., with wave vector 
  

� 

k ) of the density wave, whereas the homogeneous polarization 
(Px

(0) ,Py
(0) ) is dual-conjugated with the first harmonic of the chirality wave χ (z). The macroscopic optic 

tensor (ε xx–ε yy,ε xy) (second-rank homogeneous tensor) is dual-conjugated with the second harmonic 

of the density wave.  

The main physical consequences of the duality result from the following fact: Whenever a dual-free 

symmetry g forbids the existence of a tensor wave (or some of its components) transforming as 
Γa ⊗ Γb , its dual-conjugate DgD forbids (the same components of) Γb ⊗ Γa .  For instance, the 

inversion I cancels the three components Pz
(0)  and (Px

(0) ,Py
(0) ) of the macroscopic polarization, then the 

mirror plane σ x =DID cancels the homogeneous tilt Az
(0)  and the first harmonic of the chirality 

waveχ (z). Consequently, in a globally self-dual phase the forbidden tensor waves are either self-dual 

or appear as dual-conjugated pairs. The same property occurs for the allowed tensor waves. 

Furthermore, allowed dual-conjugated tensor waves have similar thermodynamic properties : They 

vanish at the same temperature with the same critical exponents. Analogously, in the dual conjugated 

phases R’ and R”, whenever a tensor wave is forbidden (or allowed) in one phase, then its dual 

conjugate is forbidden (or allowed) in the other phase (with the same thermodynamic behavior): 
1- In the C-phase the homogeneous polarization (Px

(0) ,Py
(0) ) and tilt vector (Ax

(0) ,A y
(0) ) are forbidden, 

then their dual-conjugates, namely the first harmonic of the density wave and ofχ (z), are also 

forbidden. Moreover, GC forbids any homogeneous tensor (except scalars) and, according to the 
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previous duality rule, any scalar wave. Thus, C is macroscopically 2D-isotropic and not smectic : It is 

optically uniaxial, on the one hand, and it does not give rise to Bragg peaks in normal (non-resonant) 
x-ray diffraction, on the other hand. Moreover, the order-parameter modulus nL (Γ0

+ ⊗ Γ0
+) and the 

chirality index χ  ( Γ0
− ⊗ Γ0

− ) are permitted while the macroscopic longitudinal polarization Pz
(0)  

( Γ0
+ ⊗ Γ0

− ) and tilt vector Az
(0)  ( Γ0

− ⊗ Γ0
+ ) vanish. Indeed, the helical symmetry of C makes it 

“maximally self-dual” because it allows only self-dual tensor waves (Γa ⊗ Γa ) and, furthermore, all 

the self-dual tensor waves. For instance, in the x–y plane a single harmonic (with wave vector 
  

� 

k ) of 

the polarization 
  

� 

P (z) and tilt 
  

� 

A (z) waves are allowed, hence making the C-phase perfectly helielectric. 

Similarly, a single harmonic (with wave vector 2
  

� 

k ) of the 2D-optic tensor (ε xx(z)–ε yy(z),ε xy(z)) is 

permitted, yielding the same rotatory-power effect than in a cholesteric phase, and the same optic gap 

features (within a much shorter wavelength range).  
2- C’ differs from C only by the onset of Pz

(0)  and Az
(0) : It is ferroelectric along Oz because the 

molecular polarization, which is normal to 
  

� 

k  in C, is uniformly tilted around an axis normal to 
  

� 

k  and 

to the molecular symmetry axis. On the other hand, several tensor waves with the same transformation 

properties (as, for instance, 
  

� 

A (z) and 
  

� 

P (z)), which are locked in parallel directions in C, may have 

different orientations in C’. For instance, 
  

� 

A (z) and 
  

� 

P (z) are mutually shifted by a constant angle in C’.  

3- In the group of the linear R-phase the mirror planes (and inversion) are not self-dual but they 
appear by pairs of dual-conjugated operations : (σz,σ y )  and ( ITπ/k ,σ xTπ/k ). R is smectic and permits 

all the even harmonics of the density wave (Γ0
+ ⊗ Γ2n) and all the homogeneous even-rank tensors 

(Γ2n ⊗ Γ0
+ ) as for instance the 2D-optic tensor (ε xx–ε yy,ε xy), which makes the phase biaxial. R is also 

characterized by the onset of all the odd harmonics of 
  

� 

P  (Γ1 ⊗ Γ2p+1), each one giving one resonant 

Bragg peak at (2p+1)
  

� 

k . Simultaneously, the first harmonic of all the odd-rank tensor waves 
(Γ2n+1 ⊗ Γ1 ) are present in R.  

The dual features of R’ and R” appear clearly as one considers the tensors appearing at the 
transitions R→R’ and R→R”. A homogeneous tilt vector Az

(0)  appears in R’ while a homogeneous 

polarization Pz
(0)  appears in R”. Az

(0)  indicates that in R’ the direction of the transverse polarization (or 

equivalently of the molecular planes) is not locked, as in R, and can change with temperature. Along 
the same way, in R’ all the even harmonics of the chirality wave χ (z) appear, whereas their dual 

conjugates, the homogeneous pseudo tensors of even ranks, appear in R”. Moreover, on approaching 

the R’→R transition temperature T’ the amplitude of the 2n’th harmonic vanishes as (T–T’)n, whereas 

the modulus of the tensor with rank 2n vanishes as (T–T”)n at the R”→R transition temperature T”. 

3- In EL all the tensor waves permitted in C and in R are also permitted. Moreover the odd 
harmonics of the density wave (Γ0

+ ⊗ Γ2p+1) together with the homogeneous tensors of odd rank 

(Γ2n+1 ⊗ Γ0
+) take non-zero values.  

4.  Dual classification of Line Defects 

Line defects are topologically non-trivial fields of the Goldstone angles ϕT  and ϕ R (see Eq.6), on 

the one hand, and of the direction of 
  

� 

k  on the other hand. We present here below a complete 

topological classification of the possible defects, using standard homotopy analysis of the image group. 

It clearly reveals the dual character of the vector-wave theory, for they naturally classify into self-dual 
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(dispiration) and pairs of dual conjugated (dislocation/disclination) lines. Nevertheless, one does not 

expect similar thermodynamic behaviors for dual-conjugated defects since the line core lies in the real 

space, which does not exhibit the same translation/rotation duality as the order-parameter space. The 

dual symmetry is a property of the order-parameter space, not of the actual space. It applies to the 

classification of defects because at the topological level the possible defects are completely determined 

by the geometry of the Goldstone part of the order-parameter space, which is strongly constrained by 

the dual symmetry. In particular, we shall see that homotopy group considerations reflect directly its 

dual structure. 

4.1. Circular phases  

When one considers the condensation of a transverse vector wave in a perfect nematic phase (with 

  

� 

k  parallel to the optic axis) the thermodynamic model presented in sections I and II remains valid, but 

the direction of 
  

� 

k  is locked even in inhomogeneous ordered states. The same situation occurs when, 

starting from the isotropic phase, the walls of the sample are prepared in order to lock the direction of 

  

� 

k  (e.g., in homeotropic-like configurations). In these two cases, the inhomogeneous states can result 
only from the space variation of the angles ϕT  and ϕ R. Hence, we shall now distinguish two types of 

linear defects : Type-1 (χ-) lines involve variations of ϕT  and ϕ R only. They appear after transitions 

from either the free isotropic liquid or the homogeneous nematic. Type-2 (λ -,λ+)-lines involve spatial 

variations of the direction of 
  

� 

k . They cannot be induced by transitions from defect-free nematics or in 

  

� 

k -locked configurations, but only in the isotropic liquid or in nematics with preexisting disclinations. 

Figure 3. Line defects in C. The “equal phase” surfaces (analogous to the smectic layers in 

R and EL) are represented by continuous lines, and the polarization by arrows when it is 
parallel to the figure and circles when it is normal to it.. (a) χ -line (2π -disclination) with 

a core parallel to 
  

� 

k . (b) χ -line with a core normal to 
  

� 

k  (jelly-roll configuration). A 

domain wall between two oppositely wound domains is represented by a thick line. (c) (λ –

) line (–π -disclination with core normal to 
  

� 

k ). (c) (λ +) line (+π -disclination with core 

normal to 
  

� 

k ). 

 
Type-1: Starting from a homogeneous nematic phase, only χ -lines can take place in C and C’. 

Their topology is generated by a rotation of the local helix to an angle 2π  about the line core. The line 

is parallel to 
  

� 

k  and the polarization turns around it as in Fig. 3a. The order-parameter variations 

(a)

p

(b)

λ

λ

(c)

p
λ

(d)

λ
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around the core can be interpreted within dual point of views: (i) The polarization rotates by an angle 

2 π  (disclination line with unit winding number). (ii) The wave is translated by a distance λ  

(dislocation with unit Burgers vector). As long as the direction of 
  

� 

k  is fixed by the underlying 

homogeneous nematic, an infinity of such defects with winding numbers...,–2,–1,1,2… are possible. 

Contrariwise, when the circular phases arise from the isotropic liquid state the direction of 
  

� 

k  can vary 

so that disclinations with even winding numbers become topologically trivial, whereas those with odd 
numbers all become topologically equivalent. Accordingly, there exists in this case a single type of χ-

defect. 
χ-defects could also appear in the “jelly roll” configuration where 

  

� 

k  is perpendicular to the line 

(Fig. 3b). In this configuration 
  

� 

k  rotates about the line, transforming the planes of the homogeneous 

smectic into cylinders wound around the disclination core. It can be associated with cylindrical walls 

separating domains of opposite handedness. The wave vector 
  

� 

k  remains continuous where it crosses 

the wall, but inside the cylinder the polarization precesses as a right-handed helix, and as a left-handed 

one outside. Note that such wall cannot exist in cholesterics since all the domains have the same 

handedness in chiral systems.  

Type-2: To describe the two other defects it is convenient to start from the classification of 

disclinations in cholesterics. Indeed, a cholesteric phase is analogous to C and C’, whose helical 

groups combine translations with rotations, though the cholesteric local point group is non polar and 

orthorhombic (D2) while it becomes polar and monoclinic (C2) in C, and triclinic (C1) in C’. Thus, 

although the disclinations are similar in these three phases, four types can be found in cholesterics, 

while only three types exist in C, and one in C’: 
- The χ-line is common to the three phases.  

- The remaining cholesteric lines are generated by rotations by angles π  or –π  about the three 

orthogonal axes x, y and z. In cholesterics π  and –π  rotations are topologically equivalent, yielding 

three types of defects (x,y and z). On the contrary, in C π  and –π  are not equivalent but π  around x is 

equivalent to π  around y or z, yielding only two distinct defects (π  and –π). Their structures, depicted 
in Figs. 3-c,d, are similar to the cholesteric lines denoted as λ+ and λ–. Like χ  they can be observed in 

circular phases appearing in nematics provided that a ±π-disclination line preexists. A nematic wedge 

disclination (angle 2π m) transforms in λ +  (for m=1/2) or λ - (for m=-1/2) at the Nematic→C 

transition. λ - and λ+ become topologically unstable in C’. 
Combining χ , λ - and λ+ yields the following merging effects: Two lines of the same type annihilate 

each other. Two lines of different types combine in such a way as to form a single defect of the third 

type.  

4.2  Linear Phases 

In R infinitely many distinct type1-defects can be obtained by combining two elementary 

dispirations: (i) One in which the structure is translated by λ /2 along z and rotated clockwise by an 

angle π  when circling around the core, and (ii) its counterclockwise image. Combining (i) with itself 

yields a pure dislocation with Burgers vector equal to λ  (two smectic layers). Combining (i) and (ii) 

(but with opposite translations +λ /2 and -λ /2) yields a pure 2π -disclination. (i) and (ii) are obviously 

dual-conjugated. More generally, let us denote the defect (i) by {1/2,1/2} (shorthand for {1
2

λ, 
1

2
2π }) 
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and the defect (ii) by {1/2,-1/2}. A general type-1 defect reads then {n,p}, where n and p (≥0) are 

simultaneously integers or simultaneously half integers. They combine together according to the rule 

{n,p}{n’,p’}={n+n’,p+p’(mod. 2)}. {n,p} is self-dual if n=±p(mod.2) whereas {n,p} and 

{p,n(mod. 2)} are dual conjugated. {n(integer),0} is a pure dislocation while {0,1} is the single pure 

disclination. Let us finally notice that {n,p} and {–n,p+1} are topologically equivalent. Four examples 

of such defects are represented if Figs.4-a,b,c,d. 

Four type-2 elementary defects arise when 
  

� 

k  can vary : In (iii/±), the structure turns by ±π  about an 

axis parallel to the polarization (Figs. 4-f,h). In (iv/±), the structure turns by ±π  about an axis normal 

to the polarization and to 
  

� 

k  (Figs. 4-e,g). They can also be considered as the traces of  ±π -

disclinations in an underlying nematic phase. They combine according to the following rules: 

 

(iii/+)(iii/+)=(iv/+)(iv/+)=(iii/-)(iii/-)=(iv/-)(i v/-)={n,1} (or {-n,0}) 

(iii/+)(iii/-)=(iv/+)(iv/-)={n,0} (or {-n,1}) 

(iii/+)(iv/+)=(iii/-)(iv/-)={n+1/2,1/2} (or {-n-1/2 ,3/2}) 

(iii/+)(iv/-)=(iii/-)(iv/+)={n+1/2,3/2} (or {-n-1/2 ,1/2}) 

{n,0}{iii/+}={n,1}{iii/-}={n+1/2,1/2}{iv/+}={n+1/2, 3/2}{iv/-}={iii/+} 

{n,0}{iv/+}={n,1}{iv/-}={n+1/2,3/2}{iii/+}={n+1/2,1 /2}{iii/-}={iv/+} 

{n,0}{iii/-}={n,1}{iii/+}={n+1/2,3/2}{iv/+}={n+1/2, 1/2}{iv/-}={iii/-} 

{n,0}{iv/-}={n,1}{iv/+}={n+1/2,1/2}{iii/+}={n+1/2,3 /2}{iii/-}={iv/-}   

 

where n may be any integer. The four first association laws leave n indeterminate in the resulting 

defect. One can build pure dislocations by associating type-2 defects with the same nature but different 

angles [e.g., (iii/+) and (iii/–)], or a pure disclination {0,1} with defects having the same nature and 

angle [e.g., (iii/+) and (iii/+)]. Similarly, the generators (i) and (ii) can arise from combinations 

involving type-2 defects of opposite nature and the same angle [e.g., (iii/+),(iv/+)] for (i), or opposite 

angles [e.g., (iii/+),(iv/–)] for (ii).  In R’ and R” (i), (ii) and their combinations {n,p} persist while 

(iii/±) and (iv/±) become unstable by the same process which forbids π-disclinations in conventional 

SmC phases. Moreover {n,p} and {–n,p+1} become topologically independent. Hence, the dual-

conjugated phases R’ and R” present the same line-defect classes. 
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Figure 4. Line defects in R. The straight lines indicate the edge of the smectic layers. 

(a) Dispiration {1/2,1/2} with core parallel to 
  

� 

k . (b) An equivalent defect with core 

normal to 
  

� 

k . (c) Pure {0,1} 2π -disclination. The arrows and circles indicate the 

components of the polarization 
  

� 

P  at the center of the layers respectively parallel and 

normal to the figure. (d) Pure {1,0} dislocation. (e) –π -disclination of type (iv,-). (f) –π -

disclination of type (iii,-). (g) +π -disclination of type (iv,+). (h) +π -disclination of type 

(iv/-). 

 

4.3 Elliptic Phases 

At first sight the classification in EL is the same as that in R, whereas in EL’ it is equivalent to that 

in R’ and R”. However, one has yet considered only approximate elliptic structures, in which the two 

circular polar waves forming the elliptic wave have the same wavelength. In fact, we have shown in 

references [5] that EL and EL’ are actually incommensurate. In EL the polarization wave reads: 

 

  

� 

P (z) = 2(ρ1 + ρ2) cos[Kz]  
� 

e X (z) + 2(ρ2 − ρ1) sin[Kz]  
� 

e Y (z)           (11) 

 
where 

  

� 

e X (z)=cos(Qz)
  

� 

e x –sin(Qz)
  

� 

e y and 
  

� 

e Y (z)=sin(Qz)
  

� 

e x+cos(Qz)
  

� 

e y are perpendicular unit vectors 

turning within the x-y plane. The two wavelengths λ mod=1/Q and λ =1/K<<λ mod are incommensurate. 

The plane containing the polarization of two successive molecules precesses slowly around Oz. This 

helical structure differs from that in C and C’ in two respects : (i) The length scale of the elliptic 

helical modulation is much larger than the molecular size (typically within the optic range) while the 

scale of the pitch λ  in the circular structures ranges within molecular length. (ii) The helical symmetry 

in C and C’ is continuous (perfect helix) while it is discrete in EL and EL’. However, the symmetry 

groups of EL and EL’ are not broken by the incommensurate modulations. Indeed, Eq. (10) shows that 
the modulated space groups are generated by the screw axis Tλ / 2Cπ −Qλ / 2 (which becomes 21 when 

Q=0) and U2x. The groups with Q=0 and Q≠0 are isomorphic. Accordingly, the classification of line 

defects is not modified by the modulation though their spatial structures are changed. 

z

(b)

(a)

λp
(c)p

λ

λ
(d)

λ

p
λ(e)

p
λ

(f)

λ
(g)

λ
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5. Analogy With d-Wave Superconductivity 

Attracting fermions in two-dimensional systems condense at low temperature into bound states, the 

so called Cooper pairs [24]. These states may be classified according to their angular and spin 

moments [26-28]. For instance, in a conventional superconductor two electrons form a charged Cooper 

pair with zero orbital and spin moments. These « s-wave » pairs are responsible on the specific 

properties (zero resistivity, magnetic flux expulsion and Josephson effect) of the superconducting state. 

At the symmetry point of view superconductors are characterized by the breakdown of the 
electromagnetic gauge symmetry [29]. Such gauge operations, denoted by gα , transform the Cooper 

pair wave-function ψ  into equivalent wave functions exp(iα )ψ . In the superconducting state ψ  is 

different from zero and the gauge symmetries are broken. However, since the s-wave function is 

isotropic it does not break the rotational symmetry. On the contrary, the wave function can break 

spatial symmetries when its orbital momentum is different from zero. Such a phenomenon occurs in 
various superfluid systems, such as the superfluid He3 (p-wave pairing) [26,27,28], the heavy fermions 

(p or d-wave pairing) [30] and the high-Tc oxide superconductors (d-wave pairing) [31,32]. We shall 

show now that the theory of d-wave 2D superconductors is strongly analogous to the theory of bent-

core liquid crystals. 
Let S1z and S2z be the spins of two fermions at positions 

  

� 

r 1 and 
  

� 

r 2, and ψ (r, θ ,S1z,S2z) their wave 

function. r and θ  are the polar coordinates of the relative position 
  

� 

r 1-  
� 

r 2. In a d-wave the orbital 

momentum is L=2, and the spin is in the singlet state S(S1z,S2z) [15]: 

 
ψ  (r, θ ,S1z,S2z) = { D+ exp(2iθ ) + D– exp(-2iθ ) } S(S1z,S2z) .   (12) 

 

D+=D+exp(iφ +), D–=D–exp(iφ –), D+* and D–* are the four complex components of the 

order parameter. They transform according to an irreducible representation of the normal phase 
symmetry group, which contains the gauge transformations gα , the continuous 2D rotations Cϕ , as 

well as the discrete time reversal T and mirror plane σ x operations. The corresponding matrices are 

given by: 

 

 

gα =

eiα

e-iα

eiα

e-iα

 

 

 
 
 
 

 

 

 
 
 
 

,  Cϕ =  

e2iϕ

e-2iϕ

e-2iϕ

e2iϕ

 

 

 
 
 
 

 

 

 
 
 
 

σ x  =  

1

1

1

1

 

 

 
 
 
 

 

 

 
 
 
 

,  T =  

1

1

1

1

 

 

 
 
 
 

 

 

 
 
 
 

   (13) 

 
in the basis {D+,D+*,D–,D–*}. These matrices generate the “image group”: 

 
OG(2) ⊗ OR(2)        (14) 
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where OG(2) contains gauge and time reversal transformations whereas OR(2) is the 2D rotation group 

C∞v. As in the vector wave model OG(2) and OR(2) are isomorphic copies of the 2D orthogonal group 

O(2) (see Eq. (7)). One sees immediately that the order parameter (12) transforms as the irreducible 
representation Γ1

(G)⊗ Γ1
(R)

 of OG(2)⊗OR(2). The analogy between the bent-core and d-wave models 

results from, (i) the group isomorphism of their high-symmetry phases (see Eqs. 7 and 13), (ii) the fact 
that in both cases the order parameter spans the irreducible representation Γ1⊗Γ1 of these groups. 

Consequently, the d-wave model [15] exhibits a rotation/gauge duality completely analog to the 

translation/rotation duality of bent-core mesophases. 

In order to realize concretely the analogy we may identify the image groups of the two systems 

along two ways. In the first way the rotation group of the liquid crystal is identified with the rotation 

group of the superfluid whereas the translation group is identified with the gauge group. In the second 

way the identifications are reversed. These cases are obviously dual-conjugated. More precisely : 
First analogy : A rotation of the liquid crystal by an angle ϕ  is equivalent to a rotation of the 

superfluid by an angle ϕ /2. A translation of ∆ z along the helical axis is equivalent to a gauge 

transformation by an angle α=k∆z (as in the deGennes’ analogy for Sm-A [19,21]). Space inversion I 
is equivalent to time reversal T, and the liquid crystal mirror plane σ x is equivalent to the superfluid 

mirror σ x. This yields the following identification between the order-parameters: 

 
 D– ↔  η2  ,  D+ ↔  -η1*        (13) 

 

Second analogy :  In the second identification the rotational properties of the superconductor are 

equivalent to the translational properties of the liquid crystal (as in the deGennes’ analogy for Sm-C 

[20,21]): 

 

 
Cϕ  ↔  gα   (α = ϕ), σ x   ↔  T

Tt  ↔  Cϕ  (ϕ = kt/2), I  ↔  σ x  
σ  

D– ↔  -η2*  ,  D+ ↔  η1*        (14) 

 

Accordingly, the physical (i.e., gauge-invariant) properties of d-wave Cooper pairs identify with 

either liquid crystal translational properties or with their dual rotational analogs. 

This comparison allows us to expose the properties of superconducting phases by simply translating 

those studied in bent-core phases. However, the analogy is actually complete when one defines a 
secondary wave function, analog to 

  

� 

A (z), with the same symmetry properties as ψ (r,θ ,S1z,S2z). This 

can be achieved in many different ways, one of them being described in Ref. [14] within the context of 

s-wave superconductivity. Thus, the four unprimed phases, which have already been calculated with a 

single wave function in Ref. [15], can then be complemented by four additional primed phases. Their 

properties are summarized in Tables 2-a,b, and compared with their bent-core analogs. The gauge part 

of the symmetry groups are not indicated in these tables. Moreover, in systems containing a mirror 
plane parallel to x,y (for instance in high-Tc superconductors), this plane is never broken by the order 

parameter, and it must be included in the ordered symmetry groups. For instance, the magnetic 

symmetry of phase II becomes 4mmm1'.  
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Table 2a. Symmetry and properties of the superconducting unprimed phases. Their analog 

mesophases are indicated in rows 4 (first analogy) and 5 (second analogy). 

 
Unprimed phases Normal I II III 

Magnetic groups ∞m1' ∞m’. 4mm1’ 4m’m’ 

Properties non magnetic 

non chiral 

magnetic 

non chiral 

non magnetic 

non chiral 

magnetic 

non chiral 

First analogy Isotropic C R EL 

Second analogy Isotropic C R EL 

Table 2b. Symmetry and properties of the superconducting primed phases. Their analog 

mesophases are indicated in rows 4 (first analogy) and 5 (second analogy). 

 
Primed phases I' II' II" III' 

Magnetic groups ∞ 4mm 41’ 4 

Properties magnetic 

chiral 

magnetic 

non chiral 

non magnetic 

chiral 

magnetic 

chiral 

First analogy C' R' R" EL' 

Second analogy C' R" R' EL' 

 

Phase III and EL help us to illustrate some aspects of the analogy physical meaning. Indeed, the 

phase-III wave function can be understood as a quantum superposition of Cooper pairs with orbital 

moments oriented toward +z and pairs oriented toward –z. Likewise, the elliptic phase results from the 

superimposition of two circularly polarized waves of opposite handedness. In II the up and down pairs 

arise with the same amplitude so that the total magnetic moment vanishes. In the analog linear R phase 

the right and left helices have the same amplitude, so that there is no winding of the polarization. On 

the other hand, in I all the pairs are up and the magnetization is maximum, whereas in its analog C an 

helix with a single handedness is present so that the chirality is maximum. 

 The dual classification of physical quantities has a different interpretation with the 

superconductors. Indeed, the representation Γ n⊗ Γ p can be associated with an observable only when 

n=0 since only gauge-invariant quantities are measurable. Thus, we have only to consider the 
quantities Γ 0

+ ⊗ Γ 0
+

, Γ 0
+ ⊗ Γ 0

-
, Γ 0

+ ⊗ Γ p , which represent scalars, pseudo scalars and p-rank tensors 

invariant under time reversal, on the one hand, and their antisymmetric time-reversal  counterparts 
Γ 0

- ⊗ Γ 0
+

, Γ 0
- ⊗ Γ 0

-
, Γ 0

- ⊗ Γ p, on the other hand. Their values in the ordered phases can be deduced 

from Table 1 on using any one of the previous analogies (being careful that a tensor of rank p in liquid 

crystal is associated with a tensor of rank 2p in superconductors!). 

Let us now consider the lowest-degree tensors:  

a) Scalars : Pair density nS, z projection of the orbital momentum Lz and z projection of an axial 

vector Az. The scalar σ  antisymmetric under time-reversal is the response coefficient associated with a 

second-order magneto-electric effect : 
  

� 

P  = σ  
  

� 

E ×
� 

B . In structures where σ  is finite a polarization 
  

� 

P  
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perpendicular to the electric field 
  

� 

E  appears when a magnetic field 
  

� 

B  is applied. This effect happens 

for instance in unconventional s+s’ superconductors [21]. 

b) Second-rank tensors : Dielectric tensor: [2εxy, εxx-εyy], and a second-rank tensor antisymmetric 

under time-reversal [2τ xy, τ xx–τ yy]. The 3D tensor τ  is the response function of the linear magneto-

electric effect 
  

� 

P =τ
  

� 

B  where 
  

� 

P  is the polarization and 
  

� 

B  the magnetic field.  

c) Forth-rank tensors : [A,B] on the one hand, and a fourth-rank tensor antisymmetric under time 

reversal [A’,B’]. The latter tensor may represent the elastic (uij) response (Mijkl ) to a bilinear magneto-

electric excitation: uij=Mijkl BkEl. Where A’=M1111–M2211–M1122+M2222, and  B’=M1112–M2212–

M1121+M2221. 

The superconducting tensors and their liquid-crystal analogs are indicated in Table 3. As an 

example, the bilinear magneto-electric coefficient σ  in the superconducting phase has two analogs, a 

homogeneous longitudinal polar vector Pz and a homogeneous longitudinal axial vector Az. Note again 

that according to the first analogy liquid-crystal tensors of rank r are associated with superconducting 

tensors of rank 2r. For instance, the fourth-rank elastic coefficients in the superconducting system are 

associated with the second-rank optical tensor in the liquid crystal. 

Table 3. Superconducting tensors and their liquid crystal analogs. The type of tensor wave 

is indicated in the first column. The first number indicates the wave vector and the second 

number indicates the tensor rank of the waves. 

 
Tensors Superconductor First analogy Second analogy 

 [0+,0+] Pair density, nS nL nL 

[0+,0–] Bilinear Mag-elec. ε 1 Polarization Pz Axial-vector, Az 

[0–,0+] Linear Mag-elec. τ 1 Tilt-vector Az  Polarization Pz 

[0–,0–] Magnetization Lz Chirality, χ  Chirality χ  

[0+,1]  Biaxiality 

[ ε xy ,ε xx-ε yy] 

Tilt  

(Tx, Ty) 

Smecticity  

Density wave (k) 

[0–,1]  Linear Mag.electric 

 [τ xy , τ xx-τ yy] 

Polarization  

(Px,Py) 

Az e
±ikz

 

[0+,2] Tetragonality 

Elastic [A,B] 

Biaxiality 

Optic ε xy ,ε xx-ε yy 

Smecticity  

Density wave (2k) 

[0–,2] 3d order Mag.elect.  

[A’B’] 

Electro-clinic. 

[ εxx
C − ε yy

C ,ε xy
C ] 

Az e
±2ikz

 

 

As with bent-core mesophases, four physical quantities quadratic in the order-parameter 

components are sufficient to characterize most of the physical properties in the unprimed phases :  

nS =D+2+D-2   represents the Cooper pair density (Γ 0
+ ⊗ Γ 0

+ ). 
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Lz =D+2–D-2   represents the 2D orbital momentum (Γ 0
- ⊗ Γ 0

+ ). 

A = D+*D- + D-*D+,  B = i (D+*D- + D-*D+ ) form a quadrivalent tensor (Γ 0
+ ⊗ Γ 2), which can be 

used to characterize the angular variation of the pair wave function. Indeed, let us write the gauge-
invariant norm of ψ  as:  

 
ψψ* = nS + Acos4θ − Bsin4θ        (15) 

   

This expression permits one to draw the wave function in each unprimed phase (Fig. 2b). It is 

circular in the isotropic phase I whereas it presents four branches in the other phases. In phase II the 

wave function vanishes along four directions. Along the corresponding directions in the reciprocal 

space nodes appear in the quasiparticle excitation spectrum. This means that when the wave vector 
  

� 

k  

of a quasiparticle lies parallel to this direction, its energy vanishes continuously as 
  

� 

k  get closer to the 

Fermi surface, while a gap is present in general directions. The occurrence of such nodes results from 

specific symmetry operations in the phase-II group, and yields most of the unconventional dynamic 

and thermodynamic properties of this phase [26-28].  

A superconductor with four nodes in the excitation spectrum gap (phase II) is analog to a linearly-

polarized vector wave (R-phase). The relation between nodes in the superconducting gap and zeroes of 
the polar wave is reinforced by comparing the four-leave curves (Eq.15) representing ψ ψ* in phase II 

(Fig.2b) and the bean-shaped curve M(z) (Eq.8) summarizing the translation properties of the 

polarization wave in the R-phase (Fig.2a). In the latter, only two leaves are present instead of four in 

its superconducting analog. This inessential difference results from the second-rank tensor angular 

character of a d-wave Cooper pair vs. first-rank of the polarization wave. 

The analogy between nodes in the excitation spectrum and zeroes of the polar wave in phases II and 

R is a consequence of their common symmetry features. For instance, from analogy 2 the linear 
character of the vector-wave (due to the mirror plane σ x) is related to the paramagnetic feature of 
phase II (due to the time reversal T). Let us consider one domain of phase II defined by ϕ +=ϕ –=0. Its 

symmetry group is generated by gπ C π / 2, T and σ x. gπ C π / 2 changes the sign of the wave function 

after a 90° rotation, therefore ψ (θ ) must vanish along four directions. This is the symmetry origin of 

the four nodes occurring in the gap. In order to determine the vanishing directions let us consider the 
symmetry gπ C π / 2σ x=g π σ xy, which changes the sign of the wave function together with a mirror 

plane directed along x+y, which transforms θ  into π /2-θ : gπ σ xyψ (θ )=-ψ (π /2-θ ). The invariance of 

ψ  under g π σ xy provides immediately the four nodes directions: 

ψ ( π /4)=ψ (3 π /4)=ψ (5 π /4)=ψ (7 π /4)=0. The zeroes of the vector-waves result from the same 

arguments. According to the second analogy the generators of the R-phase are Cπ T λ / 2, σ x and I. 

C π T λ / 2 means that the transverse vector-waves reverse their directions after a translation of λ /2. σ x 

indicates that 
  

� 

P (z) is polarized in the (y-z)-plane and 
  

� 

A (z) in the (x,z)-plane. Since the transverse 

axial and polar vector-waves are linearly polarized and reverse their directions after λ /2, they must 

vanish on a lattice of points separated by λ /2. To determine the positions of these zeroes, let us 
consider the mirror plane Cπ T λ / 2I normal to Oz and located at z=λ /4. This plane forces 

  

� 

A  to vanish 

at z=λ /4 and 3λ /4. On the contrary, the zeroes of 
  

� 

P  are determined by the location of the inversion 
centers I located at z=0 and λ  (analogy 2 makes apparently ψ  and 

  

� 

A  closer than ψ  and 
  

� 

P , because of 
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the sign change D–↔-η2*  in the correspondences (13), a π /2 phase shift appears between 
  

� 

P (z) and 

ψ (θ ) as we introduce the additional correspondence kz→ θ ).  

In conclusion, let us note that in high-Tc superconductors (other superconductors or superfluid are 

either 3D or do not exhibit d-wave pairing) the exact symmetry is difficult to obtain experimentally 

(because it involves gauge transformations) and the phase can be identified by indirect gap 

measurements. In the experimental literature, only the most symmetric phases (I and II) are discussed. 

As usually in the theory of phase transitions, the least symmetric phases are much less likely, so that 

we do not really expect that all the predicted phases be actually stabilized." 

6. Conclusion 

To summarize, we have shown that the vector-wave order parameter of bent-core molecules can 

stabilize eight phases, according to the polarization states and relative orientations of the waves 
  

� 

A (z) 

and 
  

� 

P (z). The symmetry groups of these phases contain rotations and translations, which can be 

interchanged by a dual operation D. D permits one to classify the stable phases, their symmetry groups, 

and the various tensor waves condensing at the corresponding phase transitions. For instance, the 

circular C phase is self dual, i.e., it contains only mixed symmetry operations combining a translation 

with a rotation, and it allows only the appearance of self-dual tensor waves. The theory of d-wave 

lamellar high-Tc superconductors presents the same dual character between gauge symmetries and 

rotations. Moreover, the order parameters and symmetries of the two theories are isomorphic, so that 

they present strong physical and mathematical analogies. Thus, all the tensor waves of the vector-wave 

theory have two dual analog tensor quantities in the superconducting system. Each couple of analogs 

exhibits the same thermodynamic behaviour. We have used analogy and duality to extend the 

superconductors theory, to classify the possible line defects in bent-core phases, and to discuss the gap 

in the excitation spectrum of 2D d-wave superconductors. 
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