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1. Introduction

In general, physical properties are anisotropic, meaning that they depend on the orientation of the
object of interest in three-dimensional space, defined with respect to an external reference frame. For
example, the magnetic resonance response of solid samples depends on the orientation of the molecules
with respect to the applied magnetic field [1,2]. Similar considerations apply to many other physical
quantities and spectroscopic properties.

If the physical system is macroscopically isotropic (for example, a finely-divided powdered solid), all
molecular orientations are encountered with equal probability. The physical response of such systems is
an average over all molecular orientations.

Suppose that a computational method exists for estimating the value of a particular macroscopic
observable for a single molecular orientation. To estimate the powder response, it is necessary to
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average the results of such computations over a large number of distinct orientations. This is called
powder averaging, and is a common procedure in, for example, the computation of solid-state magnetic
resonance observables [3–6]. In general, the computational cost of powder averaging is proportional to
the number of sampled orientations. It is clearly desirable to use an orientational sampling scheme that
gives an acceptable approximation to the isotropic result using the minimum number of orientations.
The problem of optimum orientational sampling has been a recurring feature of the solid-state nuclear
magnetic resonance (NMR) literature for many years [3–6].

In addition, there are experimental procedures that require repetition of an experiment for a set of
different physical orientations of the system (or parts of the system), in order to estimate the values of
anisotropic physical quantities. Physical manipulations of this kind are found, for example, in the NMR
of microscopically oriented samples such as single crystals or oriented materials [1].

There are also experiments of this type in which the sample remains fixed in space, but the orientations
of the nuclear spin polarizations are manipulated using applied radio-frequency pulse sequences. For
example, in the class of experiments known as spherical tensor analysis [7–9], the orientational space of
the nuclear spins is sampled in order to derive the spherical tensor components of the quantum statistical
operator describing the state of the nuclear spin ensemble. In all such experimental procedures, it is
desirable that the orientation sampling scheme is as efficient as possible.

1.1. Gaussian Spherical Quadrature

An approach to the orientational sampling problem, using the concept of Gaussian spherical
quadrature, was described by Edén et al. in 1998 [4]. This approach may be summarized as follows:
An orientational sampling scheme S consists of a finite set ΩS of NS distinct orientations ΩSj in
three-dimensional space, and a set wS of weights wSj with the property

∑NS
j=1w

S
j = 1. Both sets have

the same number of elements NS . The isotropic average 〈Q〉 of a physical observable Q is estimated by
computing Q for each orientational sampling point ΩSj and superposing the results according to:

〈Q〉Sest =

NS∑
j=1

wSj Q(ΩSj ) (1)

The performance of a sampling scheme may be characterized by its spherical moments, which are defined
as follows:

σS`mm′ =

NS∑
j=1

wSj D
`
mm′(Ω

S
j ) (2)

Here D`
mm′(Ω

S
j ) is an element of the Wigner matrix [10] of integer rank `, evaluated at orientation ΩSj .

The Wigner matrices are representations of the group of the three-dimensional rotations SO(3), with the
Wigner matrices of integer rank ` spanning the irreducible representation of SO(3) of dimension 2`+ 1.
If the rotation ΩSj is parametrized using the three Euler angles {αSj , βSj , γSj }, representing consecutive
rotations about the z, y and z-axes of 3D space, all Wigner matrix elements may be written as follows:

D`
mm′(Ω

S
j ) = e−im′αSj d`mm′(β

S
j )e−imγSj (3)

where d`mm′(β
S
j ) is an element of the reduced Wigner matrix and the indices m and m′ span the integers

in the range −`, . . . , `. By definition, the zero-rank spherical moment is given by σS000 = 1.
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As discussed by Edén et al. [4], orientational sampling schemes may be constructed which have
vanishing spherical moments over a range of ranks, i.e.

σS`mm′ = 0 for 1 ≤ ` ≤ `Smax (4)

Schemes of this kind often provide a good approximation for the isotropic average of an observable
Q, using a sampling set S of relatively small size. Their performance is particularly good if Q is
a smooth function of orientation Ω. This is called Gaussian spherical quadrature since it describes
a numerical approach to integration of a function over three-dimensional space that is analogous to
Gaussian numerical integration on a line interval. The Wigner functions play the same role as orthogonal
polynomials in the case of Gaussian line integration.

In general, sampling schemes with large values of `Smax provide a more accurate isotropic average than
schemes with small values of `Smax, but require a larger number of elementsNS for their realization. The
central problem in Gaussian spherical quadrature is to achieve large values of `Smax with as small NS as
possible.

1.2. Two-angle Sampling and Regular Polyhedra

In many physical situations, the observable of interestQ depends on only two of the three Euler angles
defining the orientation in three-dimensional space. This situation arises, for example, in the ordinary
NMR of static solids, where the rotational angle of the sample around the static magnetic field has no
influence on NMR observables. This is also true for some classes of NMR experiments in rotating solids,
as discussed in Reference[4].

Consider an experiment, or computational procedure, of this type, in which the observable of interest
does not depend on the third Euler angle γ. In such cases, the only relevant spherical moments of an
orientational sampling scheme have m′ = 0. The known relationships between Wigner functions of the
type D`

m0(Ω) and the spherical harmonics Y`m(θ, φ) allows the relevant spherical moments to be written
as follows:

σS`m0 =

√
4π

2`+ 1

NS∑
j=1

wSj Y`m(βSj , α
S
j )∗ (5)

where ∗ means complex conjugation. The problem of two-angle orientational sampling is therefore
closely related to the problem of Gaussian quadrature on the surface of a sphere, using spherical
harmonics as the orthogonal basis functions. The correspondence of the Euler angles {α, β} to the
polar angles {θ, φ} of a point on the surface of a sphere is as follows:

α↔ φ

β ↔ θ
(6)

For small values of `Smax, efficient two-angle sampling schemes may be constructed from the vertices
of the regular three-dimensional polyhedra. As discussed below, the point symmetry groups of such
polyhedra ensure that many of the spherical moments σS`m0 vanish. For example, the 12 vertices of the
icosahedron may be used to construct an orientational sampling set with NS = 12, all wSj = 1/12, and
spherical moments σS`m0 = 0 for 1 ≤ ` ≤ 5. All spherical moments with odd values of ` vanish for this
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set as well. These favourable properties are well-known in nuclear magnetic resonance and have led to
numerous applications [11,12].

It is not possible to construct sampling sets with `Smax > 5 from the vertices of the regular 3D
polyhedra. However Lebedev and co-workers [13–15] have constructed schemes with large values of
`Smax by using well-chosen orientational sampling points and non-uniform weights. Alternative methods
are also available, which do not have such well-defined mathematical properties, but which perform
well in many circumstances, for example the REPULSION approach of Bak and Nielsen, which uses
numerical optimization under a repulsive electrostatic potential to distribute many points evenly on the
surface of a 3D sphere [3].

1.3. Three-Angle Sampling and Regular 4-Polytopes

There are numerous cases where the observable of interest depends on all three Euler angles defining
the orientation Ω. Some examples from the field of solid-state nuclear magnetic resonance are discussed
in Reference[4,5]. In such cases, it is important that the spherical moments σS`mm′ vanish for all (2`+1)2

combinations of m and m′ within a given rank `, and not just the special components with m′ = 0.
As described in Reference[4], it is possible to construct three-angle orientational sampling sets

with the appropriate properties by (i) taking a two-angle sampling set with the property σS`m0 = 0

for 1 ≤ ` ≤ `Smax, and (ii) repeating each sampling point while stepping the third angle through (`Smax+1)

regularly-spaced subdivisions of 2π. This generates a three-angle sampling set with the desired property
σS`mm′ = 0 for all {m,m′} and 1 ≤ ` ≤ `Smax. For example, an icosahedral two-angle set with NS = 12

may easily be extended to a three-angle set with NS = 72 and `Smax = 5. The Lebedev two-angle
sets may be extended in analogous fashion. The problems with this approach are (i) it is not efficient,
requiring large numbers of orientational samples for modest values of `Smax and (ii) it does not treat the
Euler angles α and γ in the same way.

Since efficient two-angle sampling schemes may be derived from the vertices of regular polyhedra,
which fall on a sphere in 3D space, it is natural to speculate that efficient three-angle sampling schemes
may be derived from the vertices of regular solids in four dimensions, which fall on a sphere in 4D space.
The regular 4D solids are known as regular 4-polytopes or regular polychora [16] and have been studied
extensively by mathematicians, in particular Coxeter [17].

Suppose that a 4-polytope is constructed with the vertices lying on the surface of a 4D sphere with
unit radius. Each vertex may be converted into a rotation operation in 3D space by identifying it as a unit
vector of the following form:

q =


cos ξ

2

nx sin ξ
2

ny sin ξ
2

nz sin ξ
2

 (7)

where ξ is the rotation angle and n = (nx, ny, nz) is the unit rotation axis in 3-space, n · n = 1. Hence,
uniformly distributed rotations in 3-space may be constructed from the vertices of regular 4-polytopes
deducing the corresponding 3D rotation angles and rotation axes from Equation 7. There is one important
complication: unit vectors of the form q and −q correspond to rotations differing by an angle of 2π,
which have the same physical effect on ordinary 3D objects, or on quantum states with integer spin.
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Hence, a 4-polytope which has the inversion amongst its symmetry operations gives rise to only half the
number of physically distinct 3D rotations as its number of vertices. As discussed below, this property
applies to all the regular 4-polytopes, with one exception.

Suppose now that a set of N 3D rotations is constructed from the vertices of a regular 4-polytope,
and that all of the sampling weights are uniform, wSj = N−1, j ∈ {1, 2 . . . N}. Many of the spherical
moments, defined in Equation 2, are expected to vanish, through symmetry. The question is: for which
ranks ` do all spherical moments of the form σS`mm′ vanish? Although this question has been answered in
part using the theory of spherical designs [18], it is also possible to treat this problem by relatively
simple group theoretical arguments that may be more accessible to non-mathematicians. However,
the application of group theory to this problem is made more difficult by the fact that the symmetry
operations of the regular 4-polytopes, and the character tables of the corresponding symmetry groups,
are distributed over several sources [19–23]. In this article we collate the symmetry operations and
their characters for the regular 4-polytopes in the (2` + 1)2-dimensional representations spanned by the
Wigner matrices D`(Ω). We derive by group theory the vanishing spherical moments for 3D rotation
sets derived from each of the regular 3D and 4D solids. Explicit tables of Euler angles are given, based
on the vertices of the regular 4-polytopes. These results should be useful for workers in a wide range of
physical sciences, especially magnetic resonance, where one such scheme is already in use [9,24].

2. Group Theory and Symmetry Averaging

2.1. Groups, Representations and Characters

A minimal introduction to group theory is now given in order to establish the notation. For more
details, consult the standard texts, for example [25–28].

An abstract group {G, ◦} is a collection of elements G for which a particular associative operation ◦
combines any two elements to give another element in the group. A valid group must include an identity
element E such that G ◦ E = G, and all elements must have an inverse G−1 such that G ◦ G−1 = E.
Any subset of a group which itself satisfies the group axioms above is called a subgroup.

Groups can be represented by matrices. An n-dimensional linear representation Γ of a group G
assigns an invertible n× n (real or complex) matrix MΓ(G) to each group element G, so that the group
operation ◦ corresponds to the operation of matrix multiplication:

MΓ (G1 ◦G2) = MΓ (G1) ·MΓ (G2) (8)

A representation is said to be irreducible if it is not possible to find a basis in which all the matrix
representatives of the group elements have the same block diagonal form.

The explicit matrix representationsMΓ(G) are dependent on the choice of the basis vectors. However,
for a given representation Γ, the characters, defined as the traces of the matrix representations

χΓ (G) = Tr
{
MΓ (G)

}
(9)
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are independent of the basis. Two group elements G and G′ are said to belong to the same class C if they
are related through a similarity transformation of the form G = AG′A−1 where A also belongs to the
group G. All elements in the same class have the same character for all representations Γ, i.e.

χΓ (G) = χΓ
C for all G ∈ C (10)

2.2. Subgroup Averaging

Suppose now that the group G contains a finite subgroup g containing h(g) elements. A representation
Γ of the group G is also a representation of the subgroup g. The finite group orthogonality theorem [28]
implies that the number of independent linear combinations of basis vectors spanning the representation
Γ which are invariant under all of the subgroup operations G ∈ g is given by

aΓ(g) = h (g)−1
∑
G∈g

χΓ (G) = h (g)−1
∑
C

hC (g)χΓ
C (11)

where hC(g) is the number of elements of g that belong to the class C. The last two formulations on the
right-hand side of 11 are equivalent since all elements in the same class have the same character. This
equation leads to the following property:∑

C

hC(g)χΓ
C = 0 ⇒

∑
G∈g

MΓ (G) = 0 (12)

The sum of matrices in the representation Γ vanishes if the characters sum to zero over all classes of g,
taking into account the number of subgroup elements hC(g) in each class.

2.3. Average of a Function in n-dimensional Space

Consider now the case where the group elements G are transformations acting on the points x =

{x1, x2 . . . xn} of the n-dimensional real space Rn, i.e.

Gx = x′ (13)

For each group element G, there exists a corresponding operator Ĝ acting on functions of the coordinate
vectors f(x) to generate new functions f ′(x), defined as follows:

f ′(x) = Ĝf(x) = f(G−1x) (14)

The definition above corresponds to an active transformation of the object f [28].
The average function over a finite subgroup g of G is defined by

〈f〉g = h (g)−1
∑
G∈g

Ĝf (15)

where the sum is taken over all h(g) elements G ∈ g and the same argument x is implied on both sides
of the equation.
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Now suppose we have a set of m functions fΓ
1 , . . . , f

Γ
m forming a basis for an m-dimensional

representation Γ of G. Any operator Ĝ is then represented by an m × m matrix MΓ(G) acting on
the set of basis functions from the right [29]:

ĜfΓ
i (x) =

∑
j

fΓ
j (x)MΓ

ji (G) (16)

Equation 12 gives a sufficient condition for the average of each fΓ
i function to vanish:∑

C

hC (g)χΓ
C = 0 ⇒

〈
fΓ
i

〉
g

= 0 (17)

2.4. Average of a Function Over the Polytope Vertices

The average value of a function f over a finite set P ofN0 points in the n-dimensional space is defined
as follows:

〈f〉P = N−1
0

∑
v

f(xv) (18)

where xv denote the coordinate vectors of the points for v ∈ {1, 2 . . . , N0}. A group G of n−
dimensional transformations is said to act transitively on the P when for any given pair of points
xv,x

′
v ∈ P there is a transformation G which connects such points x′v = Gxv [25].

The orbit stabilizer and Lagrange theorems for finite groups [25] relate the average of a function f
over P to the average over any finite group gP acting transitively on the set:

N−1
0

∑
v

f(xv) = h (gP )−1
∑
G∈gP

f(G−1x1) = h (gP )−1
∑
G∈gP

Ĝf(x1) (19)

The right-hand side corresponds to Equation 15, evaluated at any point x1 in the set. From
Equation 17, the average vanishes if the function f is one of the basis functions of the representation
Γ, and the characters of the given finite group sum gP to zero for that representation:∑

C

hC (gP )χΓ
C = 0 ⇒

〈
fΓ
i

〉
P

= 0 (20)

Equation 20 is the central result of this section. The point symmetry group of an n-dimensional regular
polytope is a finite group which acts transitively on the polytope vertices. It is a subgroup of the (infinite)
orthogonal group O(n), which is the group of all the n-dimensional space transformations in with a
single fixed point and which preserve distance between transformed points. Using Equation 20, the
averaging properties of a function over the vertices of a polytope may be deduced from the characters
of the symmetry elements and the classes of its symmetry point group. This result is now applied to the
spherical moments of the regular solids.

3. Polyhedral Averaging in Three Dimensions

Three dimensional polytopes are known as polyhedra. In this section we discuss the averaging
properties of the regular polyhedra with respect to spherical harmonics. Although this topic has been
treated before in Reference[11], a recapitulation is useful for framing the discussion of four-dimensional
symmetries. In addition, the treatment in Reference[11] did not exploit all the available symmetries, as
discussed below.
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3.1. Proper and Improper Rotations

The proper rotations in three dimensions may be defined in various ways. For example, the symbol
Rn(ξ) indicates a rotation through the angle ξ about a unit rotation axis n whose direction is defined by
the polar angles {θ, φ}. The identity operation R(0) does not need any specification of the rotation axis.
Any rotation in 3D space may be decomposed into the product of three consecutive rotations around the
cartesian reference axes, for example: Rn(ξ) = Rz(α)Ry(β)Rz(γ), where the rotations are applied in
sequence from right to left. For a given rotation R the three Euler angles ΩR = {α, β, γ} and the set
{ξ, θ, φ} are related [10]. Specifically, the rotation angle ξ is related to the Euler angles as follows:

cos
ξ

2
= cos

β

2
cos

α + γ

2
(21)

The improper rotations in three-dimensional space may be expressed in various ways. In this
article, we use the set of improper rotations, denoted R̃n(ξ). Each improper rotation corresponds to
a proper rotation Rn(ξ) followed by an inversion through the reference frame origin (roto-inversion).
By definition, the inversion operation corresponds to the improper rotation R̃(0), where the rotation axis
does not need to be specified in this case.

Two other improper rotations are often used in the literature: the reflection σh in the plane h, and the
roto-reflection Sm which is a rotation through 2π/m followed by reflection in the plane perpendicular
to the rotation axis. Reflections and roto-reflections correspond to improper rotations as follows:
σh = R̃n′(π) where n′ is perpendicular to the plane h, and Sm = R̃n′′(π + 2π/m) where n′′ is the
rotation axis defined by Sm for m ≥ 3. Clearly S2 = R̃(0) and S1 = R̃n′′(π).

3.2. Representations and Characters of O(3) Isometries

The set of 2`+ 1 spherical harmonics of rank-` is defined as follows:

Y`m(Θ,Φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos Θ)eimΦ (22)

where ` and m are integers with |m| ≤ ` and Pm
` is the associated Legendre polynomial [10]. This

set of functions is a basis for the (2` + 1)-dimensional irreducible representation of the O(3) group.
The action of any O(3) operation G on these functions defines an operator Ĝ which is represented by a
(2`+ 1)× (2`+ 1) matrix M `(G):

ĜY`m(Θ,Φ) =
∑
m′

Y`m′(Θ,Φ)M `
m′m (G) (23)

In the case of a proper rotation R, the matrix representative is given by the rank-` Wigner matrix:

M ` (R) = D` (ΩR) (24)

In the case of an improper rotation R̃, the sign of the matrix changes for odd rank `:

M `
(
R̃
)

= (−1)`D` (ΩR) (25)



Symmetry 2010, 2 1431

The character of a proper rotation for the rank-` representation is equal to the trace of the
corresponding Wigner matrix, χ(`)

D , which depends on the rotation angle ξ only [10, pp. 99-100]:

χ(`) {Rn(ξ)} = χ
(`)
D (ξ) (26)

where

χ
(`)
D (ξ) =

sin
{

(2`+ 1) ξ
2

}
sin ξ

2

(27)

This evaluates to χ(`)
D (ξ) = 2`+ 1 when the rotation angle ξ is an integer multiple of 2π.

The character of an improper rotation is the same as for the corresponding proper rotation, but with a
change in sign for odd values of `:

χ(`)
{
R̃n(ξ)

}
= (−1)`χ

(`)
D (ξ) (28)

3.3. Regular Convex Polyhedra

The five regular convex polyhedra have been known since the Greeks. Their names and properties
are listed in Figure 1. This figure also provides the Schläfli symbols [17] of the form {p, q}, where
p indicates the number of edges of the regular polygonal face, and q is the number of faces meeting
at one vertex. For example, the cube has Schläfli symbol {4, 3}, while the regular octahedron has the
Schläfli symbol {3, 4}. Polyhedra with Schläfli symbols {p, q} and {q, p} are geometrical reciprocals of
each other and belong to the same symmetry group, since the reciprocation operation corresponds to the
mutual exchange of faces and vertices. The five Platonic solids therefore belong to only three symmetry
point groups: (i) Td, represented by the tetrahedron; (ii) Oh, populated by the cube and the octahedron;
and (iii) Ih, populated by the icosahedron and the dodecahedron. The symmetry point groups of the
regular polyhedra are given explicitly in Table 1.

Figure 1. The 3D regular convex polyhedra organised according to their symmetry group.
Here N0 is the number of vertices, N1 is the number of edges and N2 is the number of faces
constituting the solid.

Symmetry group Td Oh Ih 

Name Tetrahedron Octahedron Cube Icosahedron Dodecahedron 

Schläfli symbol {3,3} {3,4} {4,3} {3,5} {5,3} 

 
 
 
 
   

   

N0 4 6 8 12 20 

N1 6 12 12 30 30 

N2 4 8 6 20 12 
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3.4. Spherical Moments of the Regular Polyhedra

The theorem in Equation 20 may be used with Table 1 and the characters given in Equations 26
and 28 to deduce the vanishing spherical moments of the regular polyhedra. In general, both improper
and proper rotations must be taken into account. The treatment in Reference [11] uses only the proper
rotations, and gives slightly different results for the groups Oh and Ih (see below).

As a first example, consider the tetrahedron. As shown in Table 1, the tetrahedron has three
symmetry classes of proper rotations, with number of elements (1, 8, 3) and rotation angles (0, 2π/3, π)

respectively. In addition, there are two symmetry classes of improper rotations, with number of elements
(6, 6) and rotation angles (π/2, π) respectively. The sum of characters for rank ` = 2 is therefore given
by ∑

C

hC (Td)χ
(2)
C = χ

(2)
D (0) + 8χ

(2)
D (2π/3) + 3χ

(2)
D (π) + 6(−1)2χ

(2)
D (π/2) + 6(−1)2χ

(2)
D (π)

= 0 (29)

This proves the well-known fact that a tetrahedron averages second-rank spherical harmonics to zero:

σ2m0(Td) = 0 (30)

The point symmetry groups of the octahedron and icosahedron contain the inversion element. Each
proper rotation is therefore accompanied by an improper rotation through the same angle, as shown in
Table 1. It follows that all odd-rank spherical moments harmonics vanish when summed over the vertices
of polyhedra with symmetries Oh and Ih:∑

C

hC (Oh)χ
(`)
C =

∑
C

hC (Ih)χ
(`)
C = 0 (for odd `) (31)

and hence
σ`m0(Oh) = σ`m0(Ih) = 0 (for odd `) (32)

The treatment of Reference [11] does not predict this result, since only proper rotations were taken into
account. The two analyses differ for rank ` = 9 and all odd ranks ` ≥ 13.

Figure 2 summarizes the spherical rank profiles of the regular convex polyhedra up to rank ` = 30.
Note that even the most symmetrical polyhedra (the icosahedron and the dodecahedron) fail to average
the rank ` = 6 terms.

There are 4 regular non-convex polyhedra (star-polyhedra), which all fall in the group Ih [17]. Four
of them have the same vertices of the icosahedron while one has the same vertices as the dodecahedron.
All have the same spherical moment characteristics as the icosahedron.
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Table 1. The three symmetry point groups of the regular polyhedra. h is the number of
symmetry elements in the group. The last column shows the number of elements in each class
(in square parentheses), followed by a single symmetry element of the class, for a polyhedron
in standard orientation. The symbol R(a,b,c)(ξ) indicates a rotation through the angle ξ about
the axis (a, b, c). The symbol R̃(a,b,c)(ξ) indicates the improper operation constructed by the
proper rotation R(a,b,c)(ξ) followed by the inversion operation. R(0) is the identity operation
and R̃(0) is the inversion operation. The symbol τ = 2 cos(π/5) = (

√
5 + 1)/2 indicates the

golden ratio.

Symmetry h Symmetry operations
group
Td 24 [1]R(0); [8]R(1,1,1)(2π/3); [3]R(1,0,0)(π);

[6]R̃(1,0,0)(π/2); [6]R̃(1,1,0)(π)

Oh 48 [1]R(0); [8]R(1,1,1)(2π/3); [3]R(1,0,0)(π);

[6]R(1,0,0)(π/2); [6]R(1,1,0)(π);

[1]R̃(0); [8]R̃(1,1,1)(2π/3); [3]R̃(1,0,0)(π);

[6]R̃(1,0,0)(π/2); [6]R̃(1,1,0)(π);

Ih 120 [1]R(0); [12]R(1,0,0)(2π/5); [12]R(1,0,0)(4π/5);

[20]R(2,0,τ2)(2π/3); [15]R(τ,0,1)(π);

[1]R̃(0); [12]R̃(1,0,0)(2π/5); [12]R̃(1,0,0)(4π/5);

[20]R̃(2,0,τ2)(2π/3); [15]R̃(τ,0,1)(π);

4. Polytopic Averaging in Four Dimensions

In this section we derive the spherical averaging properties of the regular 4-polytopes. In the
discussion below, we make extensive use of quaternions [29]. As shown in Equation 7, quaternions
provide a correspondence between points on a unit sphere in four-dimensional space, and the group of
three-dimensional rotations.

4.1. Quaternions

Four-dimensional real space is a vector space: any two vectors can be added or multiplied by a scalar
to give another vector. Quaternions extend the vectorial structure of 4D real space by allowing the
multiplication of two 4D vectors q(1) and q(2) according to

q1(2)

q2(2)

q3(2)

q4(2)

 ∗


q1(1)

q2(1)

q3(1)

q4(1)

 =


q1(2)q1(1)− q2(2)q2(1)− q3(2)q3(1)− q4(2)q4(1)

q1(2)q2(1) + q2(2)q1(1) + q3(2)q4(1)− q4(2)q3(1)

q1(2)q3(1)− q2(2)q4(1) + q3(2)q1(1) + q4(2)q2(1)

q1(2)q4(1) + q2(2)q3(1)− q3(2)q2(1) + q4(2)q1(1)

 (33)
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Figure 2. Spherical rank profiles for the regular convex 3D polyhedra. Open circles indicate
that all (2`+ 1) spherical moments σS`m0 of integer rank ` are zero for the set of orientations
corresponding to the vertices of the corresponding polyhedron. Closed circles indicate that
there is at least one non-zero spherical moment of rank `.
 

Symmetry group   Td Oh Ih O(3) 

Name  Tetrahedron Octahedron Cube Icosahedron  Dodecahedron  3D Sphere 
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2     
3     

4     
5     
6     

7     

8     

9     

10     

11     

12     
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14     
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16     

17     
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19     

20     

21     

22     
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25     

26     

27     

28     
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30     

The adjoint of a quaternion is denoted here q† and is defined as follows:

q† =


q1

−q2

−q3

−q4

 (34)
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and it can be verified that {q(1) ∗ q(2)}† = q†(2) ∗ q†(1).
The inverse q−1 is defined for any non zero quaternion q as the unique quaternion that satisfies:

q ∗ q−1 = q−1 ∗ q =


1

0

0

0

 (35)

It can be shown that q−1 = q†/||q||2 where ||q|| =
√∑

i q
2
i .

4.2. Unit Quaternions and 3D Rotations

The set of 4D unit vectors, together with the quaternion multiplication operation ∗, forms the group
of unit quaternions Q. The adjoint of a unit quaternion is the same as its inverse: q−1 = q†. From
Equation 7, a unit quaternion and its inverse represent a pair of rotations through opposite angles about
the same axis.

The group of unit quaternionsQ is homomorphic with the group of proper three-dimensional rotations
SO(3) [30]. The relationship between the product of quaternions and the product of proper 3D rotations
is expressed by

R {q(2) ∗ q(1)} = R {q(2)} ◦R {q(1)} (36)

where R(q) is the function which associates a unit quaternion q with the corresponding 3D rotation
through Equation 7. Consider, for example, a rotation through the angle ξ(1) about the axis n(1),
followed by a rotation through the angle ξ(2) about the axis n(2). The overall rotation angle ξ(2, 1)

is given by

cos
ξ(2, 1)

2
= q1(2, 1) =

= q1(2)q1(1)− q2(2)q2(1)− q3(2)q3(1)− q4(2)q4(1)

= cos
ξ(2)

2
cos

ξ(1)

2
− n(2) · n(1)× sin

ξ(2)

2
sin

ξ(1)

2
(37)

from Equation 7 and 33.
Using the notation D`(q) to indicate the Wigner matrix of rank ` evaluated for the 3D rotation

corresponding to the unit quaternion q, Equation 36 implies:

D` {q(2) ∗ q(1)} = D` {q(2)} ·D` {q(1))} (38)

The Wigner matrices of rank ` form a 2l + 1-dimensional representation of the unit quaternion group
Q. In particular D`(q−1) =

[
D`(q)

]−1 and we can use the following properties for the Wigner matrix
elements [10, pp.79-80]

D`
mm′

(
q†
)

= D`
mm′

(
q−1
)

= (−1)m−m
′
D`
−m′−m (q) (39)

The explicit correspondence between the Euler angles and the unit quaternion components is as follows:

α + γ = 2 arctan(q1, q4)

β = arccos
(
1− 2q2

2 − 2q2
3

)
α− γ = 2 arctan(q3,−q2) (40)
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where arctan(x, y) is equal to arctan(y/x), determing the quadrant from the sign of x and y. In the
special cases q2 = q3 = 0 or q1 = q4 = 0, only the combinations α± γ are defined, as follows:

β = 0

α + γ = 2 arctan(q1, q4)

}
if q2 = q3 = 0

β = π

α− γ = 2 arctan(q3,−q2)

}
if q1 = q4 = 0 (41)

4.3. Proper and Improper Rotations

Isometries in 4D space are classed as either proper (preserving the handedness of the four-dimensional
axis system) or improper (changing the handedness of the axis system). The group of all isometries with
one fixed point in four dimensions is called O(4). Any O(4) operation may be expressed in terms of two
unit quaternions, denoted here ql and qr [19], as explained below. Proper operations will be denoted by
Rql,qr and improper operations by R̃ql,qr respectively. The action of a proper rotation Rql,qr on a point
in 4D space q may be written as follows:

q′ = Rql,qrq = ql ∗ q ∗ q−1
r (42)

The action of an improper roation R̃ql,qr is as follows:

q′ = R̃ql,qrq = ql ∗ q† ∗ q−1
r (43)

The inverse operations are given by

{Rql,qr}
−1 = Rq−1

l ,q−1
r
⇔ {Rql,qr}

−1 q = q−1
l ∗ q ∗ qr (44){

R̃ql,qr

}−1

= R̃q−1
r ,q−1

l
⇔
{
R̃ql,qr

}−1

q= q−1
r ∗ q† ∗ ql (45)

for proper and improper operations respectively.

4.4. Representation and Characters of O(4) Isometries

In this section we give the explicit matrix representations of the O(4) operators and their characters
in the basis of the Wigner matrices. These results will then be used to establish the spherical averaging
properties of the regular 4-polytopes.

According to Equations 14, 44, 38 and 39, a proper transformation in O(4) defines an operator R̂ql,qr

which acts as follows on the Wigner matrix elements evaluated at any unit quaternion q:

R̂ql,qr D
`
mm′ (q) = D`

mm′

(
{Rql,qr}

−1 q
)

= D`
mm′

(
q−1
l ∗ q ∗ qr

)
=
∑
n,n′

D`
mn

(
q−1
l

)
D`
nn′ (q)D`

n′m′ (qr)

=
∑
n,n′

(−1)m−nD`
−n−m (ql)D

`
n,n′ (q)D`

n′,m′ (qr)

=
∑
n,n′

D`
n,n′ (q)

[
(−1)m−nD`

−n−m (ql)D
`
n′m′(qr)

]
(46)
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Similarly according to Equations 14, 45, 38 and 39 an improper transformation in O(4) defines an
operator ˆ̃Rql,qr which acts as follows:

ˆ̃Rql,qr D
`
mm′(q) = D`

mm′

({
R̃ql,qr

}−1

q

)
= D`

mm′

(
q−1
r ∗ q† ∗ ql

)
=
∑
n,n′

D`
m,n

(
q−1
r

)
D`
nn′

(
q†
)
D`
n′m′ (ql)

=
∑
n,n′

(−1)m−nD`
−n−m (qr) (−1)n−n

′
D`
−n′−n(q)D`

n′m′(ql)

=
∑
n,n′

(−1)m+n′D`
n′−m (qr) (−1)n−n

′
D`
nn′(q)D`

−nm′(ql)

=
∑
n,n′

D`
nn′(q)(−1)m+n

[
(−1)m+nD`

n′−m (qr)D
`
−nm′(ql)

]
(47)

The action of any O(4) operation G on the (2` + 1)2 Wigner functions D`
mm′(q), evaluated for the

rotation corresponding to the unit quaternion q, defines an operator Ĝ which may be represented as a
(2`+ 1)2 × (2`+ 1)2-dimensional matrix M `(G):

Ĝ D`
mm′(q) =

∑
n,n′

D`
nn′(q) [M(G)]`nn′,mm′ (48)

This proves that the Wigner matrices are a basis for the representation of the group O(4). The matrix
representations are given by

[M(Rql,qr)]
`
nn′,mm′ = (−1)m−nD`

−n−m (ql)D
`
n′m′(qr) (49)

for a proper transformation Rql,qr and[
M(R̃ql,qr)

]`
nn′,mm′

= (−1)m+nD`
−nm′ (ql)D

`
n′−m (qr) (50)

for an improper transformation R̃ql,qr . In both cases the Wigner matrix elements are evaluated for
rotations corresponding to the left and right quaternions ql and qr, as defined for the given O(4)

operation.
The character of a general 4D rotations in the rank-` representation is obtained by summing the matrix

representations given by Equations 49 and 50 over the indices m = n and m′ = n′. For proper rotations
this leads to the following result:

χ(`) (Rql,qr) = χ
(`)
D (ξl)χ

(`)
D (ξr) (51)

where ξl and ξr are the rotation angles for the pair of 3D rotations corresponding to the left and right
quaternions. For improper rotations, on the other hand, we get

χ(`)
(
R̃ql,qr

)
= χ

(`)
D (ξl,r) (52)

where ξl,r is the rotational angle associated with the quaternion product q(l, r) = ql ∗ qr.
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4.5. Regular Convex 4-Polytopes

The six regular convex polytopes are summarized in Figure 3. Each of them is represented by a
Schläfli symbol of the form {p, q, r} in which p and q determine the Schläfli symbol {p, q} for the
3-dimensional polyhedron that forms the boundary of the figure and r is the number of polyhedra meeting
at one edge [17].

Polytopes with Schläfli symbols {p, q, r} and {r, q, p} are reciprocals of each other and belong to
the same symmetry group. The six regular convex 4-polytopes therefore belong to only four symmetry
groups. These are (i) the groupA4 (isomorphic to the permutation group of 5 elements, S5), populated by
the 5-cell (hypertetrahedron); (ii) the group B4, populated by the mutually reciprocal 8-cell (hypercube)
and 16-cell (hyperoctahedron); (iii) the group F4, populated by the 24-cell; and (iv) the group H4,
populated by the mutually reciprocal 120-cell (hyperdodecahedron) and 600-cell (hypericosahedron).

Figure 3. A list of the 4D regular convex polytopes organized according to their symmetry
group. Here N0 is the number of vertices, N1 is the number of edges, N2 is the number of
faces and N3 is the number of three dimensional cells. The two dimensional graphs indicate
the vertex connections.

Symmetry group 4 4 4 4 

Name 5-cell 
 

Hyper-
tetrahedron 

16-cell 
 

Hyper-
octahedron 

8-cell  
 

Hyper- 
cube 

24-cell 600-cell 
 

Hyper-
icosahedron 

120-cell 
 

Hyper-
dodecahedron 

Schläfli symbol {3,3,3} {3,3,4} {4,3,3} {3,4,3} {3,3,5} {5,3,3} 

 
Graph 

representation 
 
 
       

N0 5 8 16 24 120 600 

N1 10 24 32 96 720 1200 

N2 10 32 24 96 1200 720 

N3 5 16 8 24 600 120 

 

Table 2 reports the four symmetry groups of the six regular polytopes and their symmetry elements,
given in the quaternion form. The numbers of operations in each class are provided, together with one
representative operation, using the notation Rql,qr for proper transformations and R̃ql,qr for improper
transformations. In the case of the group H4, the symmetry classes and representative operations are
given directly in quaternion form in Reference[23]. For the other groups, the information given in the
literature [20–22] is not directly suitable for this type of analysis. In these cases, the quaternion form of
the representative operations and the class structure were obtained by using the information provided in
Reference[19] with the help of the symbolic software platform Mathematica [31].
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Table 2. The four symmetry groups of the 4D regular polytopes. h denotes the total number
of symmetry elements. The last column shows the number of elements in each class (in
square parentheses), followed by a single symmetry element of the class, for a polytope in
standard orientation. The symmetry elements are denoted Rql,qr for a proper rotation and
R̃ql,qr for an improper rotation, see Equations 42 and 43. The quaternions {q1,q2 . . .q15}
are given explicitly in the last section.

Symmetry h Symmetry operations
group
A4 120 [1]Rq1,q1; [15]Rq3,q3; [20]Rq8,q8; [24]Rq11,q12

[10]R̃q4,q4; [30]R̃q5,q5; [20]R̃q9,q10

B4 384 [1]Rq1,q1; [1]Rq1,−q1; [6]Rq2,q2; [12]Rq2,q1; [12]Rq2,q3; [24]Rq4,q4;

[12]Rq6,q6; [12]Rq6,−q6; [32]Rq7,q7; [32]Rq7,−q7; [48]Rq6,q4;

[4]R̃q1,q1; [4]R̃q1,−q1; [24]R̃q2,q1; [12]R̃q4,q4; [12]R̃q4,−q4;

[48]R̃q6,q4; [24]R̃q6,q6; [32]R̃q7,q7; [32]R̃q7,−q7

F4 1152 [1]Rq1,q1; [1]Rq1,−q1; [12]Rq2,q1; [18]Rq2,−q2; [96]Rq2,q7;

[72]Rq4,q4; [144]Rq6,−q4; [36]Rq6,q6; [36]Rq6,−q6; [16]Rq7,q1;

[16]Rq7,−q1; [32]Rq7,q7; [32]Rq7,−q7; [32]Rq7,q8; [32]Rq7,−q8;

[12]R̃q1,q1; [72]R̃q2,q1; [12]R̃q2,q2; [96]R̃q2,q7; [12]R̃q4,q4;

[12]R̃q4,−q4; [72]R̃q6,q4; [96]R̃q6,q5; [96]R̃q6,−q5; [96]R̃q7,q1

H4 14 400 [1]Rq1,q1; [1]Rq1,−q1; [60]Rq1,q3; [40]Rq1,q13; [40]Rq1,−q13;

[24]Rq1,q14; [24]Rq1,−q14; [24]Rq1,q15; [24]Rq1,−q15; [450]Rq3,q3;

[1200]Rq3,q13; [720]Rq3,q14; [720]Rq3,q15; [400]Rq13,q13; [400]Rq13,−q13;

[480]Rq13,q14; [480]Rq13,−q14; [480]Rq13,q15; [480]Rq13,−q15; [144]Rq14,q14;

[144]Rq14,−q14[288]Rq14,q15; [288]Rq14,−q15; [144]Rq15,q15; [144]Rq15,−q15

[60]R̃q1,q1; [60]R̃−q1,q1; [1800]; R̃q3,q1; [1200]R̃q13,q1; [1200]R̃−q13,q1;

[720]R̃q14,q1; [720]R̃−q14,q1; [720]R̃q15,q1; [720]R̃−q15,q1;

q1 = (1, 0, 0, 0) ; q2 = (0, 0, 0, 1) ; q3 = (0, 1, 0, 0) ;

q4 =
(

0, 0, 1√
2
, 1√

2

)
; q5 =

(
1√
2
, 0, 0, 1√

2

)
; q6 =

(
1√
2
, 1√

2
, 0, 0

)
;

q7 =
(

1
2
, 1

2
, 1

2
, 1

2

)
; q8 =

(
1
2
,−1

2
,−1

2
,−1

2

)
; q9 =

(
1

2
√

2
, 1

2
√

2
, 1

2
√

2
,−

√
5

2
√

2

)
;

q10 =
(

1
2
√

2
, 1

2
√

2
, 1

2
√

2
,
√

5
2
√

2

)
; q11 =

(
τ
2
, τ
−1

2
, 1

2
, 0
)

; q12 =
(
− τ−1

2
,− τ

2
, 1

2
, 0
)

;

q13 =
(

1
2
, τ
−1

2
, τ

2
, 0
)

; q14 =
(
τ
2
, 1

2
, τ
−1

2
, 0
)

; q15 =
(
τ−1

2
, τ

2
, 1

2
, 0
)

4.6. Spherical Moments of the Regular 4-Polytopes

The spherical averaging properties of the regular 4-polytopes may be deduced by using Equation 20
together with the sets of symmetry operations (Table 2), and the characters of the 4D rotations, given in
Equations 51 and 52.

As an example, consider the 5-cell, which has symmetry group A4. From Table 2, there are seven
symmetry classes. The four classes of proper operations have (1, 15, 20, 24) elements respectively. The
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rotational angles (ξl, ξr) to be used in Equation 51 are obtained from Equation 7 and have the following
values: ((0, 0), (π, π), (2π/3, 2π/3), (2π/5, 6π/5)). The remaining three classes of improper operations
have (10, 30, 20) elements respectively. The rotational angles ξl,r to be used in Equation 52 are obtained
from Equations 7 and 37 and are as follows: (2π, π, 2π/3). The sum of characters for rank ` = 1 is
therefore given by∑

C

hC(Td)χ
(1)
C = χ

(1)
D (0)χ

(1)
D (0) + 15χ

(1)
D (π)χ

(1)
D (π) + 20χ

(1)
D (2π/3)χ

(1)
D (2π/3)

+24χ
(1)
D (2π/5)χ

(1)
D (6π/5) + 10χ

(1)
D (2π) + 30χ

(1)
D (π) + 20χ

(1)
D (2π/3)

= 0 (53)

This proves that all first-rank spherical moments of a 5-cell are equal to zero:

σ1mm′(A4) = 0 (54)

The spherical rank profiles of the other regular polytopes may be obtained in this way for any `:
Figure 4 summarizes the results up to rank ` = 30. As in the 3D case, even the 600-cell and 120-cell,
which have the highest symmetry, fail to average out the rank-6 Wigner matrices.

This figure is slightly misleading since only integer ranks ` are shown. Since the groups B4, F4 and
H4 possess an inversion operation, Rq1,−q1 with q1 = (1, 0, 0, 0), all spherical moments of half-integer
rank vanish for these groups. The group A4, on the other hand, lacks the inversion, so the spherical
moments of half-integer rank do not vanish in this case. The fact that A4 and B4 appear to have the
same rank profiles in Figure 4 is therefore due to the omission of half-integer ranks. Most applications
of orientational averaging only require integer ranks, in which case the properties shown in Figure 4 are
appropriate.

There are 10 regular non-convex polytopes (star-polytopes) in four dimensions, which all fall in the
group H4 [17]. Nine of them have the same vertices as the 600-cell, while one has the same vertices as
the 120-cell. All have the same spherical moment characteristics as the 600-cell.

Under the reviewing of this paper, an anonymous referee pointed out that the pattern of empty and
filled circles in Figure 4 may also be derived using the theory of spherical designs [18]. In general,
4D spherical harmonics of degree k generate a (k + 1)2-dimensional representation of the group O(4)

[18]. Such a representation is equivalent to the (2` + 1)2-dimensional representation constructed in
Equation 48, with k = 2`. A spherical t-design in 4 dimensions is defined as a subset of the hypersphere
for which all the 4D spherical harmonics of degrees 1 to t average to 0 [18]. In other words, all the
spherical moments of rank from 1 to ` = t/2 vanish. In Reference [18] the largest values t of the
spherical design have been derived to be 2 for the 5-cell, 3 for the 8-cell, 5 for the 24-cell, and 11 for the
600-cell, which correspond to ` = 1, 1, 2, 5 in Figure 4.

The anonymous referee also pointed out that invariant theory may be used to prove that non-zero
spherical moments in the H4 column in Figure 4 may appear at ` values corresponding to any sum of
6’s, 10’s and 15’s and for all ` ≥ 30.
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Figure 4. Spherical rank profiles of the regular convex 4-polytopes. Open circles indicate
that all (2`+1)2 spherical moments σS`mm′ of integer rank ` are zero for the set of orientations
derived from the vertices of the corresponding polytope. Closed circles indicate that there is
at least one non-zero spherical moment of rank `.
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5. Euler Angles

In order to facilitate exploitation of these results, we provide explicit tables of Euler angles derived
from the vertices of the regular 4-polytopes. The z − y − z convention for the Euler angles is used
throughout. All Euler angle sets are derived from 4-polytopes in their standard orientations, as defined
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in Table 3. Ambiguities of the form given in Equation 41 were always resolved by choosing solutions
with γ = 0. All angles are reduced to the interval 0 to 2π by a modulo-2π operation.

Table 3. The coordinates of the six convex regular 4-polytopes vertices in standard
orientation, as reported in Reference [19]. The double round parentheses (()) indicate
that all even permutations of the quartet are taken. The symbols τ and η take the
values τ = 2 cos(π/5) = (

√
5 + 1)/2 and η =

√
5/4. The 600 vertices of the

hyperdodecahedron are obtained by multiplying the quaternion (2−1/2, 2−1/2, 0, 0) with all
possible quaternion products of the 5 vertices of the hypertetrahedron S and the 120 vertices
of the hypericosahedron I . All the polytopes are centred at the origin of the coordinate
system, with the vertices lying on the hypersphere of radius 1.

Name Vertex Coordinates
5-cell or hypertetrahedron S = {(1, 0, 0, 0), (−1/4, η, η, η), (−1/4,−η,−η, η),

(−1/4,−η, η,−η), (−1/4, η,−η,−η)}
16-cell or hyperoctahedron V = ((±1, 0, 0, 0))

8-cell or hypercube W = ((±1/2,±1/2,±1/2,±1/2))

24-cell T = V ∪W
600-cell or hypericosahedron I = T ∪ 1

2
((±τ,±1,±τ−1, 0))

120-cell or hyperdodecahedron J = (2−1/2, 2−1/2, 0, 0) ∗ S ∗ I

Different Euler angle sets with the same spherical averaging properties may be constructed by
applying an equal but arbitrary 4D isometry to all the quaternions underlying the set.

The set of Euler angles corresponding to the 5 vertices of the 5-cell is provided in Table 4. As shown
in Figure 4, all first-rank spherical moments vanish for this set of Euler angles. Since the 5-cell lacks an
inversion operation, the number of orientations is the same as the number of vertices in this case.

The sets of Euler angles corresponding to the 8 vertices of the 16-cell, and the 16 vertices of the
8-cell are provided in Table 5 and 6. As shown in Figure 4, all first-rank spherical moments vanish for
these sets of Euler angles. The symmetry groups of both polytopes include an inversion operation, so the
number of distinguishable orientations is therefore one-half the number of the vertices. Clearly the four
rotations specified in Table 5 comprise the most economical way to set all first-rank spherical moments
to zero.

The set of 12 Euler angles corresponding to the 24 vertices of the 24-cell is provided in Table 7. As
shown in Figure 4, all first and second-rank spherical moments vanish for this Euler angle set.

The sets of 60 and 300 Euler angles corresponding to the vertices of the 600-cell and the 120-cell
are provided in Table 8 and 9. Figure 4 shows that all spherical moments up to and including rank 5

vanish for these Euler angle sets. The most economical way of annihilating spherical ranks up to and
including rank 5 is therefore the 60-angle set in Table 8. This rotation set was previously described in
Reference [24], where it was presented without any supporting theory.
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Table 4. The set of Euler angles (in degrees) corresponding to the 5 vertices S of the 5-cell
whose cartesian coordinates are given in Table 3.

α β γ

0 0 0
69.0948 104.478 159.095
110.905 104.478 20.9052
249.095 104.478 339.095
290.905 104.478 200.905

Table 5. The set of Euler angles (in degrees) corresponding to the 8 vertices V of the
16-cell whose cartesian coordinates are given in Table 3. The 8 vertices are reduced to 4 sets
of Euler angles because each quaternion pair {q,−q} corresponds to the same geometrical
3D rotation.

α β γ

0 0 0
0 180 0
180 0 0
180 180 0

Table 6. The set of Euler angles (in degrees) corresponding to the 16 vertices W of the
8-cell whose cartesian coordinates are given in Table 3. The 16 vertices are reduced to 8 sets
of Euler angles because each quaternion pair {q,−q} corresponds to the same geometrical
3D rotation.

α β γ

0 90 90
0 90 270
90 90 0
90 90 180
180 90 90
180 90 270
270 90 0
270 90 180
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Table 7. The set of Euler angles (in degrees) corresponding to the 24 vertices T of the 24-cell
whose cartesian coordinates are given in Table 3. The 24 vertices are reduced to 12 sets of
Euler angles because each quaternion pair {q,−q} corresponds to the same geometrical 3D
rotation.

α β γ α β γ

0 0 0 180 0 0
0 90 90 180 90 90
0 90 270 180 90 270
0 180 0 180 180 0
90 90 0 270 90 0
90 90 180 270 90 180

It is worth pointing out that the 3D rotations discussed above for the 24-cell and the 600-cell have
more inutitive descriptions. The set of Euler angles obtained from the vertices of the 24-cell generates
exactly the 12 rotational symmetries of the tetrahedron, compare Table 7 with the last column for the
group Td in Table 1. Similarly the set of Euler angles obtained from the vertices of the 600-cell generates
exactly the 60 rotational symmetries of the icosahedron, compare Table 8 with the last column for the
group Ih in Table 1. The 24 rotational symmetries of the cube (Oh group) do not corresond to any regular
4-polytope. In fact they are not well distributed in the sense of particle repulsion over the hypersphere in
4D as the other polytopic cases. Regarding this last point, it has been rigorously proven that that some
of the regular 4-polytopes (the 5-cell, the 16-cell and the 600-cell) minimize a full class of repulsive
potentials over the 4D sphere [32].
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Table 8. The set of Euler angles (in degrees) corresponding to the 120 vertices I of the
600-cell whose cartesian coordinates are given in Table 3. The 120 vertices are reduced
to 60 sets of Euler angles because each quaternion pair {q,−q} corresponds to the same
geometrical 3D rotation.

α β γ α β γ

0 0 0 180 0 0
0 90 90 180 90 90
0 90 270 180 90 270
0 180 0 180 180 0
20.9052 60 200.905 200.905 60 20.9052
20.9052 120 159.095 200.905 60 200.905
20.9052 60 20.9052 200.905 120 159.095
20.9052 120 339.095 200.905 120 339.095
58.2826 36 58.2826 238.283 36 58.2826
58.2826 36 238.283 238.283 36 238.283
58.2826 72 121.717 238.283 72 121.717
58.2826 72 301.717 238.283 72 301.717
58.2826 108 58.2826 238.283 108 58.2826
58.2826 108 238.283 238.283 108 238.283
58.2826 144 121.717 238.283 144 121.717
58.2826 144 301.717 238.283 144 301.717
90 90 0 270 90 0
90 90 180 270 90 180
121.717 36 121.717 301.717 36 121.717
121.717 36 301.717 301.717 36 301.717
121.717 72 58.2826 301.717 72 58.2826
121.717 72 238.283 301.717 72 238.283
121.717 108 121.717 301.717 108 121.717
121.717 108 301.717 301.717 108 301.717
121.717 144 58.2826 301.717 144 58.2826
121.717 144 238.283 301.717 144 238.283
159.095 60 159.095 339.095 60 159.095
159.095 60 339.095 339.095 60 339.095
159.095 120 20.9052 339.095 120 20.9052
159.095 120 200.905 339.095 120 200.905
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Table 9. The set of Euler angles (in degrees) corresponding to the 600 vertices J of the
120-cell whose cartesian coordinates are given in Table 3. The 600 vertices are reduced
to 300 sets of Euler angles because each quaternion pair {q,−q} corresponds to the same
geometrical 3D rotation.

α β γ α β γ α β γ α β γ

0 90 0 90 90 90 180 90 0 270 90 90
0 90 180 90 90 270 180 90 180 270 90 270
7.25597 49.1176 70.6909 90 180 0 187.256 49.1176 70.6909 270 180 0
7.25597 49.1176 250.691 95.6599 75.5225 137.470 187.256 49.1176 250.691 275.660 75.5225 137.470
7.25597 130.882 109.309 95.6599 75.5225 317.471 187.256 130.882 109.309 275.660 75.5225 317.471
7.25597 130.882 289.309 95.6599 104.478 42.5298 187.256 130.882 289.309 275.660 104.478 42.5298
14.5454 84.5204 131.110 95.6599 104.478 222.530 194.546 84.5204 131.110 275.660 104.478 222.530
14.5454 84.5204 311.110 98.3008 41.4096 98.3008 194.546 84.5204 311.110 278.301 41.4096 98.3008
14.5454 95.4796 48.8895 98.3008 41.4096 278.301 194.546 95.4796 48.8895 278.301 41.4096 278.301
14.5454 95.4796 228.890 98.3008 138.590 81.6992 194.546 95.4796 228.890 278.301 138.590 81.6992
20.9052 15.5225 20.9052 98.3008 138.590 261.699 200.905 15.5225 20.9052 278.301 138.590 261.699
20.9052 15.5225 200.905 105.450 69.7882 105.450 200.905 15.5225 200.905 285.450 69.7882 105.450
20.9052 44.4775 159.095 105.450 69.7882 285.450 200.905 44.4775 159.095 285.450 69.7882 285.450
20.9052 44.4775 339.095 105.450 110.212 74.5496 200.905 44.4775 339.095 285.450 110.212 74.5496
20.9052 60 110.905 105.450 110.212 254.550 200.905 60 110.905 285.450 110.212 254.550
20.9052 60 290.905 109.309 49.1176 172.744 200.905 60 290.905 289.309 49.1176 172.744
20.9052 75.5225 159.095 109.309 49.1176 352.7441 200.905 75.5225 159.095 289.309 49.1176 352.7441
20.9052 75.5225 339.095 109.309 130.882 7.25597 200.905 75.5225 339.095 289.309 130.882 7.25597
20.9052 104.478 20.9052 109.309 130.882 187.256 200.905 104.478 20.9052 289.309 130.882 187.256
20.9052 104.478 200.905 110.905 60 20.9052 200.905 104.478 200.905 290.905 60 20.9052
20.9052 120 69.0948 110.905 60 200.905 200.905 120 69.0948 290.905 60 200.905
20.9052 120 249.095 110.905 120 159.095 200.905 120 249.095 290.905 120 159.095
20.9052 135.522 20.9052 110.905 120 339.095 200.905 135.522 20.9052 290.905 120 339.095
20.9052 135.522 200.905 121.717 36 31.7175 200.905 135.522 200.905 301.717 36 31.7175
20.9052 164.478 159.095 121.717 36 211.717 200.905 164.478 159.095 301.717 36 211.717
20.9052 164.478 339.095 121.717 72 148.283 200.905 164.478 339.095 301.717 72 148.283
31.7175 36 121.717 121.717 72 328.283 211.717 36 121.717 301.717 72 328.283
31.7175 36 301.717 121.717 108 31.7175 211.717 36 301.717 301.717 108 31.7175
31.7175 72 58.2826 121.717 108 211.717 211.717 72 58.2826 301.717 108 211.717
31.7175 72 238.283 121.717 144 148.283 211.717 72 238.283 301.717 144 148.283
31.7175 108 121.717 121.717 144 328.283 211.717 108 121.717 301.717 144 328.283
31.7175 108 301.717 131.110 84.5204 14.5454 211.717 108 301.717 311.110 84.5204 14.5454
31.7175 144 58.2826 131.110 84.5204 194.546 211.717 144 58.2826 311.110 84.5204 194.546
31.7175 144 238.283 131.110 95.4796 165.455 211.717 144 238.283 311.110 95.4796 165.455
35.8898 25.2428 35.8898 131.110 95.4796 345.455 215.890 25.2428 35.8898 311.110 95.4796 345.455
35.8898 25.2428 215.890 137.470 75.5225 95.6599 215.890 25.2428 215.890 317.471 75.5225 95.6599
35.8898 154.757 144.110 137.470 75.5225 275.660 215.890 154.757 144.110 317.471 75.5225 275.660
35.8898 154.757 324.110 137.470 104.478 84.3401 215.890 154.757 324.110 317.471 104.478 84.3401
42.5298 75.5225 84.3401 137.470 104.478 264.340 222.530 75.5225 84.3401 317.471 104.478 264.340
42.5298 75.5225 264.340 144.110 25.2428 144.110 222.530 75.5225 264.340 324.110 25.2428 144.110
42.5298 104.478 95.6599 144.110 25.2428 324.110 222.530 104.478 95.6599 324.110 25.2428 324.110
42.5298 104.478 275.660 144.110 154.757 35.8898 222.530 104.478 275.660 324.110 154.757 35.8898
48.8895 84.5204 165.455 144.110 154.757 215.890 228.890 84.5204 165.455 324.110 154.757 215.890
48.8895 84.5204 345.455 148.283 36 58.2826 228.890 84.5204 345.455 328.283 36 58.2826
48.8895 95.4796 14.5454 148.283 36 238.283 228.890 95.4796 14.5454 328.283 36 238.283
48.8895 95.4796 194.546 148.283 72 121.717 228.890 95.4796 194.546 328.283 72 121.717
58.2826 36 148.283 148.283 72 301.717 238.283 36 148.283 328.283 72 301.717
58.2826 36 328.283 148.283 108 58.2826 238.283 36 328.283 328.283 108 58.2826
58.2826 72 31.7175 148.283 108 238.283 238.283 72 31.7175 328.283 108 238.283
58.2826 72 211.717 148.283 144 121.717 238.283 72 211.717 328.283 144 121.717
58.2826 108 148.283 148.283 144 301.717 238.283 108 148.283 328.283 144 301.717
58.2826 108 328.283 159.095 15.5225 159.095 238.283 108 328.283 339.095 15.5225 159.095
58.2826 144 31.7175 159.095 15.5225 339.095 238.283 144 31.7175 339.095 15.5225 339.095
58.2826 144 211.717 159.095 44.4775 20.9052 238.283 144 211.717 339.095 44.4775 20.9052
69.0948 60 159.095 159.095 44.4775 200.905 249.095 60 159.095 339.095 44.4775 200.905
69.0948 60 339.095 159.095 60 69.0948 249.095 60 339.095 339.095 60 69.0948
69.0948 120 20.9052 159.095 60 249.095 249.095 120 20.9052 339.095 60 249.095
69.0948 120 200.905 159.095 75.5225 20.9052 249.095 120 200.905 339.095 75.5225 20.9052
70.6909 49.1176 7.25597 159.095 75.5225 200.905 250.691 49.1176 7.25597 339.095 75.5225 200.905
70.6909 49.1176 187.256 159.095 104.478 159.095 250.691 49.1176 187.256 339.095 104.478 159.095
70.6909 130.882 172.744 159.095 104.478 339.095 250.691 130.882 172.744 339.095 104.478 339.095
70.6909 130.882 352.7441 159.095 120 110.905 250.691 130.882 352.7441 339.095 120 110.905
74.5496 69.7882 74.5496 159.095 120 290.905 254.550 69.7882 74.5496 339.095 120 290.905
74.5496 69.7882 254.550 159.095 135.522 159.095 254.550 69.7882 254.550 339.095 135.522 159.095
74.5496 110.212 105.450 159.095 135.522 339.095 254.550 110.212 105.450 339.095 135.522 339.095
74.5496 110.212 285.450 159.095 164.478 20.9052 254.550 110.212 285.450 339.095 164.478 20.9052
81.6992 41.4096 81.6992 159.095 164.478 200.905 261.699 41.4096 81.6992 339.095 164.478 200.905
81.6992 41.4096 261.699 165.455 84.5204 48.8895 261.699 41.4096 261.699 345.455 84.5204 48.8895
81.6992 138.590 98.3008 165.455 84.5204 228.890 261.699 138.590 98.3008 345.455 84.5204 228.890
81.6992 138.590 278.301 165.455 95.4796 131.110 261.699 138.590 278.301 345.455 95.4796 131.110
84.3401 75.5225 42.5298 165.455 95.4796 311.110 264.340 75.5225 42.5298 345.455 95.4796 311.110
84.3401 75.5225 222.530 172.744 49.1176 109.309 264.340 75.5225 222.530 352.7441 49.1176 109.309
84.3401 104.478 137.470 172.744 49.1176 289.309 264.340 104.478 137.470 352.7441 49.1176 289.309
84.3401 104.478 317.471 172.744 130.882 70.6909 264.340 104.478 317.471 352.7441 130.882 70.6909
90 0 0 172.744 130.882 250.691 270 0 0 352.7441 130.882 250.691
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6. Conclusions

We expect that these sets of rotations will be useful for the computation of orientational averages
in a range of physical sciences, and in experimental procedures such as spherical tensor analysis in
nuclear magnetic resonance [7–9]. In addition, we anticipate that where necessary, finer sampling of
orientational space may be implemented by interpolating between the vertices of the polytopes, or by
four-dimensional tiling and honeycomb schemes, such as those described by Coxeter [17].

Finally, we note that highly-symmetric four-dimensional figures have been found by using a
computational procedure [33] which is closely related to the REPULSION algorithm on the surface
of a sphere [3]. Such methods could be adapted to generate much larger sets of evenly spaced
three-dimensional rotations than those described here.
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