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Abstract: Let G be a simple graph of order n with eigenvalues λ1, λ2, · · · , λn and
normalized Laplacian eigenvalues µ1,µ2, · · · ,µn. The Estrada index and normalized
Laplacian Estrada index are defined as EE(G) =

∑n
k=1 e

λk and LEE(G) =
∑n

k=1 e
µk−1,

respectively. We establish upper and lower bounds to EE and LEE for edge-independent
random graphs, containing the classical Erdös-Rényi graphs as special cases.
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1. Introduction

Let G be a simple graph on the vertex set V (G) = {v1, v2 · · · , vn}. Denote by A = A(G) ∈ Rn×n

the adjacency matrix of G, and λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) the eigenvalues of
A(G) in the non-increasing order. The normalized Laplacian matrix of G is defined as
L = L(G) = In − D(G)−1/2A(G)D(G)−1/2, where In is the unit n × n matrix, and D(G) is
the diagonal matrix of vertex degrees. Here, if the degree di of vertex vi is zero, we set d−1

i = 0 by
convention. The eigenvalues of L are referred to as the normalized Laplacian eigenvalues of graph G,
denoted by λ1(L) ≥ λ2(L) ≥ · · · ≥ λn(L). The basic properties and applications of the eigenvalues
and the normalized Laplacian eigenvalues can be found in the monographs [1,2].

The Estrada index of graph G is defined in [3] as

EE(G) =
n∑

k=1

eλk(A) (1)
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which was introduced earlier as a molecular structure-descriptor by the Cuban–Spanish scholar
Ernesto Estrada [4]. The Estrada index as a graph-spectrum-based invariant has found its widespread
applicability in chemistry (such as the degree of folding of long-chain polymeric molecules [4,5],
extended atomic branching [6], and the Shannon entropy descriptor [7–9]) and complex networks, see
e.g., [10–14]. Various quantitative estimates of the Estrada index have been reported, see e.g., [15–20].
In a similar manner, the normalized Laplacian Estrada index of graph G, or the L-Estrada index, is
introduced in [21] as

LEE(G) =
n∑

k=1

eλk(L)−1 (2)

Some tight bounds for LEE(G) are established analogously therein.
It is natural to ask how good these bounds are for typical graphs, or random graphs. In [22] it is shown

that the Estrada index for Erdös-Rényi random graph model is much better than some universal bounds.
Specifically, for almost all random graphs Gn(p) with p ∈ (0, 1) being a constant, it holds that [22]

EE(Gn(p)) = enp
(
eO(
√
n) + cn

)
(3)

where cn = o(1) is a quantity goes to 0 as n goes to infinity.
In this paper, we consider a more general setting, the edge-independent random graph Gn(pij),

where two vertices vi and vj are adjacent independently with probability pij . Here, {pij}1≤i,j≤n are not
assumed to be equal. Graphs with heterogeneous node degrees and structure features, to which most real
networks belong, can be constructed by tuning the connection probability pij in the edge-independent
model. For example, both scale-free networks and small-world networks can be readily modeled
by Gn(pij). In this regard, Erdös-Rényi random graph model having Poisson degree distributions is
apparently too simple to delineate real-life complex networks connected through a disordered pattern of
many different interactions [23].

Using the recent spectra results developed in [24], we obtain bounds for EE(Gn(pij)) and
recover the relation Equation (3) as a special case. In particular, we are able to identify that
|cn| ≤ (n − 1)e−(n+1)p+(2+o(1))

√
np. Noting that enpcn goes to infinity as n tends to infinity [22],

the estimate of cn favorably informs us the precise behavior of EE(G) for a typical graph G. We also
study a close relative of Gn(p), where each vertex may have a self-loop. Such graphs are of great
importance in theoretical chemistry since they represent conjugated molecules. In addition, we obtain
tight bounds for LEE(Gn(pij)), which improve some existing bounds in [21].

2. Estrada Index of Random Graphs

We begin with the definition of edge-independent random graphs. For pij ∈ (0, 1), let Gn
(
{pij}ni,j=1

)
be the edge-independent random graphs with vertex set V in which two vertices vi and vi are
adjacent independently with probability pij . Since edges are undirected, we have pij = pji. Hence,
Pn := (pij) ∈ Rn×n is symmetric, and its eigenvalues can be arranged in the non-increasing order as
usual. We say that a graph property P holds in Gn

(
{pij}ni,j=1

)
almost surely (a.s.) if the probability that

a random graph Gn(pij) ∈ Gn
(
{pij}ni,j=1

)
has the property P converges to 1 as n approaches infinity.

Denote by ∆ and δ, respectively, the maximum and minimum degrees of an edge-independent
random graph Gn(pij). For two functions f(x) and g(x) taking real values, we say f(x) � g(x),
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or g(x) = o(f(x)), if limx→∞ |g(x)/f(x)| = 0. Also, f(x) = O(g(x)), if there exists a constant C
such that |f(x)| ≤ Cg(x) for all large enough x, and f(x) = Θ(g(x)), if both f(x) = O(g(x)) and
g(x) = O(f(x)) hold. We have the following useful result regarding the spectrum of edge-independent
random graphs.

Lemma 1. [24] Consider a random graph Gn(pij). If ∆� (lnn)4, then

|λk(A(Gn(pij)))− λk(Pn)| ≤ (2 + o(1))
√

∆ a.s.

for every 1 ≤ k ≤ n.

Using the definition Equation (1), we then obtain our first result.

Theorem 1. If ∆� (lnn)4, then

e−(2+o(1))
√

∆ ·
n∑

k=1

eλk(Pn) ≤ EE(Gn(pij)) ≤ e(2+o(1))
√

∆ ·
n∑

k=1

eλk(Pn) a.s.

Proof. It follows from Lemma 1 that

λk(Pn)− (2 + o(1))
√

∆ ≤ λk(A(Gn(pij))) ≤ λk(Pn) + (2 + o(1))
√

∆ a.s.

for each 1 ≤ k ≤ n. Taking exponentials and summarizing over all k readily yield the conclusion.
Two remarks are in order. First, if all pij are bounded away from zero, i.e., pij ≥ c > 0 for

1 ≤ i, j ≤ n, then ∆ = Θ(n) a.s. [25]. Thus, it follows from Theorem 1 that∣∣∣∣ln(EE(Gn(pij))∑n
k=1 e

λk(Pn)

)∣∣∣∣ = Θ(
√
n) a.s.

Second, if pij ≡ p ∈ (0, 1) for i 6= j and pii = 0 for 1 ≤ i ≤ n, we reproduce the Erdös-Rényi
random graph Gn(p). As mentioned before, we are also interested in graphs with possible self-loops,
which will be denoted by Go

n(p). Specifically, Go
n(p) is obtained by setting all pij ≡ p in Gn(pij).

Theorem 2. Consider a random graph Gn(p) with p ∈ (0, 1). We have∣∣∣∣ln( EE(Gn(p))

(enp + n− 1)e−p

)∣∣∣∣ ≤ (2 + o(1))
√
np a.s.

Proof. Recalling the definition of Pn, we have now Pn = p(Jn − In), where Jn ∈ Rn×n is the matrix
whose all entries equal 1. By the Chernoff bound, it holds that ∆ = (1 + o(1))np a.s. Since the
eigenvalues of Pn are λ1(Pn) = p(n − 1), λ2(Pn) = · · · = λn(Pn) = −p, Theorem 1 immediately
implies that

e−(2+o(1))
√
np(e(n−1)p + (n− 1)e−p) ≤ EE(Gn(p)) ≤ e(2+o(1))

√
np(e(n−1)p + (n− 1)e−p) a.s.

which concludes the proof. 2
Note that Theorem 2 easily yields the estimate of Equation (3). Our proof here is more direct than

that in [22], where Weyl’s inequality was heavily relied on. Since Pn = pJn in the case of Go
n(p),

the following corollary is immediate.
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Corollary 1. Consider a random graph Go
n(p) with p ∈ (0, 1). We have

e−(2+o(1))
√
np(enp + n− 1) ≤ EE(Go

n(p)) ≤ e(2+o(1))
√
np(enp + n− 1) a.s.

To illustrate the effectiveness of our theoretical bounds, we display in Figure 1 the variations of
ln(EE(Gn(p))) with the connection probability p. We observe that the numerical value of ln(EE(Gn(p)))

lies between the two bounds in line with our theoretical prediction in Theorem 2. Moreover, it turns out
that the upper bound is prominently sharper than the lower bound. Therefore, it would be desirable to
obtain less conservative lower bounds for random graph Gn(p).
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Figure 1. Logarithmic Estrada index ln(EE(Gn(p))) versus connection probability p for
two different graph sizes of n = 4000 and 6000. Theoretical bounds (solid and dashed
curves) are from Theorem 2. Simulated results (circles and crosses) are obtained by means
of an ensemble averaging of 100 randomly generated graphs yielding a statistically ample
enough sampling.

3. L-Estrada Index of Random Graphs

In this section, we study the normalized Laplacian Estrada index of edge-independent random graphs.
Let Tn ∈ Rn×n be a diagonal matrix with its (i, i)-element given by

∑n
j=1 pij . Given a matrix M ,

denote its rank by rank(M). We have the following result.

Lemma 2. [24] Consider a random graph Gn(pij). If rank(Pn) = r and δ� max{r, (lnn)4}, then

|λk(L(Gn(pij)))− λk(In − T−1/2
n PnT

−1/2
n )| ≤ (2 +

√
r + o(1))δ−1/2 a.s.

for every 1 ≤ k ≤ n.

For brevity, define Ln := In−T
−1/2
n PnT

−1/2
n . Recalling the definition Equation (2), we then have the

following result regarding L-Estrada index.

Theorem 3. If rank(Pn) = r and δ� max{r, (lnn)4}, then

e−(2+
√
r+o(1))δ−1/2−1 ·

n∑
k=1

eλk(Ln) ≤ LEE(Gn(pij)) ≤ e(2+
√
r+o(1))δ−1/2−1 ·

n∑
k=1

eλk(Ln) a.s.
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Proof. Thanks to Lemma 2, we have

λk(Ln)− (2 +
√
r + o(1))δ−1/2 − 1

≤ λk(L(Gn(pij)))− 1 ≤ λk(Ln) + (2 +
√
r + o(1))δ−1/2 − 1 a.s.

for each 1 ≤ k ≤ n. Taking exponentials and summarizing over all k readily yield the conclusion.
Note that, if pij ≥ c > 0 for 1 ≤ i, j ≤ n, then δ = Θ(n) a.s. [25]. Hence, if rank(Pn) = r = o(n),

then Theorem 3 implies that∣∣∣∣ln(LEE(Gn(pij))∑n
k=1 e

λk(Ln)

)∣∣∣∣ = −1 +
2 +
√
r

Θ(
√
n)

= −1 + o(1) a.s.

Concerning the homogeneous random graph model Go
n(p), we have the following result.

Theorem 4. Consider a random graph Go
n(p) with p ∈ (0, 1). We have

e
− 3+o(1)√

np (n− 1 + e−1) ≤ LEE(Go
n(p)) ≤ e

3+o(1)√
np (n− 1 + e−1) a.s.

Before presenting the proof, we give some remarks here. First, for the loopless random graph version
Gn(p), we have rank(Pn) = n. Since δ ≤ n−1, Theorem 3 is no longer applicable in this case. Second,
it is shown in ([21],Thm 3.5) that, for a graph G on the vertex set V with δ ≥ 1,

LEE(G) ≤ e−1 + n− 1−
√
n− 1 + e

√
n−1 (4)

with the equality holds if and only if G is a complete bipartite regular graph. We have

e
3+o(1)√

np (n− 1 + e−1)

e−1 + n− 1−
√
n− 1 + e

√
n−1

= o(1)

as n→∞. Therefore, our upper bound is better than that in Equation (4).

Proof of Theorem 4. First note that δ = (1 + o(1))np a.s. by the Chernoff bound. Since Pn = pJn,
we have rank(Pn) = 1� δ. Noting that Ln = In − T

−1/2
n PnT

−1/2
n = In − 1

n
Jn, the eigenvalues of Ln

are λ1(Ln) = · · · = λn−1(Ln) = 1 and λn(Ln) = 0. From Theorem 3, we readily conclude that

e
− 3+o(1)√

np (n− 1 + e−1) ≤ LEE(Go
n(p)) ≤ e

3+o(1)√
np (n− 1 + e−1) a.s.

as desired. 2
Figure 2 shows the variations of ln(LEE(Go

n(p))) with the connection probability p. The numerical
value of ln(LEE(Go

n(p))) lies between the two bounds in line with our theoretical prediction in
Theorem 4. An interesting observation is that the normalized Laplacian Estrada index of a random graph
Go

n(p) remain almost unchanged with respect to graph density, i.e., p, in spite of different monotonicity
of the two derived bounds.
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Figure 2. Logarithmic L-Estrada index ln(LEE(Go
n(p))) versus connection probability p

for two different graph sizes of n = 4000 and 6000. Theoretical bounds (solid and dashed
curves) are from Theorem 4. Simulated results (circles and crosses) are obtained by means
of an ensemble averaging of 100 randomly generated graphs yielding a statistically ample
enough sampling.

4. Conclusions

We established some upper and lower bounds for the Estrada index, EE, and normalized Laplacian
Estrada index, LEE, of edge-independent random graphs Gn(pij). Such graphs naturally extend the
classical Erdös-Rényi random graph Gn(p), enabling a refined estimate of the remainder of EE(Gn(p))

in Equation (3).
It was revealed in [26] that EE of some tree-like graphs can be conveniently estimated drawing on the

Chebyshev polynomials of the second kind. How to extend this method to sparse Erdös-Rényi random
graphs and edge-independent random graphs is an interesting question. Along this line, the work [27]
would be relevant, where the relation between the resolvent of the adjacency matrix of a sparse random
regular graph and the Chebyshev polynomials of the second kind was explored.
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