symmetry MoPY

Article
DIaaS: Resource Management System for the
Intra-Cloud with On-Premise Desktops

Hyun-Woo Kim !, Jaekyung Han 2, Jong Hyuk Park 3* and Young-Sik Jeong *
1
2

Department of Multimedia Engineering, Dongguk University, Seoul 04620, Korea; hwkim@dongguk.edu
Department of Construction legal Affairs, The Graduate School of Construction Legal Affairs,
Kwangwoon University, Seoul 01897, Korea; hjk1014@kw.ac.kr

Department of Computer Science and Engineering, Seoul National University of Science and Technology,
Seoul 01811, Korea

* Correspondence: jhparkl@seoultech.ac.kr (J.H.P.); ysjeong@dongguk.edu (Y.S.].)

Academic Editor: Doo-Soon Park
Received: 24 November 2016; Accepted: 4 January 2017; Published: 9 January 2017

Abstract: Infrastructure as a service with desktops (DIaaS) based on the extensible mark-up language
(XML) is herein proposed to utilize surplus resources. DlaaS is a traditional surplus-resource
integrated management technology. It is designed to provide fast work distribution and computing
services based on user service requests as well as storage services through desktop-based distributed
computing and storage resource integration. Dlaa$S includes a nondisruptive resource service and
an auto-scalable scheme to enhance the availability and scalability of intra-cloud computing resources.
A performance evaluation of the proposed scheme measured the clustering performance time for
surplus resource utilization. The results showed improvement in computing and storage services
in a connection of at least two computers compared to the traditional method for high-availability
measurement of nondisruptive services. Furthermore, an artificial server error environment was used
to create a clustering delay for computing and storage services and for nondisruptive services. It was
compared to the Hadoop distributed file system (HDFS).

Keywords: resource management; dynamic scheduling; scalability; availability; intra-cloud;
infrastructure as a service; cloud computing

1. Introduction

To enable more efficient information technology systems, cloud computing has been introduced
to corporations, schools, and public organizations. Although traditional on-premise computing
environments continue to be built, the need remains for improving the total cost (TC) of ownership
and maintenance costs of cloud systems [1-8]. The only solution to this problem, however, is to discard
surplus resources, which are connected to traditional on-premise systems, or to introduce virtualization
technology for all surplus resources. Nevertheless, the latter solution drastically increases the cost of
cloud computing [9-19].

In this paper, infrastructure as a service with desktops (DIaaS) is therefore proposed as a resource
management system for surplus resources. DIlaaS is an extensible mark-up language (XML)-based
traditional surplus-resource integrated management technology. It is designed to provide fast work
distribution and computing services based on user service requests as well as storage services through
desktop-based distributed computing and storage resource integration. The three key objectives of
DIaaS are achieving high-performance computing (HPC), high-throughput computing (HTC), and
high availability.

The computing services relating to the proposed approach include a resource management
scheme that shares the resources of on-premise systems while delivering information, dynamic

Symmetry 2017, 9, 8; d0i:10.3390/sym9010008 www.mdpi.com/journal /symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/journal/symmetry

Symmetry 2017, 9, 8 20f17

resource management, and monitoring mechanisms by analyzing the status of surplus resources.
The storage services provide a data storage management mechanism using existing storage to
prevent organizational data leaks and strengthen security after the introduction of cloud computing.
XML-based metadata are defined for computing and storage services using on-premise resources,
which are used to provide resource performance information and clustering techniques based on
distance for integrated resource management.

Furthermore, DlaaS provides nondisruptive resource services and an auto-scalable scheme to
enhance the availability and scalability of intra-cloud computing resources. A nondisruptive resource
service mechanism is provided to cope with limitations in the computing service job allocation and
storage job allocation. An automatic resource allocation mechanism is provided to request computing
and storage logs for the automatic expansion of resources, as well as for computing and storage.

A performance evaluation of these mechanisms was conducted to measure the clustering
performance times for surplus resource utilization. The results showed improvements in computing
and storage services for the connection of at least two computers compared to the traditional method
for high-availability measurements of nondisruptive services. Furthermore, an artificial server error
environment was developed to create clustering delays for computing and storage services and for
nondisruptive services. It was compared to the Hadoop distributed file system (HDFS).

2. Related Works

Traditional surplus resources are used in DlaaS. In this section, traditional distributed resource
integration management and clustering techniques for distributed resources are explained. The most
widely used systems are first discussed. These include the network file system (NFS), common Internet
file system (CIFS), Google file system (GFS), HDFS, Andrew file system (AFS), and owner-based file
system (OwWFS) [16-22]. The main characteristics, strengths, and weaknesses of these systems are
outlined in Table 1 [16-19].

Table 1. Distributed resource integrated management schemes.

Scheme Characteristics Strengths Weaknesses
NFS/CIFS File system similar to a local High-speed save Less extension, high cost
GFS/HDFS Distributes large-scale files Low cost Manual system recovery when

errors occur
AFS Low server load balancmg High scalabﬂlty and Less extension
Independent operations for local file systems strong security
Saves metadata and data information to “owner” Load-balancing limitation when
OwFS . - Low cost .
Stable when saving the positions of errors large-scale files are saved

HDFS: Hadoop distributed file system; NFS: network file system; CIFS: common internet file system; GFS:
Google file system; AFS: Andrew file system; OwWFS: owner-based file system

Existing studies on distributed resource clustering techniques and clustering visualization are
outlined in Table 2 [23-27].

Table 2. Distributed resource clustering and visualization schemes.

Schemes Setup Method Visualization Clustering Organization Simulation
VCS simulator [24] Text-based Text User-defined Yes
GridSim [25,26] Modified source code Chart None Yes
ClusterSim [27] Clustering-based Text User-defined Yes
CloudSim [28] Text-based Text None Yes
DIaaS Graph-based Graph User-defined Yes

VCS: Veritas Cluster Server; DlaaS: Infrastructure as a service with desktops

Symmetry 2017, 9, 8 30f17

3. On-Premise Intra-Cloud Resource Management Scheme

In this section, the integrated resource management scheme for resource pool formation is detailed.
The unused-resource clustering technique is proposed for job allocating based on computing and
storage job requests and nondisruptive resource services. In addition, an auto-scalable scheme for the
operation of surplus resources is presented.

3.1. On-Premise Integrated Resource Management

DlIaaS requires the stratification of distributed resource integration for job requests, identification,
allocation, and performance for desktop-based computing, and storage services. As shown in Figure 1,
the distributed integrated resource management scheme consists of desktop resource nodes (DRNs),
which are metadata-based, on-premise resources, desktop slave nodes (DSNs), which manage DRNSs,
and desktop manager nodes (DMNs), which control DSNs. Here, metadata means the minimum unit
of the resource information for on-premise resources. It refers to resource specifications, settings, and
status information.

Desktop Manager Node (DMN)
S
()]st
77

metadata

o

yelic updating
_Resource Management System

Desktop Slaver Node (DSN)

Lk

6, 0w
[e. o)
CPU a Memory / Storage @
Desktop Resource Node (DRN)

Figure 1. Conceptual scheme for on-premise integrated resource management.

When the on-premise-based integrated resource management scheme requests computing and
storage resources from the desktop manager node (DMN), it searches the metadata and provides
the resources to which jobs are allocated. This process is illustrated in Figure 2. The step-by-step
operations for resource request management shown in Figure 2 are outlined below.

Step1 The user requests computing or storage resources of the DMN through the client program.

Step 2 Using metadata, the DMN resource management system determines whether to accept the
request depending on the requested computing and storage size.

Step3 When the request is accepted, the location of the resource to process the job is selected.
The selected resource information is sent as a control message through the desktop slave
node (DSN) for direct connection with the client program.

Step4 The client information is included in the control message sent to the service resource, and the
job performance is prepared.

Step5 The DMN sends the resource information to perform the job as a response message to the
client program.

Step 6 The client program and the job-performing desktop resource node (DRN) execute the job
through a direct connection.

Symmetry 2017, 9, 8 40f17

Next, integrated resource management, desktop, computing service, and storage service metadata
are defined. The resource management metadata structure of the DIaa$S is shown in Figure 3.

r State Monitoring .

(o Administrator

RMS Monitoring
1]

= ! LIST

metadatd b2 A
r b
—) /Cyclic updating
Te ‘x\l o~ Resource Management System
User quane

Storage
CPU

Memory

NAME
= e ;
oo |
SIZE
PORT
Rl OWNER
PATH
AS I 1S = us { INDHEX.
1 TYPE nosx |
i
o vocation §- I wor |
si) TIME E
couNT DATE I s | o |
l l} e) nEvory |
(@) (b) (0)

Figure 3. Metadata structure of the DIaaS: (a) Desktop metadata; (b) Computing service metadata and
(c) storage service metadata.

Figure 3a includes the performance status metadata of the physical desktops that constitute the
resource pool, job information, total number of jobs, and job status information, such as standby,
working, and stopped. The attributes of the desktop metadata are the connected desktop (IP);
Connected port number of the desktop (PORT); Storage sharing location of the connected desktop
(PATH); Job information relating to data storage and duplication, including the job performance status
and job progress status (job information (JI)); Permissible total size, remaining volume, and used
volume of the connected desktop storage (storage information (SI)); Central processing unit (CPU)
and memory status information of the connected desktop (computing information (CI)); Job status
indicated by standby, working, or stopped (STATE); Total number of jobs, including working jobs
and standby jobs (COUNT); Total allowed storage size of the connected desktop (allowed size (AS));
Remaining storage space available for the AS (residual size (RS)); Used storage size in the AS (usage
size (US)); Used CPU size of the connected desktop (CPU); and used memory size of the connected
desktop (MEMORY).

Symmetry 2017, 9, 8 50f17

The computing service metadata include the job performance, unique identifications for
computing jobs, and job requests. The attributes corresponding to these metadata are the unique
identity of each computing job (computing identity (CID)); Requesting client’s information (requester
information (RI)); Parallel performance information, such as the job performing desktop and total
number of desktops for the division of jobs (JI); Job requests and performance times (TIME); Index
of a divided computing job (INDEX); Information from the desktop performing the computing job
(desktop information (DI)); and number of resources participating in the divided job (COUNT).

The storage service metadata include the information on the stored data; basic information, such
as the name, size, and type of stored data; JI, the division information for efficient storage in the
distributed on-premise storage resources; and duplicated storage information for the integrity of the
stored data. The attributes are the original data name (NAME); Original data size (SIZE); Storage
service requester (OWNER); Data type (TYPE); Location of the stored data (LOCATION); Date on
which the data were saved (DATE); Index of the divided block data INDEX); Location of the duplicated
stored data of the divided block data (path information list (PIL)); Split unique block data name for
integration of data stored in a distributed manner in a data-request event (split file name (SFN));
Location of the data divided by the duplicate storage set by the user (redundant data location (RDL));
and number of divided files duplicated in storage for data integrity (COUNT). Among these attributes,
INDEX, PIL, and SFN contain the sub-metadata of LOCATION, while RDL and COUNT contain the
sub-metadata information of PIL by default.

3.2. Clustering Scheme for Integrated Resource Management

The computing service of DIaaS provides appropriate job allocation through on-premise-based
clustering. For the on-premise-based integrated resource clustering elements, mark-up languages
(XMLs) are defined, as shown in Figure 4. They are defined based on performance and distance
information, such as the CPU, memory, and storage of the desktop metadata shown in Figure 3a. For the
basic clustering elements, distance and performance are used. If accomplishing a time measurement
by pinging is impossible on account of the network settings, the request time of the operating desktop
is used. For performance, the dynamic performance factors, including the idle CPU performance, main
memory, and remaining storage size, as well as the static performance factors—including the basic
CPU performance, memory, and storage size of the resource—are used.

xml
tﬁ} 2 desktop 0

-

xml ” desktop 1

-

<?xml version="1.0"?>
- <desktop ip="">
<performance>
<dynamic>
&)=
Clustering g i e
<memory/>
4 <storage/>
</dynamic>
<static>

<=

"

<cpu/>
<memroy/>
<storage/>
</static>
</performance>
- «<distance>

<ping/>
ﬁ <request_time/>
</distance>
} H\-:fdesktoo,w

7 o xml®
L tﬁ))‘ ” desktop n

- #
R

Figure 4. Extensible mark-up language (XML) structure for clustering with on-premise resources.

Symmetry 2017, 9, 8 60of 17

The detailed clustering process is outlined as follows. @ START; clustering starts when the
desktop count is greater than the cluster count. @ CREATE CLUSTER; the user selects the initial
cluster and defines the number of separate clusters to select random clusters. The k created clusters
form the initial cluster set, C{}. 3 CLUSTERING; the distance to each desktop is measured with the
initial cluster set C, which was created in the CREATE CLUSTER step. The closest desktop is included.
This is repeated until all desktops connected to the on-premise-based integrated resource are included
in the cluster set. (4§ CHECK CLUSTER CENTER VALUE; the center of the distance value of the
desktops in each cluster of cluster set C is calculated. The location of the closest desktop is selected as
a new cluster for the corresponding set. Then, the location coordinates of the new cluster and present
cluster are compared. UPDATE CLUSTER is performed if these coordinates do not coincide; otherwise,
the process ends (END). G) UPDATE CLUSTER; the new cluster determined in Step (¥ is applied to the
corresponding cluster set. The CLUSTERING step is performed until the proximities of all desktops to
the cluster are again calculated. This is repeated until there is no change in the cluster center value in
Step @. (® END; the metadata obtained after the completion of clustering are applied to each desktop.

3.3. Nondisruptive Computing and Storage Service Scheme

When the computing and storage resource services of DlaaS are requested, the nondisruptive
computing and storage service scheme is included to cope with hardware defects or exceptions, such
as server downtime. It can also cope with exceptions due to the inoperable state of the DMN managing
the on-premise resource pool.

The DMN that generally controls integrated resource management searches the desktop that is
performing the job based on metadata. It performs this task when it receives a computing and storage
service request. The searched desktop performs the job in accordance with the computing and storage
service request, and the DMN updates the job information and performance information of the desktop
in the metadata. When an unexpected error occurs and the DMN cannot operate the server, the jobs
running in the subordinate DSNs and DRNSs, as well as the stored data, are lost. To provide continued
service in such instances, the following steps are performed.

Step1 The first on-premise resource is specified as the DMN. The added resources are limited to DSN
and DRN roles. The same server functions of the DMN are included in the DSN and DRN.

Step2 The DSN and DRN send metadata, including the integrated storage resource settings, as well
as CPU and main memory performance information, to the DMN.

Step3 The DMN creates a substitute server candidate list of metadata on the IP address, performance,
stored data amount, and distance criteria. The stored data amount is used as the top priority by
default to minimize computing waste and network bandwidth due to duplicated internal data.

Step4 The substitute server candidate list metadata are synchronized with the connected desktops,
and Steps 1-3 are repeated to add resources.

For the DMN substitute selection, priorities are given on the basis of the IP address system,
excluding the routing information. The performance of each resource is set so that « + 3 becomes 100%
for CPU (o) and main memory (). The « value is increased if the processing speed improvement is
significant, while the (3 value is increased if the resource utilization count is significant.

For stored data amount, the resource of the smallest size is selected as the DMN substitute after
normalization of all the connected resources. It is based on the resource with the minimum size of total
stored data. The response time, based on the periodic heartbeat, is applied to the substitute server
settings, with the reference distance set as the normalized value based on the shortest response time.
After the initial DlaaS resource clustering process, the DSN role settings achieved through the Steps in
Figure 5 are required for allocating the computing and storage services.

In Figure 5, Step 1, the distance (x-axis) is normalized by:

DeSktOP Ndistance

DeSktopmaxDistance

Desktop N value = x 100 1)

Symmetry 2017, 9, 8 7 of 17

the computational capacity (y-axis) is normalized by:

Desktop N, cpu DeSktOmeemory

DeSktopmaxCPU DeSktopmaxMemory

DesktopN,vaiue = X B 2)

and the storage capacity (z-axis) is normalized by:

Desktop Nstorage

x 100 ©)
De SktOP maxStorage

DesktopNzvalue =
Steps 2-6 are performed based on the detailed clustering process. For allocating the computing

and storage services, the service allocation amount is:

DSN,
Y1~ DSNycpu

when the idle CPU speed for N DSNs is:

DSNworkload,v = x TotalWorkLoadSize, i =0 ~ N —1 (4)

{DSNycpu, DSNicpy, DSNacpy,, DSNy_1cpu}

In this case, the idle CPU speed of each] DSN is calculated using;:

n—1
DSNicpy =) DRNjcpy, i =0~] —1 &)
k=0

The DRNs of Equation (5) refer to the resources that belong to each DSN. Accordingly, the idle
speed of M DRNs becomes:

{DRNycpu, DRN;cpy, DRNycpy, - .- .. , DRNpy_1cpU}

storage capacity distance

Step 1 \
\, resource nodes{derkiops)

© lonal capacity
Step2 e \
find adjacent node x!‘
- N
\.
\
Step 3 \4 e, . center point
adding node) o b) -‘.
1o adjacent cluster 3 (3
\ .
Step 4)]
check all node
clustering operation 4 mew cemter palnt
o (_——
Step 5) ‘ Y\
N
update center point C A 5
— DSN(storage) y
— ey
N - =y N
check clustering availability) i i D <
(- .
I D

Figure 5. The desktop slave node (DSN) role defined for allocation of computing and storage service.

The DRN CPU speed is calculated using the difference between the CPU occupation value of the
used process and the static CPU value. For example, when one DRN has a static CPU value of 3.4 GHz,

Symmetry 2017, 9, 8 8 of 17

and if the used process occupies 10% of the CPU, it is calculated as 3.4 GHz — 0.34 GHz = 3.06 GHz.
Because the dynamic idle CPU speed value is fluid, the idle CPU speed value can change in the
resource state using the DRN.

In this paper, resources were allocated in a hierarchical manner based on the updated CPU
information for each computing service request, as shown in Figure 6. In (D of Figure 6, a new
divided computing service is allocated in proportion to the CPU speed of the current DSN according
to Equation (4). The DSN is allocated by subdividing the divided computing service in the DRN to
which it belongs.

e Workload
.l'n'l Ressurce CPU Usage
DMN
New Works

(1) Distrivuted Aliocate Workload

gl
s \\
" R...ﬁ.mgm; = s ﬁs‘

nsNo

. ¥

% g B
e s % &%

DRND DRNO
DRN1 i

DRNG

Figure 6. Hierarchical computing service of DlaaS.

When the DSN or DRN has an error in the DIaaS, the fault tolerance for the computing service
failover is obtained as illustrated in Figure 7.

DSNo nsN1 DSN2 DSN3 DSN4

T

(2 e 1
3 |

i Workluad
. ‘Warkiaad Full State

User Workload

Avaltable CPU Ste {
\ [IE] DSN1 nsN2 nsSN3 DsNg
.

Figure 7. Computing service failover scheme.

Symmetry 2017, 9, 8 90f17

In @ of the figure, a fault situation for DSN1 of the DMN is shown. The DMN divides the
computing service as shown in (2), except for DSN3, to which no service can be assigned. Moreover,
it considers the resource conditions of DSNO, DSN2, DSN3, and DSN4. Finally, continued service is
performed by re-allocating resources to DSNO, DSN2, and DSN4, as shown in (3) of Figure 7.

The storage services of DIaa$ are divided into storing data and requesting stored data. In the case
of storing data, the data to be stored is divided into 64 MB chunks, as shown in the HDFS [20,21] and
GFS [20,21]. Furthermore, the chunk size can be changed by a user setting in DIaaS. Figure 8 shows the
process of allocating storage resources to the DSN, which plays the storage service role in the DlaaS.

In @ of Figure 8, the storage requester solicits the storage service of the DMN. In (), the
DMN sends the metadata of the DSN that can provide the storage service to the storage requester.
It simultaneously sends to the DSN the metadata for the IP address and port number to be connected
with the storage requester. The storage requester awaits a “ready” message from the DRN to implement
a connection trial to the DRN for data storage.

v—o i ..
4 \ l®

X -

\|
TEeE

DRNO DRN1 DRN2

User

Figure 8. Storage service processing of DlaaS.

In 3, the DRN that is ready for the storage service sends a ready message to the storage requester.
In (@, the DRN is connected with the storage requester and sends the data. After all data to be stored
are sent, the transmission complete state is sent in (5), and the storage job is finished.

The following rules are applied to the storage job to ensure data integrity and permanence. First,
the data stored in chunk units cannot be edited for data integrity. In case the file requires modification,
it must be saved as a new file. Second, data stored in chunk units are stored in duplication to maintain
three internal data chunks. Duplicate storage offers data permanence when one or two data chunks
are maintained on account of an error. This storage process maintains duplicate storage in the original
data chunk in a DRN, specifically inside the same DSN of the original data chunk, and in a DRN,
specifically inside a DSN that is different.

Errors that occur during the storage service are handled by a four-step failover, as shown in
Figure 9. In (D of Figure 9, the storage service normally operates. In (2), an error is generated and
detected. In (3), the storage service requester receives new DRN information from the DSN. In (®), data
storage is completed through the normal storage service.

Symmetry 2017, 9, 8 10 of 17

S1TNIE Data
User

WA T
\

chunks

)
GSAMB of cach chaink size
N

o]

g® @
mEpoEE |

T

Chumk Story Status

.
<
<

%In}ml '%a_jfgj_‘]

Chunk Sterv States Chunk Stery Staten ¢

Figure 9. Storage service failover scheme.

3.4. Auto-Scalable Scheme

The DMN performs computing and storage services depending on the job. Moreover, it defines
an auto-scalable scheme to provide resource services, such as flexible computing and storage, according
to the same service request jobs. The goal is to minimize resource waste and improve service reliability
in the intra-cloud, which provides services with limited resources.

First, the computing service auto-scheme defines the automatic expansion method according to
a computing log. It is automatically expanded, as shown in Figure 10a. Accordingly, idle computing
resources are held in the time slot in which the same computing service is requested. In @ of Figure 10a,
the requested time for the computing service and the specific requested computing service are shown
as a computing service log.

In @ of Figure 10a, automatic expansion is performed to ensure a smooth computing service
in (@) at the requested time for providing the computing service to the computing service requester.
The latter requests the computing service, C4. The storage service also logs the storage use the starting
time with log-based automatic expansion. It analyzes the continuously used storage space, as shown in
Figure 10b. The required size of the storage space is determined by analyzing the storage size required
by the user based on the day or month.

\ [o (I
Cl | 1GHz, AM 9:00 |] — SRR e
H i | E— eGe |
c2 | 18GHz, PM L0 || ! | —
C3 | 2GHz, PM 3:00 i ® FM4:50 | @ PM 5:00 o —
C4 [35GHz, PMS00 || : - r :
: i
C5 | 4GHz, PM 7:00 i t - —
| : @ — 0o
Computing Service Log t
e e
o = Usage I:I:I:F 10GB ;
-] J
(a) (b)

Figure 10. Automatic scalability scheme of DIaaS: (a) Computing service and (b) storage service.

4. Infrastructure as a Service with Desktops (DIaaS) Design

The DlaaS is composed of a user interface for user controls, including the on-premise
resource setting, desktop information, and control information; The resource-integrated manager for

Symmetry 2017, 9, 8 11 of 17

distributed on-premise resource integration; Clustering manager for hierarchical resource management;
Nondisruptive manager for continuous computing and storage support services; Auto-scalable
manager for minimization of resource waste in the intra-cloud; and viewer for visualization of the
on-premise resource management operations (Figure 11).

DIaaS Architecture

Viewer
ewec: ::.‘-:::q Chastering New druplive Awle Sculable Viewer
A Manager Mamages Manager
e Log Analysis CPU Mode
Deskiop Deskiop Metadata o Deskiop Contral
Manager Inspector Manager i Infornsstion L T
Request Analysis GPU Mode
Resource Integrated Manager Auto Scalable Manager
Resource -centric API Command APl
Integrated Resource Auto Scalable
Manager Manager
Viewer Viewer
p (B UCP .
Desktoy e s ¥ [nteilprot SO
» ¥ L Deskiop SDMUN
Analyzer CCA W €L \udi
| e F— ol DMUN
— ICP f FAH
Clustering Manager Non-disruptive Manager
Clustering AFI Servioe AF1
Clustering Non-disruptive

Maunuger Manager

Figure 11. Overall architecture of DIaaS.

The integrated resource manager is subdivided into the desktop manager, desktop inspector, and
metadata manager. The desktop manager connects a desktop through the resource-centric application
programming interface (API) and periodically monitors the connection status of the desktop through
heartbeats. Furthermore, it manages the on-premise resource availability statuses, such as the CPU,
memory, and storage, as well as the currently operating desktop and other desktops. This management
information is sent to the metadata manager after the information for the desktop connected to the
desktop manager is analyzed through the desktop inspector. The metadata manager creates desktop
metadata through the desktop information received from the desktop inspector. It delivers or updates
information according to the request from the Desktop Manager.

The clustering manager is composed of the desktop analyzer and clustering function. The desktop
analyzer analyzes desktop information for clustering, which it then indicates in the two-dimensional x-
and y-axes, and the three-dimensional x-, y-, and z-axes. For two-dimensional clustering, the x-axis
indicates the performance, such as the CPU, memory, and storage; and the y-axis indicates the distance,
which is the response time of each desktop. For three-dimensional clustering, the x-axis is defined as
the computing CPU and memory, the y-axis is the storage, and the z-axis is the distance, which has the
same definition as that in two-dimensional clustering.

Normalization is performed based on the highest performing desktop information. Clustering
performs an initialization center point (ICP); It creates random clusters according to the cluster in
line with the number of clusters set by the user through the clustering API. In addition, it finds the
adjacent host (FAH), that is, it finds adjacent desktops based on the random cluster that has been
created. The desktops identified through the FAH process are added to the cluster list (CL).

After all desktops perform this process, they are moved to a new center point based on the
desktop added to each cluster through the update center point (UCP) step. Then, the FAH process is
repeated to move to the optimum center point. Additional performance or lack of it is determined
through check clustering availability (CCA). When additional performance through CCA becomes
unnecessary, the desktop that is closest to the center is selected as a cluster based on the move adjacent
host point (MAHP).

The nondisruptive manager includes detailed functions, such as intelligent desktop audit, create
desktop metadata list (CDML), desktop metadata update notify (DMUN), and stored data metadata

Symmetry 2017, 9, 8 12 of 17

update notify (SDMUN). The intelligent desktop audit receives the list of connected desktops from
the desktop manager of the resource integrated manager through the service API. It creates metadata
for the selected DMN substitutes. The created DMN metadata are conveyed to the DMUN function.
The DMUN function performs synchronization by sending the DMN metadata to all connected
desktops. In addition, the SDMUN function sends the storage service metadata, including the storage
location of data received from the user, to all desktops for synchronization. This method can be
continuously operated using the DMN metadata and data stored in the DSN, while selecting the
optimum DSN in the event of a DMN error. Furthermore, the intelligent desktop audit function sets
the DSN role for the allocation of on-premise-based computing and storage services.

The auto-scalable manager is subdivided into functions that include log analysis, request analysis,
CPU mode, and graphic processing unit (GPU) mode. The log analysis logs the provided resources,
times, and completion times of the computing and storage services. The request analysis evaluates
the average resource request and time of the daily or monthly resource usage for the computing and
storage services. The CPU mode is the basic computation mode, which is performed using the CPU.
The automatic expansion performance time is minimized by operating in GPU mode, specifically
if it can be performed by assessing the DMN GPU function activation. Furthermore, the automatic
expansion criteria can be changed to day, month, or year through the command APL

5. DIaaS Implementation

This section explains the integrated management scheme for detailed resource pool creation,
the resource clustering technique for computing and storage services, and the implementation of the
nondisruptive service and auto-scalable scheme for surplus resource operation. The access screen of
the DRN for the new resource connection to the DMN running in the DIaaS is configured as shown in
Figure 12a.

£ Initsetting =y —
Base Information P | (cheskc) porr
210.94.185.157 — - 5
hw-PC D | CA K
CA\ (T:165,U:83,F:82)6B | |pyy] D
€ —— I = 2
DA\ (T:151,U:136,F:15)GB | |path: nu 5
e N @ G\
EA (T: 299, U: 258, F: 41)GB | |Size —m, . s = v]
— 30 Drive List e &
FA (T: 146, U: 33,F: 113)68 = §) L
e ———— Apply Connect RS
@ 61 |4 = = i l",
— = =
52 Ok __ Cancel g G
63 &= — ‘
o g e
65 ‘
06 £ Select = @

Comw /9 & ¢

68 v

» android 5 Music

» Contacts » Pictures

» Desktop » Saved Games.
» Documents > Searches

5 Downloads 2. Videos

> Favorites 5 workspace

» Links

Storage Size

ClUsersihw

Path

Figure 12. Resource connection of the desktop manager node (DMN) in DIaaS: (a) New resource
connection to DMN and (b) sequence connection of DMN.

In D of Figure 12a, the basic information of the resource attempting to connect to the DMN is
shown. It includes the IP address, host name, and storage drive setting. Here, T denotes the total
storage size, U represents the usage storage size, and F is the free storage size. In (2) of the same figure,
the storage drive allocated to the DMN is set. In (3), the storage allocated for the DMN is set. In (3,
visualization information is provided for the drive set by the user and the storage size. In (&), the path
for sharing the storage in the DMN is set through the activated path dialogue.

Symmetry 2017, 9, 8 13 of 17

Figure 12b shows the sequential connection process among the five resources in the DMN. In D
of the figure, the connected resources list is shown. In (2), visualization of the integrated computing
and storage information of the connected resources is provided. In @), ®, ®), (®, and @), the basic
information of each resource is shown, such as the IP address, port number, path, AS, RS, US, JC,
heartbeat check (HBC), CPU, and memory. In (8 of the same figure, information is provided that
details when a specific resource is selected, thereby indicating a complete connection to the DMN.
The clustering of desktops connected to the DIaaS DMN is internally performed.

In this paper, the actual clustering was verified through the development of a simulator. Figure 13
shows 1000 random desktops, the settings of 10 clusters, and the clustered resource information, which
are the results of the simulation. In @ of Figure 13, the information from the resources selected by
the user for a DSN cluster is presented. In (2), cluster information is provided to the user for IP-based
identification when a cluster DSN is selected. In (3), the information of the DRN, a desktop included in
the DSN, is provided.

[Cluster State —‘_‘
Cluster: 210.94.185.11 | 2
HostList
hostiD P CPU) | Memory(©8) RequestTime(ms)
i hosta 2109418511 790 16820444 1520 -
host43 2109418545 990 12027308 120
hosts0 2109418552 790 16102519 850
hostse 2109418558 840 1.9508662 2190
host62 2109418564 87.0 17020069 47.0
hosti3g 21084185141 760 17568493 2040
hosti40 21094185142 880 14734508 11.0 I
hosti77 21084185178 77.0 17565393 130
host231 21094185233 87.0 14000726 990
host252 21094185254 7.0 19280348 157.0
host254 210941864 96.0 18000526 214.0 [] [cue s T | G|
host261 2109418611 960 16320505 2080 .
host268 2109418618 87.0 19662598 191.0 apes cusita18620
host269 2109418619 87.0 17222073 1800 -) e
b cru | demonoe et e v || crun | emantoey Reassi e
3 opitise m0 i 30 sl e e ke aro n
3 Topisio so e o | T doacee a0
opirsn 0 ouws doauss oo
Topusa 830 caran doain 130
e T Tosurisi a0
oburesiis 50 vt osiisen iomo
opiresier 0 Ty osiiier 30
o Toe s wo 17
— —— v i Mot Toswms o e
==) by opms e e w0 4 Maow osirin 70 e
o 2031080 [ettt i
ot host0. [CPUK) | Memon(08) Request Thme(ms)
ety Fremsenoera] homs Homen so e o 0
a hoimt mMomiem s0 om0
| i dosimn o e owo
by momnes mo lems e
hows osess o 1uswe a0
5 cuswog b 11 S commis i i 1 b mmaamn o wee b
[hoimo Hosresss o lswma 10
oy homs osresi m0 s
2 1y wl| mis o domisoso imson o
e ol Wmw Boiim lo nes e
o ma e 1o & oo st
Sosure |
Sosure
Tosure
s ‘
st
“ oy 6 tewer e EH 1
- J] 3]
[se V]) Hosu e =e)|

Clstr 210941657 auress

hosi0 ® P | Wamang00) RoasestTimetn)
| res mosness a0 e 10 -

v oo

o Soaisser o rsse a0

o l Homise w0 resw o
— =) = e s

Custe: 20941953

rosto P | Wemen0) ReauestTimeqr) Crute) | Nemont08) RewestTme(rs))
ot 7o im0 - 20 st 20 R n
noszo o e 30 o rose 10

hosad o vesess 60 o rsuee 10

ot Tsone 20 o immem 2o

ot Taeke S0 ®0 inmom a0

nowrz TesTees a0 N0 vswau 0

hosios Ve 20 H e

nostion Vioes 20 w0 Ve a0

otz " Toussen g0 Qo e o

hostiar o 3 e 10) S0 e 10

Nt Mosiissis w0 1300 300 b | ety MOSAissis w0 tenwrs 00 ot 700

Figure 13. Verification of resource clustering in DlaaS.

For the nondisruptive service following a DMN error, the DMN and the four DSNs beneath it are
connected, as shown in Figure 14. When a DMN error occurs, the first DSN in the candidate DMN list
is replaced with the DMN. In (D of Figure 14, a case in which the DMN normally operates is shown.
In @ of the same figure, the connections from DSNO, DSN1, DSN2, and DSN3 to the DMN are released
as a result of a DMN error. In (3), the substitute server candidate of the first priority is determined
based on the metadata from the candidate DMN list. In (@), the DSNs, excluding the DSN selected as

Symmetry 2017, 9, 8 14 of 17

the DMN, are connected to the new DMN. After the connection, the new candidate DMN list is sent to
every DSN through the new DMN for synchronization.

Connection Connection : . Connectionless Connectionbess

" .
- — e T

DEND DSNL DEND

[T

’ DMN \ =

||| Connection Connection | : : * || Conmectionless Commcxthontess|L__
DSN3 DSN2 DSN3

e —— 9 | — e e [

N Chunced Operation Mo .
(DN b champed t DEN) ES J

DMN | - 7 DMN N\ |
| 3| Connection Connection |

DSN3 B T DSN3

Figure 14. Nondisruptive service scheme of the DMN in DlaaS.

The auto-scalable scheme is implemented by the log, and requests computing and storage services.
The basic operation process is shown in Figure 15. The required resources are automatically expanded
according to the resource requested by the desktop. When 30 GB of storage are provided, 10 GB are used
during the initial stage, and 10 GB are provided during the next stage through automatic expansion.

Rasamrre wpis bring wrsd by Usan] i
Aeallable Brwure
L s -
Onme @R -1
Banenion]

IR

B

Physical Resource State

i Cluster Line and Mark

Clustering

Figure 15. Auto-scalable scheme of DIaaS.

Symmetry 2017, 9, 8 15 0f 17

6. Performance Evaluation

For the performance evaluation, the DlaaS created an artificial server error environment for
testing the clustering delay time and nondisruptive service for computing and storage services. First,
to measure the clustering delay time, the number of desktops was increased to 100, 200, 300, 400, 500,
1000, 2000, 3000, 4000, and 5000, as shown in Figure 16. Clustering was performed after the number
of clusters was increased to 5, 10, 15, 20, 25, and 30 at each increasing point. The clustering speed at
each increasing point was determined by averaging the performance speeds obtained from 50 cycles.
The definition of cycle is the average value of execution number for each clustering. It required more
than 10 s to accomplish this task for 1000 desktops, and 21 s when clustering was performed using
30 clusters and 5000 desktops. As shown in Figure 15, this process was more efficient and cost effective
than the clustering test using 5000 actual desktops and the related cost of labor, electricity, and time.

Second
25
—+—cluster 5
20 cluster 10
cluster 15
15 cluster 20
—cluster 25
10 -e-cluster 30
5
0 Number of Desktop

100 200 300 400 500 1000 2000 3000 4000 5000

Figure 16. Number of workloads with clusters and desktops.

Figure 17 shows the connection of 10 desktops and the operation status when the master node
has an error with the DIaaS and HDFS. In this case, the SecondaryNode function is performed when
NameNode contains an error. As a result, eight DataNodes stably operate. However, continuous
error occurrences result from the situation in which DataNodes are not operating. In the case of the
DIaaS, every connected desktop has embedded server functions and synchronizes the data storage
information and server priority list. It thus enables a continuous server operation, even when errors
occur. This feature is supported by the connection of a minimum of two desktops implementing
the DMN and DSN. This sustainable operation can provide high availability for server errors in
an environment in which several thousand desktops are connected. DlaaS can service continuously
the operation as server better than HDFS.

Number of executed node

10
8
6
—-DIlaaS
4 -=HDFS
2
Number of fault node
0 a

1 2 3 4 5 6 7 8 9 10

Figure 17. Fault tolerance for the master node error.

Symmetry 2017, 9, 8 16 of 17

7. Conclusions

In this paper, a DlaaS was proposed that includes an integrated resource management scheme
for computing and storage services using surplus resources by default. XML-based metadata
were defined for computing and storage services using on-premise resources. Moreover, resource
performance information and distance-based clustering techniques were proposed for integrated
resource management using the metadata. Furthermore, a nondisruptive resource service and
auto-scalable scheme were developed to enhance the availability and scalability of the intra-cloud
computing resources.

In a performance evaluation, the clustering performance time for surplus resources was utilized.
The high-availability measurement of the nondisruptive service showed improved results for
computing and storage services with a connection of at least two desktops compared to the traditional
method. In addition, an artificial server error environment was created to test the clustering delay time
for computing and storage services, and the nondisruptive service was compared to the HDFS.

Acknowledgments: This research was supported by BK21 Plus project of the National Research Foundation of
Korea Grant. And also this research was supported by the MSIP (Ministry of Science, ICT and Future Planning),
Korea, under the ITRC (Information Technology Research Center) support program (II'TP-2016-H8501-16-1014)
supervised by the IITP (Institute for Information & communications Technology Promotion).

Author Contributions: All the authors contributed equally to this work. All authors read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jeong, Y.-S.; Kim, H.-W,; Jang, H.J. Adaptive resource management scheme for monitoring of CPS.
J. Supercomput. 2013, 66, 57-69. [CrossRef]

2. Jararweh, Y.; Al-Ayyoub, M.; Darabseh, A.; Benkhelifa, E.; Voukc, M.; Rindos, A. Software defined cloud:
Survey, system and evaluation. Future Gener. Comput. Syst. 2016, 58, 56-74. [CrossRef]

3. Vasoya, S.; Gadhavi, L.; Bhatia, J.; Bhavsar, M. Resource provisioning strategies in cloud: A Survey. Int.].
Comput. Sci. Commun. 2016, 7, 12-15.

4. Alam, M.I; Pandey, M.; Rautaray, S.S. A comprehensive survey on cloud computing. Int. J. Inf. Technol.
Comput. Sci. 2015, 7, 68-79. [CrossRef]

5. Guzek, M.; Bouvry, P; Talbi, E.G. A survey of evolutionary computation for resource management of
processing in cloud computing. IEEE Comput. Intell. Mag. 2015, 10, 53-67. [CrossRef]

6. Suralkar, S.; Mujumdar, A.; Masiwal, G.; Kulkarni, M. Review of distributed file systems: Case studies. Int.].
Eng. Res. Appl. 2013, 3, 1293-1298.

7. Asadianfam, S.; Shamsi, M.; Kashany, S. A review: Distributed file system. Int.]. Comput. Netw. Commun. Secur.
2015, 3, 229-234.

8. Yadav, J.S.; Yadav, M.; Jain, A. Distributed file system. Int. J. Sci. Res. Educ. 2013, 1, 126-134.

9. Bera, S,; Misra, S.; Rodrigues,].J.P.C. Cloud computing applications for smart grid: A survey. IEEE Trans.
Parallel Distrib. Syst. 2015, 26, 1477-1494. [CrossRef]

10. Patel, I.; Shah, B. Survey on resource allocation technique in cloud. Int. J. Sci. Res. 2016, 5, 232-235.

11. Jackson, J.C.; Vijayakumar, V.; Quadir, M.A.; Bharathi, C. Survey on programming models and environments
for cluster, cloud, and grid computing that defends big data. Procedia Comput. Sci. 2015, 50, 517-523.
[CrossRef]

12. Ranjan, R.; Benatallah, B.; Dustdar, S.; Papazoglou, M.P. Cloud resource orchestration programming.
IEEE Internet Comput. 2015, 19, 46-56. [CrossRef]

13. Zhan, Z.-H,; Liu, X.-F; Gong, Y.-].; Zhang, J.; Chung, H.S.-H.; Li, Y. Cloud computing resource scheduling
and a survey of its evolutionary approaches. ACM Comput. Surv. 2015, 47. [CrossRef]

14. Jennings, B.; Stadler, R. Resource management in clouds: Survey and research challenges. J. Netw. Syst. Manag.
2015, 23, 567-619. [CrossRef]

15. Kukade, P.P; Kale, G. Survey of load balancing and scaling approaches in cloud. Int. J. Emerg. Trends Technol.
Comput. Sci. 2015, 4, 189-192.

http://dx.doi.org/10.1007/s11227-013-0970-3
http://dx.doi.org/10.1016/j.future.2015.10.015
http://dx.doi.org/10.5815/ijitcs.2015.02.09
http://dx.doi.org/10.1109/MCI.2015.2405351
http://dx.doi.org/10.1109/TPDS.2014.2321378
http://dx.doi.org/10.1016/j.procs.2015.04.025
http://dx.doi.org/10.1109/MIC.2015.20
http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.1007/s10922-014-9307-7

Symmetry 2017, 9, 8 17 of 17

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Motavaselalhagh, F; Esfahani, F.S.; Arabnia, H.R. Knowledge-based adaptable scheduler for SaaS providers
in cloud computing. Hum. Centric Comput. Inf. Sci. 2015, 5. [CrossRef]

Kim, S.; Lee, H.; Kwon, H.; Lee, S. Evaluation model of defense information systems use. J. Converg. 2015, 6,
18-26.

Kar, J.; Mishra, M.R. Mitigating threats and security metrics in cloud computing. J. Inf. Process. Syst. 2016, 12,
226-233.

Kashyap, D.; Viradiya, J. A survey of various load balancing algorithms in cloud computing. Int. J. Sci.
Technol. Res. 2014, 3, 115-119.

Park,].H.; Kim, H.-W.; Jeong, Y.-S. Efficiency sustainability resource visual simulator for clustered desktop
virtualization based on cloud infrastructure. Sustainability 2014, 6, 8079-8091. [CrossRef]

Kim, H.-W,; Park,].H.; Jeong, Y.-S. Human-centric storage resource mechanism for big data on cloud service
architecture. J. Supercomput. 2015, 72, 2437-2452. [CrossRef]

Kumbhare, A.G.; Simmhan, Y.; Frincu, M.; Prasanna, V.K. Reactive resource provisioning heuristics for
dynamic dataflows on cloud infrastructure. IEEE Trans. Cloud Comput. 2015, 3, 105-118. [CrossRef]
Lingawar, R.P; Srode, M.V.; Ghonge, M.M. Survey on load-balancing techniques in cloud computing. Int. J.
Advent Res. Comput. Electron. 2014, 1, 18-21.

Magalhaes, D.; Calheiros, R.N.; Buyya, R.; Gomes, D.G. Workload modeling for resource usage analysis and
simulation in cloud computing. Comput. Electr. Eng. 2015, 47, 69-81. [CrossRef]

De Assungdoa, M.D.; Cardonha, C.H.; Netto, M.A.S.; Cunha, R.L.F. Impact of user patience on auto-scaling
resource capacity for cloud services. Future Gener. Comput. Syst. 2016, 55, 41-50. [CrossRef]

Al-Ayyoub, M.; Jararweh, Y.; Daraghmeh, M.; Althebyan, Q. Multi-agent based dynamic resource
provisioning and monitoring for cloud computing systems infrastructure. Cluster Comput. 2015, 18, 919-932.
[CrossRef]

Tan, Y.; Xia, C.H. An adaptive learning approach for efficient resource provisioning in cloud Services.
ACM Sigmetrics Perform. Eval. Rev. 2015, 42, 3-11. [CrossRef]

Yue, T.; Xia, C.H. An Adaptive Learning Approach for Efficient Resource Provisioning in Cloud Services.
ACM Sigmetrics Perform. Eval. Rev. 2015, 42, 3-11.

® © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s13673-015-0031-4
http://dx.doi.org/10.3390/su6118079
http://dx.doi.org/10.1007/s11227-015-1390-3
http://dx.doi.org/10.1109/TCC.2015.2394316
http://dx.doi.org/10.1016/j.compeleceng.2015.08.016
http://dx.doi.org/10.1016/j.future.2015.09.001
http://dx.doi.org/10.1007/s10586-015-0449-5
http://dx.doi.org/10.1145/2788402.2788405
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	On-Premise Intra-Cloud Resource Management Scheme
	On-Premise Integrated Resource Management
	Clustering Scheme for Integrated Resource Management
	Nondisruptive Computing and Storage Service Scheme
	Auto-Scalable Scheme

	Infrastructure as a Service with Desktops (DIaaS) Design
	DIaaS Implementation
	Performance Evaluation
	Conclusions

