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Abstract: For passive radar detection system, radar waveform recognition is an important research
area. In this paper, we explore an automatic radar waveform recognition system to detect, track and
locate the low probability of intercept (LPI) radars. The system can classify (but not identify) 12 kinds
of signals, including binary phase shift keying (BPSK) (barker codes modulated), linear frequency
modulation (LFM), Costas codes, Frank code, P1-P4 codesand T1-T4 codeswith a low signal-to-noise
ratio (SNR). It is one of the most extensive classification systems in the open articles. A hybrid classifier
is proposed, which includes two relatively independent subsidiary networks, convolutional neural
network (CNN) and Elman neural network (ENN). We determine the parameters of the architecture
to make networks more effectively. Specifically, we focus on how the networks are designed, what the
best set of features for classification is and what the best classified strategy is. Especially, we propose
several key features for the classifier based on Choi–Williams time-frequency distribution (CWD).
Finally, the recognition system is simulated by experimental data. The experiments show the overall
successful recognition ratio of 94.5% at an SNR of −2 dB.

Keywords: radar countermeasure; waveform recognition; T-F distribution; convolutional neural network

1. Introduction

Modern radars usually have low instantaneous power, called low probability of intercept (LPI)
radars, which are used in electronic warfare (EW). For a radar electronic intelligence (ELINT) system
(anti-radar system), analyzing and classifying the waveforms of LPI radars is one of the most effective
methods to detect, track and locate the LPI radars [1,2]. Therefore, the second order statistics and
power spectral density are utilized in the waveforms’ recognition earlier to classify phase shift keying
(PSK), frequency shift keying (FSK) and amplitude shift keying (ASK) [3]. Dudczyk presents the
parameters (such as pulse repetition interval (PRI), pulse width (PW), etc.) to identify different radar
signals [4–7]. Nandi introduces the decision theoretic approach to classify different types of modulated
signals [8]. Additionally, the ratio of successful recognition (RSR) is over 94% at a signal-to-noise ratio
(SNR) ≥15 dB. The artificial neural network is also utilized in the recognition system. The multi-layer
perceptron (MLP) recognizer reaches more than 99% recognized performance at SNR ≥0 dB [9].
Atomic decomposition (AD) is also addressed in the detection and classification of complex radar
signals. Additionally, the receiver realizes the interception of four signals (including linear frequency
modulation (LFM), PSK, FSK and continuous wave (CW)) [10]. Time-frequency techniques can increase
signal processing gain for the low power signals [11]. In [12], López analyzes the differences among
LFM, PSK and FSK based on the short-time Fourier transform (STFT). Additionally, the RSR ≥90%
at SNR ≥0 dB. Lundén [13] introduces a wide classification system to classify the intercepted pulse
compression waveforms. The system achieves overall RSR ≥98% at SNR ≥6 dB. Ming improves the
system of Lundén and shows the results in [14]. The sparse classification (SC) based on random
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projections is proposed in [15]. The approach improves efficiency, noise robustness and information
completeness. LFM, FSK and PSK are recognized with RSR ≥90% at SNR ≥0 dB.

We investigate the convolutional neural network (CNN) for radar waveform recognition.
CNN has been proposed in image recognition fields [16,17]. Recently, it has been applied for
speech recognition [18–21], computer vision [22,23] and handwritten recognition [24–26], etc.
Abdel-Hamid introduces the approaches to reduce the further error rate by utilizing CNNs in [27].
Experimental results show that CNNs reduce the error rate by 6%–10% compared with deep neural
networks (DNNs) on the speech recognition tasks. In [26], a hybrid model of two superior classifiers
CNN and support vector machine (SVM) is discussed. The RSR of the model achieves more than
99.81%, in which SVM performs as a classifier and CNN works as a feature extractor.

In this paper, we explore a wide radar waveform recognition system to classify, but not identify
In this paper, the meaning of “classify” is that we distinguish the different types of waveforms.
Additionally, “identify” is distinguishing the different individuals of the same type. Twelve types
of waveforms (LFM, BPSK, Costas codes, polyphase codes and polytime codes) by using CNN and
Elman neural network (ENN) are discussed. We propose time-frequency and statistical characteristic
approaches to process detected signals, which transmit in the highly noisy environment. The detected
signals are processed into time-frequency images with the Choi–Williams distribution (CWD).
CWD has few cross terms for signals, which is a member of the Cohen classes [28]. Time-frequency
images show the three main pieces of information of signals: time location, frequency location and
amplitude. In the images, time and frequency information is more robust than amplitude. To make
the images more suitable for the classifier, a thresholding method is investigated. The method
handles the time-frequency images as binary images. After that, binary images are addressed by
noise-removing approaches. The final images are used for classification and feature extraction.
However, polyphase codes (including Frank code and P1-P4 codes) and LFM are similar to each
other. It is difficult to classify them through shapes individually. Therefore, we extract some effective
features for further classification of them. Features extraction is from binary images through digital
image processing (such as skeleton extraction, Zernike moments [29], principal component analysis
(PCA), etc.). The set of features is the input of ENN. Additionally, the output of ENN is the classification
result. The entire structure of the classifier consists of two networks, CNN and ENN. CNN is the
primary cell of the classifier, and ENN is auxiliary. Binary images are resized for CNN to separate
polytime codes (include T1–T4) from the other eight kinds of waveforms. Additionally, we extract
features for ENN, which can indicate the eight remaining codes obviously. Only if “others” are selected
by the CNN, ENN starts to work (see Figure 2). In the experiments, the recognition system has overall
RSR ≥94% at SNR ≥−2 dB.

In this paper, the major contributions can be summarized as follows: (1) build the framework
of signals processing; additionally, establish the label data for testing the system; (2) the proposed
recognition system can classify as many as 12 kinds of waveforms, which are described in the context;
previous articles can seldom reach such a wide range of classification of radar signals; especially,
four kinds of polytime codes are classified together for the first time in the published literature;
(3) almost all interested parameters and all features will be estimated by received data without a priori
knowledge; (4) propose a hybrid classifier that has two different networks (CNN and ENN).

The paper is organized as follows. The structure of the recognition system is exhibited in
Section 2. Section 3 proposes the signal model and preprocessing. Section 4 explores the feature
extraction, including signal features and image features. Additionally, it lists all features that we need.
After that, Section 5 searches the structure of the classifier and describes it in detail. Section 6 shows
the experiments. Section 7 draws the conclusions.

2. System View

The entire classification system mainly consists of three components: preprocessing, feature
estimation and recognition; see Figure 1. It is an automatic process from the preprocessing part to
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the recognition part. In the preprocessing part, the received data are transformed into time-frequency
images by utilizing CWD transformation. Then, the time-frequency images are transformed into the
binary image through image binarization, image opening operation and noise-removing algorithms.
In the feature extraction part, we extract effective features to train and test the classifier. Different kinds
of waveforms have different shapes in the images. After image processing, the differences of shapes
are more significant. CNN has a powerful ability of classification, which distinguishes polytime codes
from others. To classify these similar waveforms (such as polyphase codes), we extract features from
detected signals and binary images. In the recognition part, all of the waveforms are classified via the
proposed classifier based on the extracted features.

Received

Data

Image Feature

Extraction

Signal Feature

Estimation

Classifier Classification

Training
Off-line

Training

Feature Estimation RecognitionPreprocessing

Time-Frequency & Image

Processing

Figure 1. The figure shows the systematic components. Received data is processed in the preprocessing
part and feature estimation part to extract features. And the data is classified in the classifier part.

The hybrid classifier consists of two networks, network1 and network2 ; see Figure 2. The entire
classifier can classify 12 different kinds of radar waveforms, which has been mentioned in the writing.
Network1 is the main network composed of CNN. Its input is a binary image after preprocessing.
Additionally, the outputs are five different kinds of classification results. They are four kinds of
polytime codes (T1-T4) and others (do not belong to the polytime class). Network2 is ENN, which is an
auxiliary network. Network2 assists the main network (network1) in classifying the eight remaining
waveforms that do not belong to polytime codes. When the waveform is considered as “others” by
network1, network2 will begin to classify the waveform into one of the eight kinds of waveforms.
The proposed structure of the classifier can improve the classified power.

Network1

(CNN)

Others

Network2

(ENN)

Frank

P1

P2

P3

P4

Classifier Overview

T2 T1T3

T4

LFM

Costas

Binary Phase

Figure 2. This figure shows the details of the classifier. Network1 is the main network composed of CNN
and Network2 is ENN. Network2 assists the main network (network1) to complete the classification.
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3. Preprocessing

In this section, detected signals are processed into binary images with the Choi–Williams
time-frequency distribution.

3.1. Signal Model

We assume the signal is contaminated by additive white Gaussian noise (AWGN). Additionally,
the amplitude is constant for time. In summary, the signal model is formulated as follows

y(nT) = s(nT) + m(nT) = Aejφ(nT) + m(nT) (1)

where s(nT) is the n-th sample of complex signals. Additionally, m(nT) is the n-th sample of complex
white Gaussian noise (WGN). The variance of WGN equals σ2

ε . A is the amplitude. However, for the
sake of simplicity, we suppose A = 1. φ is the instantaneous phase of complex signals. To process
detected signals from real to complex, Hilbert transform is applied [30].

3.2. Choi–Williams Distribution

The Choi–Williams distribution is a kind of time-frequency distribution, which expresses the
details of detected signals. It can reduce the cross terms from the signals obviously.

C(t, ω) =
∫∫∫

∞
ej2πξ(s−t) f (ξ, τ)

� x(s + τ/2)x∗(s− τ/2)e−jωτdξdsdτ
(2)

where ω and t are the axes of frequency and time, respectively. f (ξ, τ) is a two-dimensional low-pass
filter to balance cross terms and resolution. The kernel function is formulated as follows:

f (ξ, τ) = exp

[
(πξτ)2

2σ

]
. (3)

σ is the controllable factor. The cross terms will be more obvious with the increase of σ. In this
paper, σ = 1 is applied. In Figure 3, 12 kinds of signals are transformed into time-frequency images
through CWD transformation. The work in [31] proposes a new fast calculation of CWD based on
standard Fourier transformation (FFT). We could recommend that the number of the sampling is the
power of two, such as 256, 512, etc. In this paper, 1024 sampling points are investigated. However,
the length of signals is N < 1024 for most of the time. Therefore, zero padding is utilized in the process.

Figure 3. Cont.
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Figure 3. In this figure, different waveform classes are shown, including Linear Frequency Modulation
(LFM), Binray Phase Shift Keying (BPSK), Frank, Costas codes, P1-P4 codes and T1-T4 codes. There are
significant differences among the Choi-Williams Time-Frequency Distribution (CWD) images.

3.3. Binary Image

In this part, the detected signals are processed into binary images with the global thresholding
algorithm [32]. Before it is done, we need to resize the time-frequency images to reduce the
computational load, in which the resized size is N × N. The algorithm is organized as follows.

a. Normalize the resized images G(x, y) ∈ [0, 1], i.e.,

G(x, y) =
CWDN×N(x, y)−min CWDN×N(x, y)

max(CWDN×N(x, y)−min CWDN×N(x, y))
;

b. Estimate the threshold T of G(x, y), i.e.,

T =
max G(x, y) + min G(x, y)

2
;

c. Separate the image into two pixel groups G1 and G2; G1 includes all pixels that values > T, and G2

includes others;
d. Calculate the average value µ1 and µ2 of two pixel groups G1 and G2, respectively;
e. Update the threshold, i.e.,

T =
µ1 + µ2

2
;

f. Repeat (b)–(e), until the δT is smaller than 0.001, i.e.,

δT = Tnow − Tbe f ore;

g. Compute B(x, y) as follows:

B(x, y) =

{
1 G(x, y) > T

0 others
;

h. Output B(x, y).

3.4. Noise Removed

After the operation of binarization, meanwhile, there are some isolated noises and processed
noises in B(x, y). Isolated noises come from the noisy environment. In the binary image, isolated noises
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are groups of pixels that have no fixed shape. Processed noises are generated from the CWD kernel
especially. In the binary image, they are straight lines, long but thin. The length is more than 50 pixels,
but the width of lines is less than three pixels. Image opening operation (erosion followed by dilation)
algorithms are proposed to remove the processed noises. Additionally, the size of the operational
kernel is 3× 3. It is effective to remove the shape whose width is less than three pixels. For isolated
noises, we count the number of pixels of signals or noises. In this paper, the groups are removed,
in which sizes are smaller than 10% of the largest one. The content of removing noise is introduced in
Figure 4. The finished binary images are used in CNN and feature extraction.

Resize 

Image

Binary 

Image

Opening 

Processing

Noise 

Removed

Original 

Image

1024´1024

N´N

Figure 4. In this figure, we exhibit the processing with P3 code at an signal-to-noise ratio (SNR) of
−4 dB.

4. Feature Extraction

In this section, we extract some useful features and build a feature vector for ENN in order to
assist the CNN to complete recognition. The section consists of two parts, including signal features
and image features. The features, which we can estimate or calculate from detected signals directly,
belong to signal features. Similarly, image features include the features that are extract from binary
images. Table 1 lists the signal features and image features that are used in network2.
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Table 1. List of the features for network2.

Index Description Symbol

1 Moment (1-order) M̂10
2 Moment (2-order) M̂20
3 Cumulant (2-order) Ĉ20

4 PSD maximum (1-order) γ1
5 PSD maximum (2-order) γ2

6 Std. of phase σ̂φ

7 Std. of frequency σ̂f

8 No. of objects (20%) Nobj1
9 No. of objects (50%) Nobj2
10 CWD time peak location tmax
11 Std. of object width σ̂obj
12 Maximum of PCA degree θ̂max
13 Std. of fn σ̂W f
14 Autocorrelationof fn r
15 FFT of correlation fn âmax
16 Pseudo-Zernike moment (2-order) Ẑ20
17 Pseudo-Zernike moment (3-order) Ẑ30
18 Pseudo-Zernike moment (4-order) Ẑ22
19 Pseudo-Zernike moment (4-order) Ẑ31
20 Pseudo-Zernike moment (5-order) Ẑ32
21 Pseudo-Zernike moment (6-order) Ẑ33
22 Pseudo-Zernike moment (7-order) Ẑ43

PSD: Power Spectral Density. PCA: Principal Component Analysis. FFT: Fast Fourier Transformation.
Std.: Standard Deviation.

4.1. Signal Features

In this part, the features are extracted from signals based on signal processing approaches.

4.1.1. Based on the Statistics

We estimate the n-order moment of complex signals as follows:

M̂nm =

∣∣∣∣∣ 1
N

N−1

∑
k=0

yn−m(k)(y∗(k))m

∣∣∣∣∣ (4)

where (∗) is the conjugated symbol and N is the sample number. We utilize absolute values to ensure
that the estimated values are invariant constants when the signal phase rotates. M̂10 and M̂20 are
calculated by Equation (4).

The n-order cumulant is given by [33,34]:

Ĉnm =

∣∣∣∣∣ 1
N

N−1

∑
k=0

(y(k)− M̂10)
n−m

(y∗(k)− M̂10)
m
∣∣∣∣∣ (5)

where, the same as context, M̂10 is from Equation (4).

4.1.2. Based on the Power Spectral Density

Before estimation of Power Spectral Density (PSD), the detected signals should be normalized
as follows:
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ỹ(k) =
y(k)√

M̂21 − σ2
ε

(6)

where M̂21 is obtained from Equation (4) and y(k) is the k-th sample. The variance of additive noise σ2
ε

can be obtained in [35].
The PSD are calculated as follows:

γm =
1
N

max
n

 1
N

∣∣∣∣∣N−1

∑
k=0

ỹm(k)e−j2πnk/N

∣∣∣∣∣
2
 (7)

where ỹ(k) is from Equation (6).

4.1.3. Based on the Instantaneous Properties

Instantaneous properties are the essential characteristics of detected signals. They can distinguish
frequency modulated signals from phase modulated signals effectively. In this paper, we estimate
the instantaneous frequency and instantaneous phase from samples. The standard deviation of
instantaneous phase is addressed in [9]. For brevity, φ(k) = tan−1[Im(y(k))/Re(y(k))] is applied;
where, Re and Im are the real and imaginary parts of complex signals, respectively. The standard
deviation of instantaneous phase is given by:

σ̂φ =

√√√√ 1
N

(
N−1

∑
k=0

φ2(k)

)
−
(

1
N

N−1

∑
k=0
|φ(k)|

)2

(8)

where N is the sample number. φ is the instantaneous phase with the range of [−π, π].
Instantaneous frequency estimation is more complex than instantaneous phase. We describe the

method in several steps to make it clear.

a. Calculate φ(k);
b. Calculate φu(k)

F from φ(k);
c. Calculate f (k)FF, i.e.,

f (k) = φu(k)− φu(k− 1);

d. Calculate µ f , i.e.,

µ f :=
1
N ∑N−1

k=0 f (k);

e. Normalize the instantaneous frequency f̃ (k),

f̃ (k) = ( f (k)− µ f )/(max | f (k)− µ f |)

f. Output the standard deviation of instantaneous frequency σ̂f ,

σ̂f =

√√√√ 1
N

(
N−1

∑
k=0

f̃ 2(k)

)
−
(

1
N

N−1

∑
k=0

∣∣ f̃ (k)∣∣)2

. (9)

F φu(k) is the unwrapped phase of φ(k). When the absolute jumps from φ(k), we can add ±2π to
recover the consecutive phase.

FF In the sequence of f (k), some spikes are created by processing. We use the median filter
algorithm with window size of five to smooth the spikes.
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4.2. Image Features

In this part, we extract the features based on binary images. The number of objects (Nobj) is a key
feature. For instance, Costas codes have more than three objects, but Frank code and P2 have two.
Additionally, P1, P4 and LFM only have one. We estimate two features Nobj1 and Nobj2. Nobj1 is the
number of objects, the sizes of the pixels of which are more than 20% of the size of the largest object.
Likewise, Nobj2 ≥ 50%.

The maximum energy location in time domain is also a feature, i.e.,

tmax =
1

N − 1
arg max

t
{CN×N(t, ω)} (10)

where CN×N(t, ω) is the resized time-frequency image and N is the sample number.
The standard deviation of the width of signal objects (σ̂obj) can describe the concentration of signal

energy. The feature is estimated as follows.

• Repeat for every object, do k = 1, 2, ..., Nobj1;

1. Retain the k-th object and remove others, called Bk(x, y);
2. Estimate the principal components of Bk(x, y);
3. RotateF the Bk(x, y) until the principal components are vertical; record as Bk′(x, y);
4. Sum the vertical axis, i.e.,

v(x) = ∑N−1
y=0 Bk′(x, y),

x = 0, 1, 2, ..., N − 1;
5. Normalize v(x) as follows

v̂(x) =
v(x)

max{v(x)} ;

6. Estimate the standard deviation of v̂(x), i.e.,

σ̂k,obj1 =
√

1/N ∑x v̂2(x)− (1/N ∑x v̂(x))2,

where N is the sample number;

• Output the rotation degree θ̂max, which performs Step (c) at the maximum object.
• Output the average of the σ̂k,obj1, i.e.,

σ̂obj = (1/Nobj1)∑
Nobj1
k=1 σ̂k,obj1. (11)

F Nearest neighbor interpolation is applied in rotation processing.

P2 has a negative slope in five types of polyphase codes. Therefore, the feature θ̂max can classify
P2 from others easily. The feature shows the angle between the maximum object and the vertical
direction. It can be obtained from the calculation of σ̂obj easily.

Next, we retain the maximum object in the binary image, but others are removed. The skeleton of
the object is extracted by utilizing the image morphology method. Additionally, the linear trend of the
object is also estimated based on minimizing the square errors method at the same time. Subtract the
linear trend from the skeleton to achieve the difference vector fn. The standard deviation of fn is
estimated as:

σ̂W f =

√√√√ 1
M− 1

M

∑
k=1

f 2
n(k)−

(
1

M− 1

M

∑
k=1

fn(k)

)2

(12)

where M is the sample number of fn.
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Some features are extracted by using autocorrelation of fn, i.e., c(m) = ∑k fn(k) fn(k−m),
m = 0, 1, ..., N − 1. The autocorrelation method makes differences more significant among stepped
waveforms (P1, Frank code) and linear waveforms (P3, P4, LFM). See Figure 3 for more details.

The ratio of the maximum value and sidelobe maximum value of c(m) is formulated as:

r =
Nmaxm∈[m0,N−1]c(m)

(N −m1)max c(m)
(13)

where m0 is the value corresponding to the minimum of c(m) and m1 is the value corresponding to the
maximum of c(m) in the location of [m0, N − 1].

We estimate the maximum of the absolute of FFT operation âmax as follows:

âmax = max{abs [FFT(cnormal(m))]} (14)

where cnormal(m) is normalized from c(m) and cnormal(m) ∈ [−1, 1].
Pseudo-Zernike moments are invariant for topological transformation [36], such as rotation,

translation, mirroring and scaling. They are widely applied in pattern recognition [37–39]. The n-order
image geometric moments are calculated as:

mpq = ∑x ∑y B(x, y)xpyq (15)

where B(x, y) is from Section 3.3. The central geometric moments for scale and translation invariant
are given by:

Gpq =
1

m(p+q+2)/2
00

∑
x

∑
y

B(x, y)(x− x̄)p(y− ȳ)q (16)

where x̄ = m10/m00 and ȳ = m01/m00.
The scale and translation invariant radial geometric moments are shown as:

Rpq =
1

m(p+q+3)/2
00

∑
x

∑
y

B(x, y)(x̃2 + ỹ2)
1/2

x̃pỹq (17)

where x̃ = x− x̄ and ỹ = y− ȳ.
Then, the pseudo-Zernike moments can be estimated as follows:

Znm =
n + 1

π

n−|m|

∑
s=0

n−s−m=even

k

∑
a=0

m

∑
b=0

(−j)b

(
k
a

)(
m
b

)
DnmsG2k−2a+m−b,2a+b

+
n + 1

π

n−|m|

∑
s=0

n−s−m=odd

d

∑
a=0

m

∑
b=0

(−j)b

(
d
a

)(
m
b

)
DnmsR2d−2a+m−b,2a+b

(18)

where k = (n− s−m)/2, d = (n− s−m− 1)/2 and:

Dnms = (−1)s (2n + 1− s)!
s!(n− |m| − s)!(n + |m|+ 1− s)!

. (19)

At last, Ẑnm is estimated, i.e., Ẑnm = ln|Znm|. The members of pseudo-Zernike moments include
Ẑ20, Ẑ22, Ẑ30, Ẑ31, Ẑ32, Ẑ33 and Ẑ43.
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5. Classifier

In Section 4, we complete the resized binary image labels for CNN and the feature vector extraction
with 22 elements for ENN. In this section, we describe the structure of two networks in detail.

5.1. CNN

CNN is a new neural network, which has a special structure for image feature extraction. Different
from traditional network, the input of CNN is a two-dimensional feature (image). The convolution
layers can extract information, and pooling layers reduce computer load effectively. CNN is not a
full connected network, which is similar to the cerebral cortex. The architecture of the CNN model
is shown in Figure 5. CNN has the hierarchical architecture [40]. Hence, we describe the neural
architecture as follows.

Full Connection

Input Layer

(32´32)

C1: feature maps

(6@28´28)

S1: maps

(6@14´14)

C2: maps

(16@10´10)

S2: maps

(16@5´5)

N1&N2: vectors

N1=120´ 1&N2=5´ 1

Figure 5. The figure shows the structure of Convolutional Neural Network (CNN). The input image
are processed in the hidden layers and classified in the out layer.

a. The input layer is a binary image, which is from Section 3.4. To reduce the computer load,
we resize the image to 32× 32 with the nearest neighbor interpolation algorithm.

b. The first hidden layer C1 is a convolutional layer, which has six feature maps. Different feature
maps require a different convolutional kernel. C1 has six convolutional kernels with a size of
5× 5. We utilize C1(m, n, k) to represent the value of the k-th feature map at position (m, n) in the
C1 layer.

c. The second hidden layer S1 is a down-sampling layer with six feature maps. In S1, every feature
value is the average of four adjacent elements in C1. We denote S1(m, n, k) as the context. Further,
we have:

S1(m, n, k) = mean(C1(2m− 1, 2n− 1, k), C1(2m− 1, 2n,

k), C1(2m, 2n− 1, k), C1(2m, 2n, k)).
(20)

The size of feature maps in S1 reduces to 1/4, compared with feature maps of C1.
d. C2 is a convolutional layer with 16 different kernels. It is not fully connected with the S1 layer [41].

The connection details are described in Table 2. C2(m, n, k) is also utilized to describe the
neurons in this layer. For the α-th column in Table 2, we mark row indices by βα,0, βα,1, ·, βα,p−1.
For instance, if α = 7, then we will get parameters as follows: p = 4, β7,0 = 1, β7,1 = 2,
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β7,2 = 3, β7,3 = 4. Further, the size of the convolutional kernel is p× 5× 5. Kα is the α-th kernel.
Additionally, we have:

C2(m, n, α) =
p−1

∑
r=0

4

∑
m0=0

4

∑
n0=0

[ S1(m + m0, n + n0, βα,r)

× Kα(5−m0, 5− n0, p− 1− r) ] .

(21)

For example, for the zeroth column, p = 3, α00 = 0, α01 = 1, α02 = 2, and we also have:

C2(m, n, 0) =
p−1

∑
r=0

4

∑
m0=0

4

∑
n0=0

[ S1(m + m0, n + n0, β0,r)

× K0(5−m0, 5− n0, p− 1− r) ] .

(22)

e. Similar to S1, this layer is a down-sampling layer, called S2. S2 has 16 feature maps. To follow the
context in Equation (20), we donate:

S2(m, n, k) = mean(C2(2m− 1, 2n− 1, k), C2(2m− 1, 2n,

k), C2(2m, 2n− 1, k), C2(2m, 2n, k)).
(23)

f. The connection between S2 and N1 is a full connection. Each kernel in N1 will be connected with
all of the feature maps in S2. There are 120 kernels in this layer. Additionally, the size of the kernel
is 5× 5, which means the output is a column vector with the size of 120× 1. We describe N1(λ)

as the λ-th feature map of N1 and Kλ as the λ-th kernel. Then, we have:

N1(λ) =
15

∑
r=0

4

∑
m0=0

4

∑
n0=0

[ S2(m0, n0, r)

× Kλ(5−m0, 5− n0, 15− r) ] .

(24)

g. Finally, the connected style between N1 and output layer is fully connected. There are five neurons
(defined by the classes we want to classify) in the output layer with the sigmoid function.

Table 2. Connection detail about S1 and C2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 X X X X X X X X X X
1 X X X X X X X X X X
2 X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X X X X X X X
5 X X X X X X X X X X

5.2. ENN

The three-layer ENN is utilized in the paper for signal classification. The connections,
which connect different hidden layers or output layers, have different weights [42]. At every time
step, the input is propagated in a feed-forward fashion and the feedback of the output. Additionally,
the error back propagation (BP) learning algorithm is also utilized [43]. The connection results in that
the context units always maintain a copy of the previous values of hidden units. Thus, the network can
keep the past state, which is useful for applications such as sequence prediction [44–46]. In Figure 6,
there are 46 neurons in the hidden layer. For the input and output layer, the number of neurons is
determined by the dimension of input and output vectors. Sigmoid function f (x) = 1/(1 + e−x) is
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proposed in every layer. In [47], Sheela discusses the different methods to fix the neurons number
Hnum of hidden layers. In this paper, a simple formula is given by:

Hnum =
C× X + 0.5× C× (X2 + X)− 1

C + X
(25)

where X is the dimension of the feature vector. C is the number of categories. The proposed formula
cannot determine the optimal number of hidden layer completely. We may fine-tune the number in
some situations. Forty-six neurons of hidden layers are applied in this paper.

M´1 M´1 

IW1

IW2

bI

HW1

HW2

bH

OW1

bO

Input Input Layer Hidden Layer Output Layer

M´M 

M 

46´M 

46´1 46 

N´46 

N´1 N 

N´1 

å å å 

Figure 6. This figure shows the structure of Elman neural network. It is a 3 layers network that has
feedback loops. So, the network can keep the past state, which is useful for waveform classification.

6. Simulation Results and Discussion

In this section, the performance of the proposed recognition system is analyzed by utilizing
simulated data. The section consists of three parts, including creating the simulated data, discussing
the relationship between SNR and RSR, depicting the accurate rate of robustness and summarizing
the experiments.

6.1. Production of Simulated Signals

In this part, simulated signals are created. In addition, the SNR is proposed as
SNR = 10 log10(σ

2
s )/(σ2

ε ); where σ2
s and σ2

ε are the variances of the signal and noise, respectively.
Every signal has different parameters that need to be set. We denote a uniform variable U(·) based on
the sample rate. For example, we assume that the original frequency ( f0) is 1000 Hz and the sample
rate ( fs) is 8000 Hz. Then, the uniform result is f0 = U( f0/ fs) = U(1/8). Meanwhile, U(1/8, 1/4)
expresses the random variable that belongs to [U(1/8), U(1/4)]. And in this paragraph, [1, 3] also
represents a set that includes {1, 2, 3}. Table 3 lists the parameters of the waveforms. For LFM,
the sample points change from 500–1000 randomly. Additionally, the range of bandwidth (∆ f ) is
U(1/16, 1/8), so is the initial frequency ( f0). For BPSK, the cycle number per phase code (cpp) and
the code periods’ number (Np) are [1, 5]and [100, 300], respectively. The length of the Barker codes
is selected from {7, 11, 13} randomly. The carrier frequency is U(1/8, 1/4). For the Costas codes,
the fundamental frequency ( fmin) is U(1/24). Additionally, the frequency changed number is [3, 6].
For the Frank code, frequency steps (M) are in the range of [4, 8]. Polyphase codes have the same
types of parameters as the Frank code. For polytime codes, the range of segments number (k) and
overall code duration (T) are [4, 6] and [0.07, 0.1], respectively.
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Table 3. List of the parameters of simulated signals.

Signal Waveforms Parameters Uniform Ranges

- Sampling rate ( fs) U(1)

LFM
Samples number (N) [500, 1000]

Bandwidth (∆ f ) U(1/16, 1/8)

Initial frequency ( f0) U(1/16, 1/8)

BPSK

Cycles per phase code (cpp) [1, 5]

Number of code periods (Np) [100, 300]

Barker codes {7, 11, 13}
Carrier frequency ( fc) U(1/8, 1/4)

Costas codes
N [512, 1024]

Fundamental frequency ( fmin) U(1/24)

Number changed [3, 6]

Frank and P1 codes
fc U(1/8, 1/4)

cpp [1, 5]

Frequency steps (M) [4, 8]

P2 code
fc U(1/8, 1/4)

cpp [1, 5]

M 2× [2, 4]

P3 and P4 codes
fc U(1/8, 1/4)

cpp [1, 5]

M 2× [16, 35]

T1-T4 codes
Number of segments (k) [4, 6]
Overall code duration (T) [0.07, 0.1]

6.2. Experiment with SNR

In this part, we depict the relation between SNR and RSR in Figure 7. There are 1000 labels in each
waveform class. Twenty percent of the labels are utilized for testing and 80% for training. The result is
compared with Lundén’s system [13] and our previous work [14], both of which are wide systems in
waveform classification.

Figure 7 plots the experimental results of RSR with different SNR. Twelve kinds of waveforms
and the “overall” are provided. The solid line shows the proposed system, and the dotted lines
represent others. For LFM and P4, the proposed approach provides better performance than Lundén’s,
especially at low SNR, but poorer than the previous work, although the difference is not too much.
For BPSK and Costas codes, the three RSRs almost have similar results, and all of them are at a high
level. For Frank and P2, the results of the proposed method and previous work are alike and higher
than Lundén’s. In the simulation of P1, the proposed method is the best when the SNR is more than
−2 dB. The results of P3 are similar to P1; proposed method performs well at high SNR. For polytime
codes, the proposed approach also has excellent RSRs. It benefits from the outstanding design of
pre-processing and the high RSR of the classifier. Finally, the overall RSR has been raised by 20% in
the proposed approaches, compared to Lundén’s and previous work. At SNR of −2 dB, the overall
probabilities are still more than 90%. Table 4 exhibits the confusion table of 12 kinds of waveforms at
the SNR of −2 dB. As Table 4 shows, the waveforms of P3 and P4 are not “always” classified correctly.
For P3, most of the errors are classified into the Frank code. Meanwhile, most of the errors of P4 are
classified into LFM. However, the two pairs are very similar; see Figure 3.
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Table 4. Confusion matrix for the system at an SNR of −2 dB. The overall Ratio of Successful
Recognition (RSR) is 94.5%.

T1 T2 T3 T4 LFM Costas BPSK Frank P1 P2 P3 P4

T1 99.5 0 0 0 0 0 0 0 0 0 0 0
T2 0 98.5 0 0 0 0 0 0 0 0 0 0
T3 0.5 0 96 0 0 0 0 0 0 0 0 0
T4 0 0 0 98.5 0 1.5 2 0 0 0 0 0

LFM 0 0 0 0 89.5 0 0 0 1 0 2 15.5
Costas 0 0 0 0 0 97.5 0 0 0 1.5 1 0
BPSK 0 0 0.5 0 0 0 98 1 0 0 0 0.5
Frank 0 0 0 0 1 1 0 90 4 7 11 1.5

P1 0 0 0 0 0.5 0 0 0 87.5 0 0 7.5
P2 0 0 0 0 1 0 0 6.5 5.5 90 3 5.5
P3 0 1.5 3.5 1.5 0 0 0 2.5 1 1.5 78.5 0.5
P4 0 0 0 0 8 0 0 0 1 0 4.5 69
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Figure 7. This figure depicts the different probabilities of 12 types of radar waveforms with testing data.
SNR: Signal-to-noise ratio.

6.3. Experiment with Robustness

The robustness of proposed approaches is explored in different training samples. There are
900 label samples in each waveform for training and 100 labels for testing. Afterwards, the training
samples will be increased from 100–900 with a step of 200. Meanwhile, the experiment will be repeated
for three times in the condition of SNR = −4 dB, 0 dB and 6 dB.

Figure 8 plots the impact of training samples on successful recognition with three conditions
of SNR. In general, it is positively correlated between training samples and successful recognition.
When the samples are less than 500, the successful recognition increases obviously. However, when the
samples are more than 500, the successful recognition is substantially retained. It means that the
proposed approaches are able to work well in a small number of samples.
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Figure 8. The figure shows the successful recognition ratio of different numbers of samples.
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6.4. Experiment with Computational Burden

Computational burden is also an important issue for the classification system. We measure the
time of the proposed method and compare it with [13,14] in the same conditions. Three different SNRs,
−4 dB, −0 dB and 6 dB are tested, and each test repeats 50 times to calculate the average value. Table 5
shows the testing environment, and Table 6 demonstrates the testing results, respectively.

Table 5. The testing environment.

Item Model/Version

CPU E5-1620v2 (Intel)

Memory 16GB (DDR3 @ 1600 MHz)

GPU NVS315 (Quadro)

MATLAB R2012a

CPU: Central Processing Unit. GPU: Graphics Processing Unit. MATLAB is a software produced by the MathWorks,
Inc. that located in Natick, Massachusetts, United States.

Table 6. Computational burden test (this paper/previous work/Lundén; unit: s).

LFM BPSK Costas Frank

−4 dB 54.798/55.302/85.331 51.117/51.132/82.553 54.463/54.798/84.735 56.115/56.221/86.132

0 dB 54.336/55.096/85.152 50.860/50.903/82.094 54.108/54.255/84.113 55.704/55.909/85.754

6 dB 53.983/54.887/84.755 50.378/50.875/81.598 53.766/53.842/83.795 55.368/55.806/85.389

P1 P2 P3 P4

−4 dB 58.887/58.889/88.112 55.559/55.759/86.739 58.386/58.522/87.117 54.105/54.732/85.079

0 dB 58.398/58.519/87.847 55.308/55.431/86.180 58.106/58.310/86.869 53.858/54.338/84.787

6 dB 57.792/58.034/87.106 54.668/55.307/85.848 57.707/57.802/86.478 53.501/54.196/84.503

T1 T2 T3 T4

−4 dB 53.781/54.086/83.308 52.896/53.117/85.401 55.269/55.887/86.249 56.703/56.861/85.322

0 dB 53.266/53.799/83.011 52.715/52.980/85.166 54.523/55.300/86.093 56.359/56.622/85.054

6 dB 52.823/53.201/82.799 52.107/52.741/84.455 54.396/54.916/85.702 55.993/56.279/84.811

In Table 6, the proposed method and previous work spend less than 60 s, while Lundén’s more
than 80 s; because Lundén’s method has more calculations, we do not need to compute, such as the
Wigner–Ville distribution, peak search and data driven, etc. We also improve the effectiveness of
the system and reduce the consumption of time compared with previous work. In the same type of
waveform, the highest SNR has the least time. In the different types of waveforms, BPSK is easiest to
calculate, but P3 code is the opposite. However, overall, the change of cost is not obvious. The proposed
method is stable, and different waveforms or SNR also have little effect on the computational burden
of the classification system.

7. Conclusions

In this paper, an automatic system to realize the recognition of radar signal waveforms is proposed.
We build the processing flow for detected signals by utilizing signal and image processing algorithms.
Using these methods, the signal waveforms are fully represented via sets of feature vectors and binary
images. The vectors and images are classified into 12 types in the classifier. The simulation results show
that the overall RSR is more than 94% at SNR ≥−2 dB. Additionally, the processes of feature extraction
and noise removed make the system robust. When the sample labels are more than 500, the successful
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recognition is substantially retained. At last, the computational burden is tested. The proposed
method is stable in different waveforms or SNR and spends less time than Lundén’s method and our
previous work.
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LPI Low probability of intercept
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PSK Phase shift keying
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ASK Smplitude shift keying
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MLP Multi-layer perceptron
AD Atomic decomposition
LFM Linear frequency modulation
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STFT Short time Fourier transform
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DNN Deep neural network
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