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Abstract: The characterization of acid rock drainage (ARD) is traditionally based on mineralogical
and geochemical techniques (e.g., Acid Base Accounting tests). The complexity of ARD processes
warrants contribution of methods from various disciplines. In the past decade, the increasing role of
environmental isotopes in pollution monitoring has enabled the successful application of isotope
methods in ARD investigations. While isotopic compositions of different pollutants can refer to
their parent mineral, the degree of isotope fractionations are indicative of the mechanisms taking
place during the release and transportation of ARD-related contaminants. In natural environments,
however, the measured isotope fractionations are predominantly the result of several coexisting or
sequential processes. Therefore, the identification and quantification of the distinct contributions
of these processes to isotope variations is difficult and requires well-defined laboratory conditions,
where the influence of ARD generation on different isotope systems can be assessed with greater
certainty. This review provides readers with a single source of information regarding isotopic
variations generated by laboratory pyrite leaching.
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1. Introduction

Acid rock drainage (ARD) is one of the major environmental problems at active and closed coal
and metalliferous mining sites [1]. ARD forms naturally when sulfidic material comes in contact with
atmospheric oxygen and the oxidation of sulfide minerals releases acid and contaminants. Although,
pyrite is the most common sulfide in nature and is widely regarded as the main cause of ARD,
other sulfides including arsenopyrite and iron-rich sphalerite also contribute to ARD generation [2–4].
The process is slow in nature, but the increase of contact surface areas at mine sites due to the excavation of
mine workings and production of waste accelerates the rate of acidic drainage generation [5]. The large-scale
ARD that is generated within the mining area is called acid mine drainage (AMD). Oxidative dissolution
of sulfide minerals not only acidifies the environment, but also allows soluble metals and salts to enter into
the solution phase and to be transported outside the mining site boundaries by surface and groundwater
systems [6–8]. Metal pollution associated with acidic effluents has toxic effects on aquatic ecosystems,
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wildlife, surrounding vegetation and soil ecosystem [9–11]. Also, ARD affected soils are physically
degraded and characterized by high concentrations of deleterious elements [12]. The high acidity increases
the availability of soluble metals that affects the microbial activity, microbial community structure,
biomass, and nutrient production [13,14]. Because of the potential remobilization of accumulated metals,
these acidic soils can be considered as secondary sources of pollution.

The water levels in the mine workings are kept to a minimum during active mining. However,
after mine closure, rising and particularly fluctuating water levels increase the risk of ARD
generation [15]. For example, water that refills the underground workings due to the ceased pumping
dissolves the mineral precipitates from sulfide oxidation that have accumulated on the pore space of
the exposed walls and ceilings of the workings during the operation. These secondary minerals tend to
store metals, metalloids, acidity, and sulfate [16,17], and their dissolution results in an initial drainage
with higher acidity and metal contents (called first flush phenomena) than the subsequent ARD. On the
surface, the exposure of residual sulfide minerals to water and air in waste storage facilities leads to
ARD formation. The small particle sizes of mine tailings (<0.2 mm) [18] has the potential to enhance
the rate of oxidation owing to increased sulfide liberation.

To characterize and predict ARD accurately, the fundamental controls on ARD generation including
pH, temperature, redox conditions, type and concentration of oxidants, mineralogy, and textural
characteristics need to be understood. These factors influence the oxidation and dissolution rate of
pyrite. For example, the increase of the concentration of oxidants (Fe3+ and O2), temperature, and Eh
of solution result in accelerated pyrite dissolution rates under acidic conditions [19]. At the same time,
the source and various attenuation reactions of pollutants both at the early stage of ARD formation and
during their subsequent solute transport need to be identified. Formation of secondary water-soluble
iron phases and minerals not only affects the ARD chemistry but also influences pyrite oxidation
dynamics directly and indirectly by providing H+ and/or Fe3+ and changing the mineralogy of the
oxidized layers of pyrite [20,21]. The latter has significance in surface passivation that, in turn, affects the
reaction rates of pyrite oxidation and dissolution. Several field and laboratory tests have been developed
to characterize ARD generation potential and inform modelling studies for ARD prediction [22,23].
Static tests generate Acid Base Accounting (ABA) and Net Acid Generation (NAG) data and give
an indication of the acid generating and neutralizing potential of mine wastes. These methods are
considered static in nature as they do not provide information about the rate of acid production or
neutralization [24–26]. Laboratory kinetic tests (e.g., humidity cells test) provide insight into ARD
generation rates [27,28]. More detailed column leach tests have been developed in recent years for
modelling, but due to their complex and time-consuming nature, their application remains limited [29].
Detailed mineralogy of mine waste is also suggested to inform ARD characterization [30–32] and reduce
uncertainty or error in static and kinetic tests [33]. In addition, the compositional heterogeneity of
pyrite can result in resistivity variations that affect its chemical reactivity and leaching behavior [34–37].
The oxidation potential of pyrite with various trace element composition is also relevant for accurate
ARD characterization. Whereas the traditional ARD characterization tests involve mainly geochemical
and basic mineralogical approaches, the analytical techniques for accurate measurement of a wide range
of environmental isotopes have undergone continual refinement over the past few decades and present
a powerful analytical approach in pollution monitoring [38,39]. In addition to the source identification
by comparing isotopic composition of contaminants and their potential sources, the redistribution
of stable isotopes between different phases during physicochemical and biotic processes help to
understand the mechanisms that trigger the isotopic variations [40,41]. The isotope technique has
the potential to complement the classic ARD characterization tests effectively because static and kinetic
tests do not provide information about the source of various ARD contaminants and their fate during
transportation. To apply different isotope systems as indicators of physicochemical or biotic processes,
it is essential to know the degree of isotopic fractionation to relate it to different mechanisms. In nature,
the isotopic variations are controlled by several coexisting or sequential processes that are difficult
to distinguish based on the “sum total” of the different fractionation factors. This review, therefore,
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provides an overview on the application of sulfur, oxygen, and iron isotope analyses in the interpretation
of different reaction mechanisms taking place during the oxidative dissolution of pyrite under controlled
laboratory conditions. The aim is to highlight potential research areas where this information can be
applied and where the isotope technique is not routinely used yet. A summary of the fundamentals of
stable isotope geochemistry and ARD generation is provided in Section 2. In Sections 3 and 4, the behavior
of sulfur and oxygen isotopes during the oxidative dissolution of pyrite is presented, followed by that of
the iron isotopes in Section 5. Finally, the summary and future perspectives are presented.

2. Stable Isotopes in ARD-Related Processes

The different isotopes of a given element have distinct number of neutrons, and thus different
masses. Mass differences cause variations in their physical characteristic and reactivity that ultimately
results in the partitioning of heavier and lighter isotopes during physicochemical and biological
processes [42]. The degree of partitioning of different isotopes between two co-existing reservoirs
is mainly controlled by mass-dependent kinetic and equilibrium laws [43,44] and described by the
isotopic fractionation factor:

αA−B =
RA

RB
(1)

where R is the ratio of the heavy isotope to the light isotope, and A and B denote the two co-existing
phases, chemical compounds, or the isotope ratio of a starting material and the product. As the value
of α is very close to 1, the degree of fractionation can also be approximated by the difference in isotopic
composition of two reservoirs, if delta values are <10 per mil (%�) [45]:

1000 lnαA−B ≈ δA − δB ≈ ∆A−B (2)

where δ notation reports the per mil differences in the isotopic ratios of a sample relative to an
internationally accepted standard:

δx (%�) =
Rsample − Rstandard

Rstandard
× 1000 (3)

x refers to the type of the isotope, and R is the ratio of the heavy isotope to the light isotope in the
sample (Rsample) and in the reference (Rstandard).

The oxidation of sulfide minerals takes place through several chemical reactions, as shown here
for pyrite in Reactions (4)–(6) [46]:

FeS2 + 3.5O2 + H2O→ Fe2+ + 2SO2−
4 + 2H+ (4)

Fe2+ + H+ + 0.25O2 → Fe3+ + 0.5H2O (5)

FeS2 + 14Fe3+ + 8H2O→ 15Fe2+ + 2SO2−
4 + 16H+ (6)

The rate of Reaction (6) is limited by the oxidation of Fe2+ in Reaction (5), which is greatly
catalyzed by iron oxidizing microbial species such as Acidithiobacillus ferrooxidans by up to five
orders of magnitude [47]. Other key microbial species involved include Leptospirillum ferriphilum,
Acidiplasma cupricumulans, and Ferroplasma species [48,49]. Therefore, the rate of pyrite oxidation via
Fe3+ can be enhanced by several orders of magnitude compared to the abiotic oxidation via O2 (from
18 to 170 times more rapid than the Reaction (4)) [47,50].

Reactions (4)–(6) demonstrate only the overall stoichiometry of pyrite oxidation that is generally
recognized as a complex, multistep chemical, electrochemical, and bacterially mediated mechanism [51].
Numerous studies have suggested that pyrite oxidation/dissolution rates in aqueous solutions are
controlled by electrochemical processes that depend on the semiconducting properties of pyrite [52–58].
This type of dissolution involves the distinct anodic and cathodic sites on the pyrite surface where
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electron transfer reactions occur during the oxidation and reduction processes. The oxidation of
pyrite under the moist-air settings typical of mine waste piles is considered both chemical and
electrochemical [35,59]. The contribution of these two mechanisms to pyrite oxidation is still highly
debated as well as the intermediate steps of ARD formation [60,61]. As stable isotopes are intensively
involved in these reactions, they may provide a potential tool to identify the different intermediate
mechanisms that control the ARD generation [52,61–65].

3. Sulfur Isotope Signatures of Pyrite Leaching

Sulfur isotope composition of dissolved sulfates in ARD relates to the source of sulfur, therefore it has
the potential to be successfully used in mass balance calculations as part of the pollution monitoring [66–69].

Pyrite leaching experiments demonstrate that the quantitative conversion of pyrite to sulfate results
in only minor sulfur isotope fractionation (∆34SSO4–FeS2) under acidic, aerobic-biotic, or abiotic conditions
ranging between −1.3%� and +0.4%� [63,70–74]. In addition, processes like precipitation and dissolution
of secondary sulfate phases were demonstrated to produce negligible S isotope fractionation (e.g.,
∆34Sschwertmannite–sulfate −0.2%� – +0.3%� and ∆34SH-jarosite–sulfate +0.3%� – +1.1%�) [75–77]. Although these
relatively small S isotope fractionation factors allow the identification of the parent sulfides in
ARD-impacted water, the seasonal precipitation and dissolution cycles of sulfate minerals might cause
small variations in the isotopic composition of sulfate as well. Bioleaching of pyrite at pH 2.05 by
Brunner et al. [78] showed a fractionation factor of −0.2%�, in agreement with previously determined
fractionation values [63,70–74]. In addition, inconsistent isotopic signatures of SO4 were demonstrated
throughout the pyrite dissolution, where the initial phase of the experiment was characterized by
high δ34S values compared to parent mineral and only moderate δ34S enrichment was determined
in the main stage (Figure 1) [78]. The weaker correlation and lower slope of the initial phase of the
experiment suggests that processes other than sulfur leaching from pyrite affect the sulfur isotope
composition of sulfates. The authors of Brunner et al. [78] concluded that the degassing of SO2 at the
beginning of the experiment enriches the residual aqueous SO4 in the heavier sulfur isotope (34S)
due to the dominant kinetic isotope effect of this conversion. The loss of SO2 is also in accordance
with the non-stoichiometric initial pyrite dissolution findings described by others, where the molar
ratio of SO4

2−/Fet was 1.1 for biotic leaching and ranged from 1.5 to 1.6 for abiotic leaching at pH 1.2
to 2 [79,80]. Sulfur isotope fractionation values of +0.4%� and −1.3%� were obtained by Pisapia
et al. [73] during the non-stoichiometric and stoichiometric phases of their biotic, aerobic (<pH 2)
pyrite dissolution experiments. The authors of Pisapia et al. [73] attributed the opposing positive
and negative ∆34SSO4–FeS2 values to different pyrite oxidation pathways and did not relate the 34S
enrichment of sulfate directly to SO2 degassing.

According to the overall stoichiometry of pyrite oxidation mechanisms, abiotic oxidation can take
place only when there is enough dissolved oxygen to complete the reaction [81]. This suggests that
although Reactions (4) and (6) are the most frequently used pathways to demonstrate pyrite oxidation,
the actual mechanisms are much more complex and involve the occurrence of intermediate sulfur
species like thiosulfate (S2O3

2−), elemental sulfur (So), and sulfite (SO3
2−), depending on the availability

of oxygen. The authors of Basolo and Pearson [82] argue that, according to the overall oxidation
reactions of pyrite, seven electrons are transferred from the mineral to the oxidant, but because it
is unlikely that more than two electrons are transferred at a time, pyrite oxidation always requires
intermediate steps to produce sulfate (Figure 2). The formation of sulfur intermediates during abiotic
and biotic pyrite oxidation was confirmed by several authors both under acidic and alkaline conditions,
reporting systematically smaller amounts of intermediates at lower pH due to their rapid oxidation
to sulfate [52,53,60,80,83–89]. The mechanism of microbial oxidation of sulfide minerals at low pH
occurs via thiosulfate or polysulfide pathways [90]. The different dissolution reactions are a result of
(i) differences between the crystal structures of acid-soluble and non-acid-soluble metal sulfides and
(ii) the distinct oxidizing strategies used by different microorganisms [91]. Pyrite�as an acid-insoluble
sulfide�is mostly oxidized by bacterially generated Fe3+ through the thiosulfate pathway by breaking
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the Fe–S bonds of the mineral. The Fe3+ ion is reduced to Fe2+ after accepting an electron from pyrite and
becomes re-oxidized by microbes. The reduction-oxidation cycles continue until Fe2+ and thiosulfate
are released from the pyrite, resulting ultimately in sulfate as the end-product via the oxidation of
thiosulfate→ tetrathionate→ sulfite oxyanions (Figure 2). With respect to circumneutral and alkaline
pH values, tetrathionate and sulfate formation takes place at pH 6–7, whereas thiosulfate and sulfite
are formed at pH 9 [84]. In the polysulfide pathway, acid-soluble sulfides, e.g., sphalerite (ZnS) and
chalcopyrite (CuFeS2), are dissolved by both Fe3+ and H+, allowing protons to break M-S bonds
in the sulfides [90,92]. The main sulfur intermediates from these reactions are polysulfides (Sn

2−)
and elemental sulfur, which may eventually oxidize to sulfate (Figure 2). Nevertheless, polysulfide
formation has been detected alongside sulfate and minor iron-oxides from acidic pyrite oxidation by
A. ferrooxidans under experimental aerobic conditions [73].
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Figure 1. δ34S variations of sulfates as a function of their increasing amount during the initial and main
stages of pyrite leaching. The dashed lines show the δ34S values of sulfate that are produced in the
initial and the main stages. The vertical line demonstrates the transition from the initial to the main
stage of pyrite leaching. Redrawn from Brunner et al. [78].
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Figure 2. Schematic representation of different sulfide oxidation pathways: Paths 1A and 1B represent
thiosulfate oxidation pathways where thiosulfate detaches and where the S–S bond breaks instead of
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the Fe–S bond releasing sulfite directly [90]. Path 2 represents the sulfide–polysulfide-elemental sulfur
pathway of monosulfides [90] and Path 3 represents the defect/photochemically driven pathway where
surface electron defects can initiate pyrite oxidation by surface water and drive the subsequent sulfur
oxidation by OH− [93]. Figure modified from Druschel and Borda [94].

The incomplete oxidation of pyrite or its stepwise oxidation to sulfate is frequently accompanied
by sulfur isotope variation in agreement with the general concepts of isotope fractionation, and the more
oxidized form of sulfur is enriched in the heavier isotope compared to more reduced forms [52,95,96].
The redistribution of sulfur isotopes in association with the oxidation of different sulfur compounds was
demonstrated by experimental and field studies under various conditions [53,72,74,97–101]. As S and
O isotopes of sulfate are intensively involved in redox reactions that control the sulfur oxyanion
formations, the isotope fractionation has the potential to provide insight on the governing pathways of
sulfur oxidation or reduction. Due to the complexity of these redox processes along with the large
number of variables that control the sulfur conversion mechanisms (e.g., residence time of sulfur
intermediates, pH, crystal structure of the leached mineral, bacterial occurrence, oxygen availability,
dominant oxidant), current understanding of the influence of sulfur intermediates on both the ARD
sulfur cycle dynamics and its isotope geochemical characteristics is relatively limited.

4. Oxygen Isotope Signatures of Pyrite Leaching

The oxygen isotope composition of dissolved sulfate can be used to understand the oxidation
reaction pathways of sulfide minerals. Sulfate�generated via pyrite oxidation�preserves its oxygen
isotope composition after formation both due to the very slow kinetics of oxygen isotope equilibration
between water and sulfate [102–104] and the small fractionation between dissolved sulfate and
secondary sulfate minerals during precipitation (average ∆18Oprecipitate–sulfate +0.5%� – +0.6%�) [76].
This allows for the identification of the reaction mechanisms that are responsible for sulfide
oxidation. If most of the sulfate oxygen is derived from the dissolved molecular oxygen via Reaction
(4), the emerging SO4 should be enriched in 18O relative to SO4 that incorporates dominantly
water-derived oxygen (WDO) following Reaction (6). The reason for this is that air is characterized by
δ18O = +23.8 %� [105–107], whereas meteoric water has variable δ18O values, mainly δ18O ≤ 0 %� [108].
Using Equations (7) and (8), the relative contributions of WDO and molecular oxygen to dissolved
sulfate can be calculated [64].

δ18OSO4 = X(δ18OH2O + εH2O) + (1 − X) (δ18OO2 + εO2) (7)

where X is the fraction of sulfate produced by Reaction (6) and (1 − X) is the fraction of sulfate from
Reaction (4). ε is the enrichment factor that describes the partition of oxygen between the sulfate
and air or water. ε18OSO4-H2O = 0.0%� to +4.1%� for both anaerobic biotic and abiotic experiments
and ε18OSO4-O2 = −10.0%� to −11.4%� for biotic and −4.3%� to −9.8%� for abiotic reactions [63,64,72].
By measuring the δ18OSO4 and δ18OH2O, Equation (7) can be re-arranged according to Equation (8) [99]:

δ18OSO4 = X(δ18OH2O + εH2O − δ
18OO2 − εO2) + ( δ18OO2 + εO2) (8)

The above calculations require the assumption of both constant oxygen isotope enrichment factors
and the lack of isotope exchange reactions between the water and dissolved sulfate after the oxidation.

The general concept regarding the relative percent contribution of various oxygen sources to sulfate
is that: (i) if pyrite oxidation is anaerobic and Reaction (6) is the dominant, then 100% of the sulfate
oxygen is derived from water, and (ii) if dissolved molecular oxygen is present, sulfate oxygen shows a
combination of air and water oxygen [68,109–111]. The incorporation of WDO in sulfate is controlled
by Fe oxidizing bacteria [112]. The overall pyrite oxidation reaction (Reaction (4)) suggests that 87.5% of
sulfate oxygen is dissolved molecular oxygen and the remaining 12.5% is water derived. The δ18O and
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therefore WDO values of sulfate, however, do not necessarily reflect the stoichiometry of Reaction (4).
Pyrite oxidation experiments conducted by Taylor et al. [63] showed that under water-saturated,
anaerobic-abiotic and -biotic conditions at pH 2, mainly water oxygen is involved in the formation
of sulfate, with WDO values of 94% and 65%, respectively. Their estimated WDO of sulfate during
the alternation of wet and dry cycles in the absence of bacteria was 72%, whereas biotic wet and dry
pyrite oxidation indicated the lowest value of 23%. These results demonstrate that pyrite oxidation is
primarily controlled by Fe3+, and biological reactions appear to incorporate more atmospheric oxygen
in sulfate compared with abiotic mechanisms. The authors of Balci et al. [72], however, did not find
a distinct microbial control on the pyrite oxidation pathways during the biotic and abiotic leaching
experiments that were conducted under anaerobic, aerobic, and acidic pH conditions. According to
their results, Fe3+ was the main oxidant for pyrite, and consequently, water oxygen was predominantly
incorporated in sulfate. The short- and long-term experiments resulted in WDO values of 85% and
92% respectively, under aerobic-biotic conditions, and 87% for aerobic-abiotic reactions. Because of the
similar estimated WDO values, Balci et al. [72] considered the incubation time and pH as the main
controls on the oxygen isotope composition of sulfates. This is also in accordance with the results of
Qureshi [113] which suggest pH as the major factor controlling the isotopic composition of sulfate.

To understand the reason for significant water oxygen incorporation into sulfate at low pH
even under oxygen-saturated conditions, it is necessary to review the mechanism of pyrite oxidation.
The initial step is the oxidation of the adsorbed Fe2+(H2O)6 complexes on the pyrite surface by
molecular oxygen to form Fe3+(H2O)6 complexes that rapidly oxidize the pyrite (Figure 3) [53,87].
During the initial release of Fe2+ to solution, the pyrite surface is dominated by sulfur atoms [114].
The adsorbed iron continuously experiences oxidation and reduction during the interaction with
molecular oxygen and the acceptance of electrons from the pyrite (Figure 3). The latter process
is governed by the electron loss of iron on the pyrite surface during the interaction via molecular
oxygen [52]. The electron originates from the sulfur site and its transmission to Fe3+ takes place via the
iron site of the mineral (Figure 3b).
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Figure 3. Illustration of the abiotic oxidation mechanism of pyrite. The adsorption of released Fe2+

from pyrite as aqueous Fe2+(H2O)6 is the first step of pyrite oxidation. (a) The oxidation of Fe2+(H2O)6

complex by the dissolved molecular oxygen forms (b) Fe3+ that accepts electron from the pyrite during
its oxidation.

An oxygen atom from the adsorbed Fe3+(H2O)6 complex is added to the sulfur site of pyrite as
the closing step of pyrite oxidation that produces different sulfur intermediates (Figure 4a) [85,88,94].
The reaction sequence of the oxidation-reduction of the Fe3+ in the adsorbed aqueous complex, and the
transfer of oxygen from water molecules to the sulfur site of pyrite, continues until a sulfur oxyanion is
more stable in solution, and disassociates from the pyrite surface (Figure 4b) [53].
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the example of thiosulfate. (a) Addition of oxygen molecules from the aqueous Fe3+(H2O)6 complex
to pyrite sulfur to form thiosulfate. (b) The oxygen transfer continues until the detachment of the
stable thiosulfate.

In accordance with the mechanism described above, oxygen plays a role in the initiation of
the pyrite oxidation reaction, but the reaction pathway is mainly controlled by Fe3+ as the oxidant.
As molecular oxygen is not directly involved in the formation of sulfur oxyanion intermediates,
the incorporation of water oxygen into thiosulfate from Fe3+(H2O)6 complexes is the major process that
affects the oxygen isotope composition of this sulfur compound [115]. Although these oxidation steps
are consistent with the high proportion of WDO in the experimentally produced sulfates, these do not
explain the minor contribution of atmospheric oxygen in the sulfur oxidation reactions. The dominance
of water oxygen in the formation of sulfur intermediates suggests that the participation of molecular
oxygen in sulfate takes place at the more advanced stages of oxidation. Figure 5 demonstrates that
the transition of sulfite to sulfate is the only conversion during the oxidation sequence when O2 may
participate in the reactions. Consequently, if anything slows down or inhibits this oxidation step
(e.g., a decrease in pH reduces the amounts of sulfur intermediates) [84] that would increase the relative
contribution of WDO to sulfate.
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relative percent contribution of WDO to produced sulfate. Figure modified from Balci et al. [72].

The distribution mechanism of oxygen between water and sulfate based on their isotopic signatures
was demonstrated by Brunner et al. [78]. Although the generated sulfate and water showed identical
δ18O value of 1.3%� at the end of the pyrite dissolution, inconsistent oxygen isotope partitioning
is presented on Figure 6. Sulfates are characterized by strong and various heavy oxygen isotope
(18O) enrichment at the initial stage, whereas these become isotopically lighter as a function of their
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increasing amount during the main stage. At the start of dissolution, sulfates show ~2.0%� lower δ18O
values relative to sulfate oxygen that would be derived from water characterized by δ18O = 1.3%�.
According to the authors of Brunner et al. [78], sulfite intermediates formed at the early stages of
dissolution are not converted to sulfate immediately. This allows a prolonged initial oxygen isotope
equilibration between sulfite and water that can lower the δ18O values of the initial sulfates produced.
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Figure 6. δ18O variations of sulfates and interacting water as a function of the increasing amount of
sulfate during pyrite leaching. The dashed line shows the δ18O values of sulfate that are produced in
the main stage of dissolution. The gold circle illustrates the supposed δ18O value of initial sulfates in
case of immediate conversion of sulfite to sulfate. The vertical line demonstrates the transition from the
initial to the main stage of pyrite leaching. Redrawn from Brunner et al. [78].

Based on the above, the major potential factors that are considered to cause variations in sulfate
oxygen isotope values and the ratio of WDO and O2 are: (i) the contribution of different oxygen
sources, (ii) degree of the oxygen isotope exchange between water and various sulfur intermediates,
(iii) environmental conditions such as pH or availability of oxygen, and (iv) the reaction mechanisms
of pyrite oxidation through the related sulfur intermediates [65,86,116].

5. Iron Isotope Signatures of Pyrite Leaching

The release of iron and other transition metals from sulfide minerals during oxidative dissolution
can be demonstrated by the isotopic composition of both minerals and the solution [41,117]. Iron isotope
variations were previously considered as biological signatures, however, Zhu et al. [118] demonstrated
using the example of Cu and Fe that abiotic processes can also be responsible for the isotope fractionation
of the transition metals. Fractionation of Fe isotopes have been recognized since the mid-1990s [119–121].
There is an overall agreement that changes in chemical conditions such as pH or redox potential
strongly affect the mobilization of iron [122,123], but the interpretation of related Fe isotope variations
is still under debate because of the relative novelty of the technique.

Laboratory experiments have shown that the dissolution reactions take place on the surface of
the minerals and have demonstrated the dominance of kinetically controlled faster reaction rates of
light isotopes (kinetic isotope effect) at the beginning of dissolution [124]. Wiederhold [125] found
that during the reductive, abiotic leaching of goethite, the lighter Fe isotopes (54Fe) were released into
the solution at the early stages, which resulted in the enrichment of the heavier isotopes (56Fe) at the
mineral surface. However, the increase of the δ56Fe value of the solution during the second stage
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suggested both the dominance of the equilibrium isotope effect—the forward and backward reaction
rates of isotopes are identical between product and reactant—and the transient role of the initial kinetic
fractionation. The preservation of the initial isotope composition depends on the extent of dissolution.
The kinetic fractionation can be overwritten and erased by the subsequent isotope effects in the case of
completed dissolution, which would result in the identical isotopic signature of the solution and the
reacting mineral.

Similar to reductive weathering, both kinetic and equilibrium isotope fractionation between
coexisting Fe(II) and Fe(III) complexes in solution was also suggested by experimental studies
under oxidative conditions [126,127]. Fractionation values of 2.63 ± 0.11%� and 2.75 ± 0.01%� were
estimated between aqueous Fe(II) and precipitated Fe(III) at pH values of 5.5 and 2.5, respectively [128].
The authors of Anbar et al. [129] suggested a slightly higher fractionation of 3.0 %� between aqueous
Fe(II) and Fe(III) complexes. The degree of Fe isotope fractionation during Fe(III) oxides and hydroxides
precipitation is significantly affected by factors such as grain size and the rate of precipitation in addition
to pH conditions [130]. The enrichment of 56Fe in the fluid phase at the start of oxidative dissolution of
sulfide-rich rocks at pH 2 has been demonstrated [131] (Figure 7a). The initial isotopic enrichment
of solution suggested a 56Fe-dominated reservoir of the mineral that was washed into the leachate.
The authors of Fernandez and Borrok [131] identified the 56Fe-rich reservoir as a thin layer of ferric-oxide
on the sulfide surface that was the result of air oxidation prior to leaching. This transient redox isotope
effect was followed by the dominance of kinetic fractionation as more iron was released with time,
which decreased the δ56Fe value of the solution. Whilst in the acidic experiments, the influence of the
redox-driven, surface-related mechanisms were significant, at pH 5, the precipitation of secondary
ferric minerals from the solution controlled the redistribution of Fe isotopes (Figure 7b). Figure 7b
shows that during the dissolution of sulfide-rich rocks under circumneutral conditions, the leachate
is consistently characterized by lower δ56Fe values compared to bulk rock due to the immediate
formation of secondary precipitates [131]. Whereas the aqueous oxidation of Fe2+ under acidic abiotic
conditions (pH2)�described by the Reaction (5) in Section 2�is limited due to its sluggish kinetics [50],
the rapid oxidation of aqueous Fe(II) and the subsequent precipitation of Fe(III) oxyhydroxides is
enabled at circumneutral pH values (pH 5). The system reaches the equilibrium isotope fractionation
between aqueous Fe(II) and Fe(III) quickly and the precipitated Fe(III) prefers the incorporation of
heavy Fe isotopes [127]. This results in a decrease of the Fe isotope ratios in the fluid phase (Figure 7b).
Nevertheless, it is important to note that secondary minerals such as jarosite and Fe-(oxy)hydroxides
can show lighter Fe isotopic signatures compared to their parent material or the solution under certain
conditions [132,133].
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Figure 7. Fractionation of iron isotopes between solution and sulfide-rich rocks (∆solution-rock =

δ56Fesolution – δ56Ferock) as a function of Fe recovery (a) under pH = 2 and (b) pH = 5 conditions during
continuous batch leaching. Square symbols—leachate of sulfide rock (SR) group: pyrite, chalcopyrite,
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galena, sericite, pyrophyllite, anglesite, sphalerite. δ56FeSR = –1.25 ± 0.25%�. Circle symbols—leachate
of quartz-sericite-pyrite (QSP) group: pyrite, sericite, pyrophyllite, quartz. δ56FeQSP = 0.11 ± 0.25%�.
Redrawn from Fernandez and Borrok [131].

Influence of Microorganisms on Iron Isotope Fractionation

Various biotic leaching experiments have been performed to investigate the effect of bacterial
activity on the isotope fractionation in geological environments [72,134–138]. Microorganisms such as
Acidithiobacillus ferrooxidans grow in a naturally acidic environment mainly on the surface of different
sulfide minerals [139,140]. The Acidithiobacillus group of organisms are known for their ability to
dissolve transient metals from sulfide minerals by both contact and indirect oxidation [141,142]. Thus,
the presence of these bacteria and other microorganisms around sulfide deposits has a potential to
accelerate the oxidation that facilitates the increased rates of ARD generation.

Leaching experiments of different iron minerals demonstrate both the presence and absence
of bacterial control on Fe isotopes during the dissolution. Although many biological processes are
kinetically controlled [28], experimental works indicate 56Fe uptake by microorganisms [143,144].
The assimilation of heavy Fe isotope by bacteria decreases the δ56Fe value of the solution. The authors
of Croal et al. [145] demonstrated 1.5%� microbial fractionation between aqueous Fe(II) and Fe(III).
Based on this result, the biological control on redox processes and subsequent isotope fractionations
were suggested. In contrast, the authors of Balci et al. [133] identified abiotically controlled Fe isotope
fractionation between Fe(II) and Fe(III) under acidic conditions (pH < 3) for biotic and abiotic oxidation
experiments. Bio- and electro-chemical leaching experiments of metal sulfides under consistent redox
conditions found no significant difference in Fe isotope fractionation (Figure 8) [138]. This emphasizes
the importance of redox potential conditions as the main factor governing the redistribution of Fe
isotopes during sulfide dissolution, which seems to be a unique signature of the sulfide system.
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and (b) electrochemical leaching of pyritic chalcopyrite concentrate. Grey areas represent the initial
isotopic composition of the mineral concentrate with 2σ errors. Dashed areas represent the initial
isotopic composition of the solution with 2σ errors. Error bars of samples are 2σ. Redrawn from
Rodríguez et al. [138].

Concordant Fe isotope variation mechanisms in biotic and abiotic experiments do not allow for
the distinction between biological Fe fractionation and that of abiotic chemical reactions, and points to
the complexity of controlling mechanisms of various isotope systems even under laboratory conditions.
Further investigations that allow for the accurate characterization of abiotic and biotic processes
are warranted.
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6. Summary and Future Perspective

Pyrite, as the most common sulfide mineral in nature, plays a significant role in directly
controlling sulfur and iron cycles and in indirectly controlling the oxygen cycle. The importance
of the oxidative dissolution of pyrite relates to its environmental impact through ARD generation.
Therefore, an understanding of the processes and mechanisms governing pyrite dissolution facilitates
the predictive modelling of ARD, which in turn can be used to inform effective geotechnical designs and
rehabilitation strategies. In summary, under controlled laboratory conditions, the use of pure mineral
phases allows measurement of the discrete isotope fractionations and therefore the effects of ARD-related
processes on different isotope systems can be inferred with greater certainty. Where reactions cannot
be controlled due to their coexistence, the closed system in the laboratory enables the recognition of
additional mechanisms by retaining the end-products, e.g., SO2 degassing during the initial dissolution
of pyrite. Interpretation of results in the field are therefore strengthened by controlled laboratory
experiments that more accurately estimate the discrete fractionation factors that belong to well-defined
processes. Sulfur, oxygen, and iron isotope signatures and their key roles in ARD characterization are
summarized in Table 1.

Table 1. Summary of the main isotopic signatures during the oxidative leaching of pyrite

Isotope Process Isotopic Signature of
the Process

Role in ARD
Characterization Notes

Sulfur
Quantitative

conversion of pyrite
to sulfate

Fractionation ranges
between −1.3 %� and
+0.4 %� [63,70–74]

Allows the identification
of pyrite as the source

of sulfur

Inconsistent sulfate δ34S
values during pyrite

dissolution due to SO2
degassing [78]

Stepwise or
incomplete

conversion of pyrite
to sulfate

Degree of fractionation
varies with the

oxidation state of
sulfur [72,74,97]

Provide information
about the pathways of

sulfur oxidation
or reduction

34S enrichment follows
the general trend: SO4

2−

> SO3
2− > S2O3

2− > S0 >
S2− [96]

Oxygen
Quantitative

conversion of pyrite
to sulfate

Sulfate δ18O mainly
depends on the relative
contribution of oxygen

sources [68,109–112]

Indicative of the
dominant reaction
mechanism that is

responsible for
pyrite oxidation

Inconsistent sulfate δ18O
values during pyrite

dissolution due to
prolonged oxygen

isotope equilibration [78]

Stepwise or
incomplete

conversion of pyrite
to sulfate

Sulfate δ18O is
influenced by the
presence of sulfur
intermediates [61]

Provide insights into
intermediate

mechanisms that control
pyrite oxidation

Oxygen exchange
kinetics between sulfur

oxyanions and water
varies with the oxidation

state of sulfur [146]

Iron Oxidative
dissolution of pyrite

Fractionation between
Fe2+

FeS2 and
Fe3+

precipitate ranges
from −1.7 %� to 3.0 %�

[128,129,131] 1

Provide insights into
source and

(bio)geochemical cycling
of iron

Inconsistent solution
δ56Fe values at pH 2 due

to dissolution of air
oxidized layer [131]

1 Presence of bacteria might affect the iron isotope system by decreasing the δ56Fe value of the solution due to the
uptake of 56Fe [144,145].

Based on the summaries presented here, some potential focus areas for future studies are outlined:

1. Understanding the role of pyrite type: Most laboratory experiments have used hydrothermal
pyrite, even though it is well established that pyrites from different geological environments,
morphologies, or electrochemical properties [37] show distinctly different oxidation rates and
dissolution signatures [147,148]. Consequently, there is a need to extend the database of isotope
fractionation factors to include all forms and physical parameters of pyrites in order to apply the
most appropriate fractionation factors in field studies.

2. Understanding acid neutralization processes: An understudied but promising area in the
application of isotope geochemistry involves the isotope signatures of neutralization processes.
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ARD-related carbon isotope fractionation would not only provide information on the mechanisms
of neutralization reactions, but also has the potential to determine the relative proportion of the
main neutralizing carbonate phases using mixing calculations. This may provide more accurate
Acid Neutralizing Capacity (ANC) calculations, as currently calcite is considered as the most
dominant neutralizing mineral [3] without its quantified relative contribution to neutralization.

3. Understanding the role of different mineral processing and metallurgical activities on isotope
processes: Although several isotope investigations have been undertaken in mining areas to track
ARD-related processes in underground and surface water bodies, the method still has not become
common practice. In addition, most of these field studies are focused on underground mine
workings, pit lakes, as well as waste and water storage facilities that are collectively considered as
the major environments of ARD generation. To our knowledge, no studies have examined the role
of ore beneficiation processes in ARD formation using the isotope techniques in detail. The water
consumption of different processing steps such as milling, dense media separation, or flotation
may also provide the required conditions of sulfide oxidation, allowing the initial steps of ARD
generation to take place. Tracking the sulfide oxidation pathways and sulfur transformations
during various beneficiations steps would help to assess the relative contribution of mineral
processing to ARD generation. Eliminating the ARD potential before waste disposal would have
a significant beneficial impact on mine water quality. In addition, the quantification of mineral
oxidation rates of certain processing steps via isotopes could add to process optimization by the
evaluation of more accurate residence times.

4. ARD prevention, mitigation, and management: In order to minimize the potential impacts
of ARD on natural water systems, it is necessary to understand (i) the mechanisms taking
place during ARD formation and (ii) the mechanisms that control the mobility of contaminants.
Although isotopes are successfully used in pollution source-tracking and transportation modelling,
the applications of isotopes in ARD generation processes are not yet fully explored. To create
more accurate prediction models and thus be able to select the most optimal pollution emission
control strategies, more accurate isotope fractionation factors and the identification of causative
mechanisms are required. Accurate measurements of fractionation would allow the estimation of
various reaction rates with greater certainty. This would help to improve our ability to evaluate
the chemical evolution of both mine waste material and the impacted water systems, potentially
informing ARD control measures in a timely manner. In addition to tracking ARD generation and
transportation, isotopes also can be used in evaluating the effectiveness of different remediation
methods, for example, passive treatment systems [75,149].

The application of stable isotopes in environmental studies has a significant potential to facilitate
the sustainability in water resources management. Precise quantification of discrete fractionation
factors will extend this methodology into new areas and has implications in describing complex natural
systems with greater certainty.
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