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Abstract: Szomolnokite is a monohydrated ferrous iron sulfate mineral, FeSO4·H2O, where the
ferrous iron atoms are in octahedral coordination with four corners shared with SO4 and two with
H2O groups. While somewhat rare on Earth, szomolnokite has been detected on the surface of
Mars along with several other hydrated sulfates and is suggested to occur near the surface of Venus.
Previous measurements have characterized the local environment of the iron atoms in szomolnokite
using Mössbauer spectroscopy at a range of temperatures and 1 bar. Our study represents a step
towards understanding the electronic environment of iron in szomolnokite under compression
at 300 K. Using a hydrostatic helium pressure-transmitting medium, we explored the pressure
dependence of iron’s site-specific behavior in a synthetic szomolnokite powdered sample up to 95 GPa
with time-domain synchrotron Mössbauer spectroscopy. At 1 bar, the Mössbauer spectrum is well
described by two Fe2+-like sites and no ferric iron, consistent with select conventional Mössbauer
spectra evaluations. At pressures below 19 GPa, steep gradients in the hyperfine parameters are most
likely due to a structural phase transition. At 19 GPa, a fourth site is required to explain the time
spectrum with increasing fractions of a low quadrupole splitting site, which could indicate the onset
of another transition. Above 19 GPa we present three different models, including those with a high- to
low-spin transition, that provide reasonable scenarios of electronic environment changes of the iron in
szomolnokite with pressure. We summarize the complex range of Fe2+ spin transition characteristics
at high-pressures by comparing szomolnokite with previous studies on ferrous-iron bearing phases.

Keywords: iron-sulfates; hydrous phases; szomolnokite; high-pressure; synchrotron Mössbauer
spectroscopy; spin-transition

1. Introduction

Historically, sulfate minerals have been studied mainly in the context of surface processes such as
evaporitic deposits and hydrothermal systems [1] or in the context of mine tailings and wastes [2].
Sulfate salts play important roles in the cycling of metals and sulfates in terrestrial systems [3],
and are thought to play important roles on the surface weathering processes on other planetary
bodies. In particular, relatively large deposits of monohydrated sulfates have been detected on the
surface of Mars using absorption spectroscopy [4,5], with Lichtenberg et al. [5] specifically preferring
szomolnokite to explain certain signatures present in Aram Chaos. Talla and Wildner [6] perform a
detailed spectroscopic study on the kieserite-szomolnokite solid-solution series under ambient and
Martian temperature conditions, due to the high probability that intermediate compositions along
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this join exist on Mars. Additionally, Lane et al. [7] suggests that hydrous iron sulfates closely match
Mini-TES (Miniature Thermal Emission Spectrometer) and Mössbauer data from Martian soil analyzed
by MER (Mars Exploration Rovers). Chou et al. [3] performed experiments on the stability of a variety
of hydrated and anhydrous sulfates in Martian reaction environments. They suggest that hydrated
sulfates could play important roles in the hydrologic cycle of Mars. There is also evidence for hydrated
sulfates on the surface of Europa [8], and they have been investigated up to pressures of ~2.5 GPa as
possible constituents of icy moon mantles [9]. Barsukov et al. [10] suggested that barium and strontium
sulfates could possibly be stable in the crust in Venus, although it is not clear if they would be formed
sub-surface as a result of dehydration processes.

Previous experimental studies on hydrated sulfates at elevated pressures include Fortes et al. [11]
who used neutron powder diffraction of deuterated MgSO4·11D2O to explore phase transitions
within the range 0.1 < P < 1000 MPa and 150 to 280 K. MgSO4·11D2O is the deuterated analogue
of meridianiite, which is triclinic with space group P1 (Z = 2). They detected evidence of peritectic
melting at 0.545 GPa and 275 K as well as a phase transition at 0.9 GPa and 240 K, decomposing
into ice VI + MgSO4·9D2O which is monoclinic with space group P21/c (Z = 4). Previous Mössbauer
work on szomolnokite (FeSO4·H2O) has focused largely on the effect of temperature on the hyperfine
parameters at ambient pressure. In a recent comprehensive review paper, Dyar et al. [12] presented
and summarized conventional Mössbauer spectra evaluations for a suite of iron-bearing sulfates.
Alboom et al. [13] studied szomolnokite with energy domain Mössbauer spectroscopy from 4.2 K to
450 K and found a magnetic order-disorder transition at 29.6 ± 0.5 K. Giester et al. [14] used Mössbauer
spectroscopy as well as X-ray diffraction to find that for (Fe,Cu)SO4·H2O, there is a reduction in
symmetry from monoclinic to triclinic beyond 20 mol % Cu and report a magnetic order transition
between 15 K and 4.2 K at ambient pressure.

As discussed in Meusburger et al. [15], szomolnokite (FeSO4·H2O) is isostructural to kieserite
(MgSO4·H2O), which is monoclinic and in space-group C2/c. The kieserite structure consists of corner
sharing [MO4(H2O)]6− units, which run parallel to the crystallographic c-axis. Lattice parameters for
szomolnokite obtained in this study and previous studies [14–17] are discussed below and given in Table
S1. Meusberger et al. [15] studied the structural evolution of szomolnokite up to pressures of 9.2 GPa
by means of X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman spectroscopy. They
found a transition from monoclinic phase in space group C2/c to triclinic phase in space group P1.
They find that the transition is ferroelastic and second order in thermodynamic character.

A recent study has characterized the magnetic and structural changes of jarosite, a hydroxylated
iron sulfate, KFe3(OH)6(SO4)2, as a function of pressure (up to 40 GPa) using a variety of techniques,
including synchrotron Mössbauer spectroscopy [18]. They described the iron environment with a
single Fe3+ site which steadily increases in quadrupole splitting and steadily decreases in isomer shift
as pressure increases. They found a continuous pressure induced phase transition that did not affect
the spin state of the Fe3+. They also reported a dramatic increase in magnetic ordering temperature as
a function of pressure; up to 240 K at 40 GPa.

In this study, we use time-domain synchrotron Mössbauer spectroscopy to examine the
high-pressure behavior of szomolnokite at the crystal chemical level. Mössbauer spectroscopy
directly probes the local electronic environment of iron atoms within solids, which can provide valuable
physical insight to transitions occurring in the examined phase under high pressures. Understanding
the high-pressure behavior of szomolnokite will provide a step towards characterizing the behavior of
complex hydrated minerals under compression and has implications for planetary interiors.

2. Materials and Methods

The szomolnokite powder used in this study was synthesized through a collaboration with Isoflex
(FeSO4·H2O, using 96% 57Fe). For ambient pressure X-ray diffraction characterization, a powdered
sample of szomolnokite contained in a Kapton tube was used. X-ray diffraction measurements were
taken at beamline 12.2.2 at the Advanced Light Source (ALS) operating with a wavelength of 0.4972 Å
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and beam size of 20 µm2 (full width at half maximum). The integrated ambient pressure X-ray
diffraction pattern is shown in Figure 1 and was fit using Rietveld refinement in GSAS-II [19]. The
resulting lattice parameters are in agreement with previously reported values [14–17] (Table S1).
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Figure 1. Integrated ambient pressure-temperature diffraction pattern with predicted reflections for
szomolnokite. The background-corrected integrated pattern (black dots) is fit using Rietveld refinement
in GSAS-II. The resulting fit is shown in green with residuals below (cyan). Predicted reflections for the
monoclinic C2/c phase are shown in blue. The reflections highlighted in the grey region are chosen to
calculate the ambient pressure lattice parameters: a = 7.09 Å, b = 7.55 Å, c = 7.78 Å, β = 118.65(2)◦,
volume = 365.2(1) Å3. Comparison to previous studies are shown in Table S1.

For the synchrotron Mössbauer spectroscopy measurements, a powdered 57FeSO4·H2O sample
(<5 µm thick) was loaded into a Princeton-design symmetric diamond anvil cell, assembled with
two one-quarter-carat diamonds with 250 µm diameter culets, plus 50 µm bevels, mounted on
tungsten-carbide seats. A rhenium gasket was indented to ~50 µm and drilled with a 130-µm hole,
which was then loaded with the powdered szomolnokite sample. Two rubies were placed in the sample
chamber to be used as pressure gauges. The cell was placed into a vacuum of ~10−5 Pa to remove any
residual liquids before it was loaded with helium under ~0.17 GPa (25,000 pounds per square inch).

The hyperfine interactions, namely the quadrupole splitting (QS) and isomer shift (IS), were
determined using time-domain synchrotron Mössbauer spectroscopy (SMS), a technique that probes
the local electronic environment of 57Fe atoms in the sample. The isomer shift is proportional to the
s-electron density at the nucleus while the quadrupole splitting describes the asymmetry in the electric
field gradient at the Mössbauer nucleus. Knowledge of both quantities provides constraints on the
valence and spin state of the iron atoms in szomolnokite. The distribution of quadrupole splittings for
a particular Mössbauer site (expressed as the full width at half maximum, FWHM, in units of mm/s) as
well as site weight fraction was also determined in the fitting. The SMS measurements were conducted
at Sector 3-ID-B of the Advanced Photon Source of Argonne National Laboratory. The storage ring was
operated in 24 bunch mode, top-up, with 153 ns bunch separation. The focus size of the X-ray beam was
about 15 × 15 µm2. The time window used to evaluate the spectra was 23 ns to 129 ns after excitation.
The pressure in the sample chamber was determined before and after the SMS measurement using
the ruby fluorescence method [20] and the standard deviation between two ruby spheres proximal to
the sample.

3. Results

The SMS spectra were fitted with version 2.2.0 of the CONUSS software [21], which uses a
least-square algorithm to fit iron’s hyperfine parameters in szomolnokite, as well as material properties
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such as effective thickness and the Lamb–Mössbauer factor. We estimated the sample thickness before
compression to be <5 µm thick, using a calibrated binocular microscope. Although it is known that the
Lamb–Mössbauer factor of solids generally increases with increasing pressure, there are no quantitative
constraints for szomolnokite. In order to keep the number of fitting parameters at a minimum, the
Lamb–Mössbauer factor was fixed at 0.6, and physical thickness was fixed at 3 µm at all compression
points. The quadrupole splitting value for each site was fitted. In some cases, the distribution of
quadrupole splittings for a particular Mössbauer site (expressed as the full width at half maximum,
FWHM, in units of mm/s) could be determined in the fitting, whereas in some models incorporating
additional sites, the FWHM was fixed. At 1 bar, the isomer shifts of sites 1 and 2 were determined in
a CONUSS fitting procedure called, “dual fit”, where the spectrum of the sample and the spectrum
of the sample with a 10-µm thick stainless steel reference foil containing the natural 57Fe enrichment
level are fit simultaneously (Tables S2–S4). The best fit results at 1 bar agree reasonably well with the
model from Dyar et al. [12], given that the highest weight fraction site falls in the same area in IS vs.
QS space as the other szomolnokite samples (Figure 2; Table S5). The primary site also agrees with
other ambient pressure Mössbauer studies on szomolnokite. However, the isomer shift of the second
site (representing 9% of total iron content) required to fit the spectrum, is relatively low (~1 mm/s)
compared with that of previously characterized szomolnokite samples. It is clear, though, that this
second site is not associated with ferric iron, as its QS value is relatively high (2.07 ± 0.03 mm/s),
and therefore, we have ruled out the possibility of any Fe3+ in our sample. We have also ruled out
amorphous components as well as significant texture effects.
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Although there is only one crystallographic site for iron in szomolnokite at ambient conditions 
[13–15], two Mössbauer sites are required to fit the data. As discussed in previous works on iron-
bearing phases characterized by a single crystallographic site for ferrous iron, such as bridgmanite 
and (Mg,Fe)O ferropericlase [23–26], additional Fe2+-like sites in the data evaluation of Mössbauer 
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Figure 2. Isomer shift relative to bcc-iron versus quadrupole splitting at 0 GPa of 57Fe-Mössbauer sites
in a variety of hydrated iron sulfates. Circles with the same number represent different sites within a
single sample. Labels come from [12–14,22] (see Table S5). Size of circle represents weight fraction of
that site. The colored squares represent values from earlier Mössbauer studies of szomolnokite. The IS
of site 1b from this study is out of the range of this figure at 0.89 ± 0.02 mm/s.

Although there is only one crystallographic site for iron in szomolnokite at ambient conditions [13–15],
two Mössbauer sites are required to fit the data. As discussed in previous works on iron-bearing phases
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characterized by a single crystallographic site for ferrous iron, such as bridgmanite and (Mg,Fe)O
ferropericlase [23–26], additional Fe2+-like sites in the data evaluation of Mössbauer spectra may arise
from differences in the next nearest-neighbor environments. Atomic-specific probes like Mössbauer
spectroscopy are therefore capable of resolving such local-environment characteristics. At higher
pressures, three or more sites are required to fit the spectra. This is not unreasonable if we look to a
recent combined single-crystal X-ray diffraction study of szomolnokite [15], where they found two
distinct crystallographic sites for iron in the triclinic structure at 7.3 GPa. A recent combined X-ray
diffraction and SMS study on Fe2Si2O6 ferrosilite also showed that additional iron sites are required to
fit the SMS spectra. Specifically, at the structural phase transition of ferrosilite from C2/c to HP-P21/c,
Solomatova et al. [27] found that four high-spin Mössbauer sites are required to fit the SMS spectra
(M1a, M1b, M2a, M2b), although only two distinct crystallographic sites for iron could be resolved
with single-crystal X-ray diffraction (M1 and M2).

The isomer shifts could not be determined as a function of pressure relative to stainless steel
foil due to the fact that the sample was smaller than the X-ray focus size, leading to complications
in interpreting the scattering effects around its edges with respect to the much larger stainless steel
reference foil. We therefore did not attempt to interpret the isomer shift values from the reference foil
with compression. Rather, we report the relative difference in isomer shift of the sites with respect to
site 1.

The results indicate significant changes in the hyperfine parameters with increasing pressure. We
explore three different best-fitting models over the compression range of our study. Although these
models produce the same hyperfine parameters for the iron sites at low pressures, the models diverge
at pressures above 19 GPa, as discussed below (Figure 3, Figure 4, and Figure S1, and Tables S2–S4).
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Figure 3. Representative synchrotron Mössbauer spectroscopy (SMS) spectra of szomolnokite: black
circles are binned data and red curves are best fit results from CONUSS. (A) All models are identical
from 0 to 19 GPa. (B) Model 1 features only 3 sites and assumes all the iron in the material remains in
the high-spin state up to 95 GPa. (C) Model 2 applied to 19 to 95 GPa. This features an additional site,
which could indicate a transition (increased distortion, structural, or high- to low-spin transition) that
occurs between 19 and 45 GPa. (D) Model 3 applied to the higher pressures. This model features a
gradual increase in presence of a low spin site from 19 to 95 GPa.
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19 GPa. (B) Model 1 features only 3 sites from 45 to 95 GPa and assumes all the iron in the material
remains in the high-spin state. (C) Values from Model 2, featuring a high- to low-spin transition in site
3 (quadrupole-splitting of 0 mm/s) between 19 and 45 GPa. (D) Values from Model 3 consider a gradual
high-spin (site 3) to low-spin (site 5) transition from 45 to 95 GPa: site 3 (green) and site 5 (purple) trade
off in weight fraction until site 3 has zero weight fraction and site 5 reaches a weight fraction around
0.2. Values are reported in Tables S2–S4.

Three Mössbauer sites were needed to fit the data in the 0.4 to 19 GPa compression range. In this
pressure range, the quadrupole splitting fluctuates in each of the three sites (Figure 4). The weight
fraction of the primary site rapidly decreases in this pressure range and the other two sites gain that
weight fraction. There is a significant change at 19 GPa where the QS for site 3 increases to 2.7 mm/s,
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slightly at 19 GPa (Figure S1). The relative IS of site 3 decreases at low compressions, then increases
with pressure up to 19 GPa. These changes are likely related to a structural transition, as discussed in
the next section.

Above 19 GPa, a fourth site with a low weight fraction and low quadrupole splitting was
introduced to increase the quality of the fit. This site has a small but non-zero quadrupole splitting
suggesting that this additional feature could be indicative of another transition. Therefore, above
19 GPa we consider three models that incorporate different transition scenarios, including a high- to
low-spin-transition. Model 1 does not incorporate a low spin site (zero quadrupole-splitting) over
the compression range of this study and removes the fourth site at 19 GPa. Model 1 shows a small
decrease in the QS of sites 1 and 2 above 45 GPa, followed by a steady rise over the remaining pressure
range, whereas the QS of site 3 is essentially invariant with compression. With fewer total parameters
in Model 1 than the other models, the weight fractions of the sites could freely vary in the fitting
procedure without running into correlation problems. We observe a small increase in weight percent
of site 1 above 45 GPa followed by a steady decrease with pressure. The weight fraction of site 2
exhibits the opposite trend as site 1, while the weight percent of site 3 shows minimal fluctuations in
this pressure range with a small increase at 95 GPa.

Model 2 contains four sites between 19 and 45 GPa, where site 4 has a low QS at 19 GPa (6% of the
total iron) and steadily increases with increasing pressure and site 3 has zero QS at 45 GPa (low-spin
ferrous iron, 30% of total iron) (Figure 4). This model would reflect a structural transition around
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19 GPa and/or a high- to low-spin transition at 45 GPa. Above 45 GPa, the QS and weight fraction
remain largely pressure-invariant in this model, except for slight increase in the weight fraction of site
4 at 95 GPa.

Model 3 introduces a fifth Mössbauer site as a low-spin site (zero quadrupole-splitting), which
gradually increases in weight fraction (starting at ~4% of the total iron) at the expense of site 3 (high-spin
in this model) between 45 GPa to 95 GPa. This model represents a gradual high- to low-spin transition
beginning around 45 GPa. In this model, the QS of site 1 has a weak positive correlation with pressure,
whereas the QS of sites 2 and 3 have a weak negative correlation with pressure; the QS of site 4 is
independent of pressure within uncertainties.

The relative IS values and broadening (expressed as the FWHM of the QS in mm/s) for the iron
sites in these models are plotted as a function of pressure in Figure S1. The relative IS of Model 1
shows sites 2 and 3 decreasing with pressure. In Model 2, the relative isomer shifts are fairly stable
with respect to pressure, whereas in Model 3, the IS of site 4 decreases with increasing pressure up to
73.4 GPa. All models feature significant broadening of sites 1, 2, and 3 above 45 GPa (FWHM values
range from around 0.3 to 0.6 mm/s) (Figure S1).

4. Discussion and Implications

The steep gradient in hyperfine parameters at low pressures (Figure 4; Tables S2–S4)
suggests a structural change, as demonstrated by recent single-crystal X-ray diffraction results by
Meusberger et al. [15]. At higher pressures, the three different scenarios fit the data well, as illustrated
in Figure 3, resulting in an average reduced χ2 of 1.39 for Model 1 (which does not incorporate a
spin transition), 1.44 for Model 2 (sharp spin transition in one site at 45 GPa), and 1.37 for Model
3 (gradual spin transition from 45 to 95 GPa). We find that, while some sites show decreasing QS
values, the QS values for several sites across the models increase with increasing pressure. This trend is
distinct from the trend highlighted at room-pressure comparing a range of iron-bearing minerals [12],
which found that the quadrupole splitting tends to have a positive correlation with bond length. An
increase in the QS values with pressure can be correlated with the combination of bond-shortening
and other complex changes influencing the local electronic environments crystal structure, including
lattice distortion [23]. This suggests an increasingly distorted (non-cubic) local iron environment in the
crystal structure. Above 19 GPa, the quadrupole splittings observed in the present study are relatively
constant, suggesting an increasing resistance of the lattice against further distortion.

To gain a better understanding of the connections between terrestrial planetary interiors and
their surfaces, the behavior of less common minerals should be evaluated. Their interaction with
the bulk materials of a planet can create meaningful deviations from an assumed average behavior.
Structural and spin transitions of individual minerals or phases would likely lead to changes in
the physical and chemical properties of the bulk mantle. For example, the occurrence of spin
transitions in iron-bearing materials of Earth’s lower mantle has received increased attention in the last
15 years owing to their potential geophysical, geochemical, and geodynamical implications [28]. At
room-temperature, (Mg,Fe)O ferropericlase and FeSiO3 ferrosilite exhibit a similar broad spin crossover
behavior with pressure [24,29], whereas the iron-bearing carbonate FeCO3 siderite experiences a sharp
spin transition [30]. In Figure 5, we schematically compare these transitions with szomolnokite, along
with iron-bearing silicate glasses.

This study is among the first to experimentally observe the effect of pressure on the electronic
environment of iron in szomolnokite, a hydrated iron sulfate. Although szomolnokite exists on the
surface of Earth and likely on Mars, it is unknown if it exists at depth within either planet. Although it
is also known that hydrated sulfates play important roles in the metal and hydrologic exchanges on
the surface of terrestrial planets [3], we know less about the specific role that szomolnokite plays on
the surfaces and interiors of planetary bodies, including icy satellites.

Our results suggest that there could be major structural transitions in szomolnokite at
relatively low-pressure (Figures 3 and 4), corroborated by recent X-ray diffraction results [15]. The
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basalt-to-eclogite transition (>1.2 GPa, 400–1000 ◦C) [33] plays an important role in the context of
plate tectonics and subducting slab dynamics on Earth, owing to the large density increase across
this transition [33,34]. Water content, as well as the behavior of all volatiles, can have an important
effect on processes closely related to plate tectonics [35–38]. Hydrated minerals (e.g., hydrated silicates
and sulfates) could react with basalt, affecting the basalt-to-eclogite phase transition, thus, influencing
processes related to plate dynamics on planetary bodies. Future measurements at a range of pressure
and temperature conditions are needed in order to understand the extent to which sulfate phases exist
at depth in various planetary bodies and their role in volatile cycling.
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as a function of pressure at 300 K in various Fe2+-bearing phases: (Mg0.75Fe0.25)O ferropericlase, [31],
(Mg0.8Fe0.2)O ferropericlase [32], (Mg0.52Fe0.48)O ferropericlase [29], FeCO3 siderite [30], FeSiO3

ferrosilite [27], basaltic and rhyolitic glasses [24], and FeSO4·H2O szomolnokite (this study). For
szomolnokite, we include Model 2 (where site 3 undergoes a high- to low-spin transition) and Model 3
(where a fifth low-spin site gradually increases its weight fraction over a broad range of pressures).
Model 1 is shown in the background of Model 2, exhibiting no spin transition over the pressure
range investigated.
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Table S1: Lattice parameters of szomolnokite at ambient pressure and temperature conditions; Table S2: Best
fit hyperfine parameters for szomolnokite according to Model 1; Table S3: Best fit hyperfine parameters for
szomolnokite according to Model 2; Table S4: Best fit hyperfine parameters for szomolnokite according to Model
3; Table S5: Hydrated iron-bearing sulfates and their experimentally determined quadrupole splitting and isomer
shift values at ambient pressure and temperature; Figure S1: The relative IS and FWHM of szomolnokite for
Models 1, 2, and 3.
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