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Abstract: The Mogok area in Myanmar (Burma) is known since historic times as a source for some of
the finest rubies and spinels in the world. In this study, we focus on in-situ U–Pb geochronological
analyses of zircon and zirconolite, either present as inclusions in gem-quality ruby and spinel or as
accessory minerals in ruby- and spinel-bearing marble and adjacent granulite facies gneisses. The age
determination was carried out using both laser ablation inductively coupled plasma time-of-flight mass
spectrometry (LA-ICP-TOF-MS) and sector-field mass spectrometry (LA-ICP-SF-MS). In addition, we
present multi-element data (REE) of zircon and zirconolite collected with LA-ICP-TOF-MS to further
characterize these inclusions. Most of the studied zircon grains display growth zoning (core/rim)
regardless if as inclusion in gemstones, or as accessory mineral in host rock samples. U–Pb dating
was conducted on both core and rim of zircon grains and revealed most ages ranging from ~200 Ma in
the core to ~17 Ma in the rim. The youngest U–Pb ages determined from the rim of zircon inclusions
in gem-quality ruby and spinel are 22.26 ± 0.36 Ma and 22.88 ± 0.72 Ma, respectively. This agreement
in U–Pb ages is interpreted to indicate a simultaneous formation of ruby and spinel in the Mogok
area. In ruby- and spinel-bearing marble from Bawlongyi, the youngest zircon age was determined
as 17.11 ± 0.22 Ma. Furthermore, U–Pb age measured on the rim of zircon grains in a biotite-garnet
gneiss reveals a Late Oligocene age (26.13 ± 1.24 Ma), however older ages up to Precambrian age
were also recorded in the cores of zircon as accessory minerals from this gneiss. These old ages point
to a detrital origin of the analysed zircon cores. Although non-matrix matched standard was applied,
zirconolite U–Pb age results are narrower in distribution from ~35 Ma to ~17 Ma, falling within the
range of zircon ages. Based on results which are well in accordance with previous geochronological
data from the Mogok Metamorphic Belt (MMB), we deduce that gem-quality ruby and spinel from
Mogok probably formed during a granulite-facies regional metamorphic event in Oligocene to Early
Miocene, related to post collision tectonics of the Eurasian and Indian plates. Our data not only
provide key information to understand the formation of gem-quality ruby and spinel in the so-called
Mogok Stone Tract, but also provide assisting evidence when determining the country of origin of
gemstones in gemmological laboratories.

Keywords: ruby; spinel; Mogok; geochronology; U–Pb dating; zircon; zirconolite

Minerals 2020, 10, 195; doi:10.3390/min10020195 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
http://www.mdpi.com/2075-163X/10/2/195?type=check_update&version=1
http://dx.doi.org/10.3390/min10020195
http://www.mdpi.com/journal/minerals


Minerals 2020, 10, 195 2 of 18

1. Introduction

Ruby, the chromium-bearing red variety of corundum (Al2O3) and chromium-bearing red spinel
(MgAl2O4) are among the world’s most valued gemstones. In the gem trade, the price of a ruby and
spinel is not only defined by their size and quality, but also to a large part by their geographic (country
of) origin, notably when they are from a historically important and famed gem deposit. Ruby and
spinel of gem-quality from marble-hosted deposits are known from a number of localities, such as
the Mogok area (Figure 1) and Mong Hsu in Myanmar, the Hunza Valley in Pakistan, Jegdalek in
Afghanistan, Murgab in Tajikistan, Luc Yen in Vietnam and the Morogoro region in Tanzania. From
these deposits, the Mogok area is considered by far the most important and historically reputed source
for ruby and spinel in the trade. This explains, why in literature corundum (ruby and sapphire) and
to a lesser extent spinel from Mogok have been extensively studied, either gemmologically and in
general [1–4], or focusing specifically on trace elements [5,6], stable isotopes [7–10], solid inclusions [11]
and fluid inclusions [12]. In geochronology, a number of studies were published about the Mogok area
or further gem deposits worldwide, either investigating minerals related to gemstone formation or
inclusions in rough and faceted gemstones [13–21].
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In recent years, U–Pb dating of inclusions (e.g., zircon, titanite, etc.) in gemstones using laser
ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has become more popular
due to easier access to instrumentation, minimum sample preparation, smaller laser crater size and
improved instrument sensitivity [22,23]. The U–Pb ages of inclusions found in a gemstone indicate
the maximum possible formation age of that gemstone. As such, these radiometric ages may provide
gemmological laboratories with additional evidence when carrying out country of origin determination
as a commercial service to the gem trade. This is especially helpful when separating ruby, sapphire
and spinel related to the Himalayan orogenesis (e.g., Mogok area in Myanmar) from those related to
the much older Pan-African orogeny (e.g., Morogoro area in Tanzania) [17,19,24–26].

For the Mogok area, only a limited amount of geochronological data from inclusions in gemstones
and from accessory minerals in host rocks have been published so far: zircon inclusion in ruby ~32
Ma [16], titanite in ruby ~32 Ma [14], zircon in sapphire ~27 Ma [24], zircon in granitic host rocks
~16.8 Ma [26]. More geochronological data from this gem-rich area is thus still essential in order to
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get a better understanding of its complex geology and to be able to compile a genetic model for the
formation of gemstones in the Mogok area.

In this paper, we present new U–Pb ages of zircon and zirconolite, found as inclusions in
gem-quality ruby and spinel or as accessory minerals in host rock samples from the Mogok area.
In addition, we present rare earth element data (REE) of selected zircon and zirconolite grains for
further characterization. Our data contributes to a better understanding of the complex geological
processes resulting in the formation of gem-quality ruby and spinel in the studied area. Furthermore,
our data may assist gemmological laboratories specifically in country of origin determination.

2. Regional Geological Setting

The Mogok Metamorphic Belt (MMB), further described in early studies [27,28], is a large
sickle-shaped belt of regionally metamorphosed rocks stretching N-S from central to upper Myanmar as
the southern continuation of the Himalayan syntaxis [29]. It forms the western margin of the Shan-Thai
Block (Sibumasu Block) and is adjacent to the north-south trending right-lateral strike-slip Sagaing
Fault, related to the youngest Cenozoic metamorphic events [30]. The Mogok-Mandalay-Mergui Belt
extends to the Mergui area in the southern part of Myanmar [31,32]. In the so-called Mogok Stone
Tract [27], located at the northeastern end of the MMB, there is an accumulation of world-renowned gem
deposits, namely of rubies, sapphires and spinels [3,28]. The formation of those gemstones is related
to late-stage Cenozoic metamorphic events within this geological unit [30,33,34]. The Mogok area
mainly consists of upper amphibolite to granulite facies marbles, schists and gneisses [35]. Amongst
these, the Mogok gneisses [27] in the southern part of the Mogok area are considered to be the oldest
rock units in this area of Myanmar [36]. Gem-quality ruby and spinel are found in the Mogok area in
both primary deposits in marbles and secondary deposits in alluvial and eluvial placers, as well as
accumulated placers in karstic sinkholes and caverns [37].

The MMB has been extensively studied with a main focus on regional geology, geochemistry and
geochronology [30,33,38–40]. In terms of geochronology, the ruby- and spinel-bearing marbles from
the Mogok area are stratigraphically interpreted in previous studies [27,28] as being metamorphosed
limestones of Precambrian age. Searle and Haq considered the Mogok metasediments to be originally
Precambrian to Jurassic rocks of the Shan Plateau [41], whereas Clegg described them as mid-Cretaceous
limestones and Jurassic sediments [42]. From the Precambrian to Cenozoic, the MMB experienced
several magmatic and metamorphic events, which are commonly summarized as: Precambrian to
Palaeozoic regional metamorphism and magmatism indicated by Ordovician age on zircon from
foliated leucogranite [2] and Late Cambrian age on biotite gneiss [21] as well as Jurassic magmatism
on biotite augen gneiss [40]. The latest, high-grade regional metamorphic event in the MMB occurred
in Paleogene to Early Neogene due to the collision of the Sibumasu Block with the West Burma Block
subsequent to the collision of the Indian and the Asian plates [43,44] and was followed by an intense
episode of post-tectonic magmatism [2,26,45].

3. Materials and Methods

3.1. Zircon and Zirconolite

Prior to analyses, all gemstone samples (ruby and spinel) were polished to expose zircon and
zirconolite inclusions. For host rocks, samples were first embedded in epoxy, before being polished.

The zircon and zirconolite inclusions were identified using a standard gemmological microscope
(StereoZoom7, Cambridge Instruments, Cambridge, UK) and a polarization microscope (Leica DMLS,
Wetzlar, Germany), two Raman micro-spectrometers (Renishaw inVia equipped with an argon-ion laser
at 514.5 nm; Swiss Gemmological Institute SSEF, Basel, Switzerland; Bruker Senterra with a Nd-YAG
laser at 532 nm; Department of Environmental Sciences, Mineralogy and Petrology, University of Basel,
Basel, Switzerland), and a scanning electron microscope (FEI Nova Nano SEM 230, Nano Imaging
Lab, University of Basel, Basel, Switzerland) equipped with an energy-dispersive spectrometer (EDS)
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and a back-scattered electron detector (BSE). In order to avoid any contamination, the samples were
not coated. More details about the analytical conditions applied for Raman and SEM analyses are
described in our previous publication on spinel inclusions from Mogok [11].

Zircon (ZrSiO4) is found as inclusion in gem-quality ruby and spinel and as accessory mineral in
three host rock samples (ruby- and spinel-bearing marble from Bawlongyi area, granulite-facies gneiss
from Aunglan Taung area in central Mogok and granulite-facies gneiss from Kinn area in western
Mogok, see Table 1).

Table 1. List of samples from Mogok investigated for this study. The scale bars represent 5 mm length
for gemstones and 5 cm for host rocks.

Sample Name Locality Host Material Analysed Grain Weight (ct) Sample Photo

SSEF96663_A Mansin

Ruby

4 Zircons and
5 Zirconolites 2.411
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SSEF92720_D Kyauksaung 

Spinel 

2 Zircons 0.405 

 

SSEF92725_D 

Kyauksin 

2 Zircons 0.673 

 

SSEF92725_E 1 Zircon 0.940 

 

BLG_12 Bawlongyi 

Ruby- and 

Spinel-bearing 

Marble 

32 Zircons and  

9 Zirconolites 

 

ALT_03 
Aunglan 

Taung 

Gneiss 

40 Zircons 

 

K_01 Kinn  24 Zircons 
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Only 5 from a total of 85 ruby samples as well as 3 from 100 spinels contained zircon inclusions
suitable for dating in terms of size and proximity to the sample’s surface. Most of the observed zircon
inclusions in the examined gemstone samples however were either too small (<10 µm) or located too
deep inside the sample to be reached by laser ablation and therefore could not be considered for U–Pb
dating in this study. In total, 8 zircon inclusions from ruby and 5 zircon inclusions from spinel were
analysed for this study. The size of the analysed zircon grains in ruby range from 50 to 300 µm in
diameter. In contrast to this, the zircon grains in spinel are smaller with a maximum diameter of 50 µm,
with some inclusions being as small as 10 µm. In addition to the zircon inclusions from gemstones, we
have studied zircon present as accessory mineral in host-rocks. In the ruby- and spinel-bearing marble
from Bawlongyi area (Figure 2), we analysed a total of 32 zircons, occurring either as individual grains
or intergrown with zirconolite. Furthermore, we analysed 40 zircons found as accessory mineral in a
garnet-orthopyroxene gneiss from Aunglan Taung and 24 zircon grains in biotite-garnet gneiss from
the Kinn area (Figure 2). The size of the accessory zircons in the Aunglan Taung gneiss is 35 µm to
50 µm, while those from Kinn gneiss are even smaller with a size of 10 µm to maximum 35 µm [46].

Zirconolite, ideally CaZrTi2O7, is known in several polytypoids, such as zirconolite-3O
(orthorhombic), zirconolite-3T (trigonal), zirconolite-2M (monoclinic) and non-crystalline (metamict) or
undetermined polytypoid [47]. This latter option explains why we were not able to identify zirconolite
in our study using Raman spectroscopy. In fact, they all revealed featureless (amorphous) Raman
spectra. However, by analysing the major and minor elemental composition using SEM equipped
with an EDS detector, we were able to positively identify the zirconolite grains present in our samples.
We observed two types of zirconolite: (1) individual inclusion of 40 µm to 100 µm size in ruby from
Mansin, and (2) intergrown with zircon in Bawlongyi marble (see Table 1). Here, zirconolite forms
either a 10–50 µm thick rim around zircon or occurs as small (maximum 5 µm) amoeboid inclusions
within zircon.
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To our knowledge, this study provides the first detailed characterization of zirconolite from the
Mogok area. A detailed list of the zircon and zirconolite analysed and their occurrences are given in
Table 1 and Supplementary Data.

3.2. Growth Zonation of Zircon and Zirconolite

Zircon often shows complex growth zonation patterns. This may strongly influence radiometric
dating if an analysis is conducted across growth zones of different ages [49]. In order to visualize such
zoning in our zircon (and zirconolite) grains (Figure 3a,b) and to determine the appropriate position to
carry out U–Pb dating, we additionally collected variable pressure secondary electron (VPSE) images
using a ZEISS EVO 50 SEM (Institute of Geological Sciences, University of Bern, Bern, Switzerland).
These images reveal three different types of patterns: (a) zircon with a characteristic core/rim growth
zonation, (b) zircon showing an irregular zoning pattern and (c) zircon with no zonation detectable by
VPSE imaging.
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Figure 3. (a) Photomicrograph of zircon and zirconolite inclusion in ruby from Mansin, and (b)
corresponding back-scattered electron (BSE) image. (c) Variable pressure secondary electron (VPSE)
image of zircon inclusion in ruby from Kyatpyin with distinct core/rim zonation. (d,e) Similar core/rim
zonation in VPSE images of accessory zircon from Aunglan Taung gneiss. (f) VPSE image of zircon
inclusion in ruby from Mansin showing irregular zoning with an aggregated core and a homogeneous
rim. (g) VPSE image of accessory zircon from Kinn gneiss showing irregular zoning. (h) VPSE image
of zircon inclusion in spinel from Kyauksin revealing nearly no zoning. (i) BSE image of zircon and
zirconolite intergrown in Bawlongyi marble (zirconolite occurs as a rim around zircon inclusion), and
(j) their corresponding VPSE image. (k) BSE image of another zircon and zirconolite intergrowth in
Bawlongyi marble and (l) their corresponding VPSE image.

Distinct core/rim growth zonation is found in some zircon grains included in rubies from Kyatpyin
(Figure 3c), but also in accessory zircons from gneisses (Figure 3d,e). The distinct core/rim growth
zonation may indicate a magmatic origin of the core surrounded by a metamorphic rim. Such a
zonation pattern is often observed, specifically in accessory zircon from gneiss [50]. Irregular zoning
is found in zircon inclusions in ruby from the Mansin area (Figure 3f) revealing aggregated textures
in the core and more homogeneous rim sections, but also in zircons present as accessory minerals
in the studied gneisses (Figure 3g). BSE and VSPE images showing no (significant) growth zoning
patterns are observed for zircon inclusions in spinel (Figure 3h), but also for the accessory zircons in
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Bawlongyi marble (Figure 3i–l). This is also true for all investigated zirconolite grains. They show a
homogeneous VPSE reaction and no zoning features, regardless if present as individual inclusion in
ruby from Mansin or intergrown with zircon in Bawlongyi marble (Figure 3j,l).

3.3. LA-ICP-MS Instrumentations

For in-situ radiometric U–Pb dating and the multi-element characterization (specifically REE) of
the zircon and zirconolite grains, a combined approach of two different mass spectrometer setups
was applied to benefit from the advantages of each of these systems: (1) LA-ICP time-of-flight MS
(LA-ICP-TOF-MS, Swiss Gemmological Institute SSEF, Basel, Switzerland) and (2) sector-field MS
(LA-ICP-SF-MS, Institute of Geochemistry and Petrology, ETH Zurich, Zurich, Switzerland). Single
detector SF-MS has about 15 times higher sensitivity compared to TOF-MS [51], hence a distinctly
smaller laser spot can be used for analysis, minimizing potential overlaps of age zones, especially
when analysing zoned zircon. Since the SF-MS data acquisition is sequential, only a limited number of
masses can be collected. In contrast to this, TOF-MS allows simultaneous acquisition of the full mass
spectrum, hence it is ideal for constant monitoring of elemental variations (e.g., when passing from one
mineral to another), especially when the laser ablates into small mineral intergrowth. The drawback of
this second method is its relatively lower sensitivity, thus requiring a larger laser ablation spot (e.g.,
35 µm). Obviously, this last condition (laser spot size) of LA-ICP-TOF-MS is challenging, especially
when analysing small zircon and zirconolite with narrow and/or complex growth zoning. Therefore,
we applied LA-ICP-SF-MS for small and complex zoned zircon and for zirconolite, using a small spot
size of only 13 to 19 µm and integration times of 10 ms (202Hg, 208Pb, 232Th, 235U, 238U), 20 ms (204Pb),
75 ms (207Pb) and 90 ms (206Pb), resulting in a total sweep time of 0.243 s (including MS settling time)
for these eight selected isotopes of interest. In doing so, we were able to determine the different ages
of the core and the rim of zoned zircon separately. The LA-ICP-TOF-MS system was then used for a
detailed elemental and isotopic characterization of selected zircon and zirconolite grains, allowing the
simultaneous acquisition of the full mass spectrum (7Li+ to 238U+) every 30 µs. For our analyses, 5000
full TOF-mass spectra were averaged and reported in one output data point (integration time 0.151 s).
Data reduction of the TOF spectrum includes gas black correction, baseline correction based on two
anchor points on both sides of the mass peak, as well as signal integration over a mass window (0.25
atomic mass unit), centred at the mass peak, in order to obtain the peak intensity (unit in mV) [52].
Further TOF- and SF-MS instrument parameters are listed in Supplementary Table S1.

For LA-ICP-SF-MS, we used the zircon standard GJ-1 (601.86 ± 0.37 Ma, from 206Pb/238U age
results) [53,54] as a primary dating standard, with additional zircon secondary standards Plešovice
(337.13 ± 0.37 Ma, 206Pb/238U age) [55], Temora 1 (416.8 ± 1.1 Ma, 206Pb/238U age) [56], Zircon 91500
(1063.51 ± 0.39 Ma, 206Pb/238U) [57]. The secondary reference zircon ages from measurements in
this study are in accordance with published results. Data processing was carried out using software
packages Iolite (version 2.5) [58] and VizualAge (version 2013-02) [59] for age calculation and uncertainty
propagation. Laser induced element fractionation (LIEF) was corrected based on the primary reference
material analysed with identical conditions as the sample. Unless otherwise mentioned, calculated
ages are quoted as two times the standard error (2SE) and propagation of uncertainty is by quadratic
addition. Reproducibility and age uncertainty of reference material are propagated where appropriate.

For TOF-MS, we employed an in-house zircon single crystal SSEF87244 with an age of 523 ± 5 Ma,
as primary standard for U–Pb dating. This crystal was characterized by ICP-SF-MS to have a high
uranium concentration (approximately U 2000 mg/kg) and having no detectable amount of common
lead (204Pb). The ages obtained from secondary standard Zircon 91500 (1059.62 ± 8.70 Ma, 206Pb/238U
age) are in accordance with the published result within the uncertainty. For dating analyses of
zirconolite, we applied the same set of zircon standards, due to the lack of a matrix-matched zirconolite
standards. For data processing, we used an in-house developed calculation script based on MATLAB
(R2018b, The MathWorks, Inc., Natick, MA, USA). Benefiting from the full mass spectrum analysis
in TOF-MS, it was possible to recheck if the whole measurements were done on targeted inclusions
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or if the ablation moved into host materials (ruby, spinel, etc.) by monitoring transient signals of
various isotopes in TofDaq software (V1.2.97, TOFWERK AG, Thun, Switzerland). Furthermore, raw
transient signals were carefully checked for common Pb interference based on isotope 204Pb. In most
of our samples, the 204Pb signal was below the detection limit. Therefore, no correction for common
Pb was applied. However, there may be still a small amount of common Pb present in our samples
due to the low natural abundance of 204Pb isotope, as shown in some discordant results in Wetherill
and Tera-Wasserburg plots, and these discordant ages are omitted in the reported ages. The intensity
ratios of U–Pb isotopes were monitored with TofDaq software to select appropriate sections in the
transient signal that could be used for dating calculation. The radiometric ages based on 206Pb/238U and
207Pb/235U ratios are calculated using gas blank corrected signals. The radiometric ages are calculated
as a ratio of the mean method and errors (2SE) are propagated following the procedures suggested
by [60]. The age uncertainty of reference materials is propagated afterwards and other uncertainties
are not included. All dating results are plotted using IsoplotR (V3.0) [61]. Analysis is accepted only
when its age with 2SE overlaps the concordia curve [62]. For TOF-MS, the REEs were quantified using
a non-matrix matched NIST610 SRM glass as external standard, due to its nearly full coverage of
the periodic table of the elements. Additionally, Ca was used as internal standard and a total mass
normalization procedure was applied [63].

4. Results

In total, we analysed 109 zircon grains and 14 zirconolite grains for this study. For the detailed U–Pb
data and trace element data of all samples we refer the interested reader to the Supplementary Data.

4.1. U–Pb Dating of Zircons

For zircon inclusions in gem-quality ruby and spinel showing growth zoning patterns in VPSE
imaging (e.g., Figure 3c), we analysed both core and rim separately. Individual spots from zircon core
reveal a wide range of ages, from ~94 Ma to ~26 Ma (Figure 4a). The zircon rim displays ages between
~30 Ma to ~22 Ma (Figure 4a). The youngest ages are concordant at 22.26 ± 0.36 Ma for zircon in ruby
(Figure 5a) and 22.88 ± 0.72 Ma for zircon in spinel (Figure 5b).

In the ruby- and spinel-bearing Bawlongyi marble, we observed both zircon and zirconolite
as accessory mineral phases. The U–Pb ages of zircon grains cover a wide range from Cretaceous
(~95 Ma) to Early Miocene (~17 Ma, Figure 4b). This is similar to the zircon inclusions in gemstones.
The youngest age of zircon is concordant at 17.11 ± 0.22 Ma (Figure 5c) which is younger than that from
our investigated rubies and spinels. The core ages from accessory zircon intergrown with zirconolite
reveal ages ranging from ~65 Ma to ~55 Ma. These ages are within the range as the age of zircon cores
found in gemstones (ruby and spinel).

Analysed zircon core results in garnet-orthopyroxene gneiss from Aunglan Taung yield groups of
Jurassic (~180 Ma to ~140 Ma) and Cretaceous (~110 Ma to ~70 Ma) ages (Figure 6). The U–Pb ages of
zircon rims were found to be concordant at 31.98 ± 0.30 Ma, as is shown in Figure 5d.

U–Pb ages of accessory zircon in biotite-garnet gneiss from Kinn reveal mainly discordant ages
(Supplementary Figure S2). Two zircon rim measurements give a concordant age of 26.13 ± 1.24 Ma
(Figure 5e). These rim ages are also consistent with ages of zircon rims in gemstones from the present
study. The discordia may correspond to a mixture with different overgrowth ages, or Pb loss. The oldest
zircon core age is ~985 Ma, and a VPSE image of this zircon is shown in Supplementary Figure S3.



Minerals 2020, 10, 195 9 of 18
Minerals 2020, 10, x FOR PEER REVIEW 9 of 19 

 

 

Figure 4. Wetherill diagrams showing wide range of U–Pb age of (a) zircon inclusion in gem-quality 

ruby and spinel, (b) accessory zircon in Bawlongyi marble, (c) zirconolite inclusion in ruby from 

Mansin and (d) zirconolite intergrown with zircon in Bawlongyi marble. Ellipses indicate two 

standard error (2SE) uncertainty of measurements. Blue is by sector-field (SF)-MS and orange is by 

time-of-flight (TOF)-MS. 

Figure 4. Wetherill diagrams showing wide range of U–Pb age of (a) zircon inclusion in gem-quality
ruby and spinel, (b) accessory zircon in Bawlongyi marble, (c) zirconolite inclusion in ruby from Mansin
and (d) zirconolite intergrown with zircon in Bawlongyi marble. Ellipses indicate two standard error
(2SE) uncertainty of measurements. Blue is by sector-field (SF)-MS and orange is by time-of-flight
(TOF)-MS.

4.2. U–Pb Dating of Zirconolite

Zirconolite grains from Mansin ruby and from ruby- and spinel-bearing marble (Bawlongyi) were
analysed by TOF-MS and SF-MS, as shown in Figure 4c,d. Zirconolite from Mansin ruby reveals a
concordia age of 29.78 ± 0.38 Ma (Figure 5f) analysed by SF-MS, whereas TOF-MS analysis adjacent
to the SF-MS measurements reveals an age of 18.06 ± 0.36 Ma (Figure 5g). Furthermore, zirconolites
observed as intergrowth of zircons in ruby- and spinel-bearing marble yield apparent concordia ages
at 23.61 ± 0.36 Ma using the SF-MS setup (Figure 5h) and 20.30 ± 0.30 Ma using the TOF-MS (Figure 5i).
These different results for zirconolite may be due to different growth zonings in the inclusions, which
could not be identified by VPSE imaging. The discrepancy may also be due to the application of
a non-matrix matched standard (zircon), which induces various fractionation effects with different
instrument operating parameters and corrections [53,64]. Since both measurements have revealed
secondary reference zircon (Zircon91500) in accordance with the published ages within uncertainty,
the two instrumental setups were operated normally. Therefore, the reported zirconolite ages may lack
of accuracy and 2SE of uncertainty is related to measurement precision. Due to lack of a zirconolite
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reference material, it is important to mention that the zirconolite ages obtained here may be only
indicative and can be improved further.Minerals 2020, 10, x FOR PEER REVIEW 10 of 19 
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Figure 5. Concordia ages analysed on the rim of zircon inclusion in (a) Mansin and Kyatpyin ruby
(22.26 ± 0.36 Ma), (b) Kyauksin spinel (22.88 ± 0.72 Ma) and accessory zircon in (c) Bawlongyi marble
(17.11 ± 0.22 Ma), (d) Aunglan Taung gneiss (31.98 ± 0.30 Ma) and (e) Kinn gneiss (26.13 ± 1.24 Ma).
Concordia age of zirconolite inclusion from Mansin ruby showing (f) 29.78 ± 0.38 Ma by SF-MS, and
(g) 18.06 ± 0.36 Ma by TOF-MS as well as of zirconolite intergrown with zircon in Bawlongyi marble
showing (h) 23.61 ± 0.36 Ma by SF-MS, (i) 20.30 ± 0.30 Ma by TOF-MS. Reported ages are concordia
ages with two standard error (2SE) of uncertainty of measurements. Blue ellipses are by SF-MS and
orange ellipses are by TOF-MS with 2SE of uncertainty. Gray ellipses indicate concordia age with 1SE
of uncertainty.

4.3. REE Composition of Zircon and Zirconolite

Using TOF-MS, we collected multi-element data, specifically of the rare earth elements (REE),
simultaneously to the U–Pb measurements. For a detailed list of the REE concentrations of selected
zircon and zirconolite samples present as inclusions in ruby and spinel and as accessory minerals
in host rock (Bawlongyi marble) and adjacent gneisses (Aunglan Taung gneiss and Kinn gneiss) the
reader is referred to Supplementary Data. Most of the zircon REE data are from the core of the
inclusions/accessory minerals, whereas in the zirconolite no zoning was observed by VPSE imaging.

The chondrite-normalized Coryell-Masuda diagrams of our samples reveal for zircon a distinct
enrichment in heavy REE (HREE) in all samples [50]. Zircon inclusions from gem-quality ruby
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(Figure 7a) vary quite largely in their REE concentrations, thus resulting in a rather broad REE pattern
in the chondrite-normalized plot. Still, all investigated zircon inclusions in ruby show a very similar
trend with part of light REE (LREE) at or even below detection limit. In addition, they show only a
weak negative Eu anomaly and no positive Ce anomaly. The REE pattern of zircon in spinel (blue
traces in Figure 7a) follows the same trend, but in addition these inclusions contain even less LREE,
mostly below detection limit.
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Figure 6. Wetherill diagram of accessory zircon in Aunglan Taung gneiss. Ages of accessory zircon in
Kinn gneiss show discordia ages and are reported in Supplementary Figure S2. Ellipses indicate two
standard error (2SE) uncertainty of measurements. Blue is by SF-MS and orange is by TOF-MS.
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Zircon as accessory mineral in Bawlongyi marble (Figure 7b) shows a very similar pattern as the
zircon inclusions in ruby, again with only a weak negative Eu anomaly, but in contrast to the zircon
inclusions in ruby with a (weak) positive Ce anomaly. In general, the concentrations of REE in zircons
from the marble are higher than from zircon inclusions in ruby (and spinel), as can also be seen in the
chondrite-normalized plot. The most pronounced enrichment in HREE is observed in zircons from the
gneiss samples (Aunglan Taung and Kinn) (Figure 7c). In addition, these zircons show also distinct
negative Eu and positive Ce anomalies.

Compared to zircon, the analysed zirconolites show a distinctly different REE pattern in their
chondrite-normalized plot (Figure 7d). Both, zirconolite as inclusions in ruby (from Mansin) and as
accessory minerals in marble host rock (Bawlongyi) reveal a rather flat REE pattern, dominated by a
distinct negative Eu anomaly and a general relative depletion in LREE. Similar to the zircon inclusions
in ruby (and spinel), the concentration of REE is lower in the zirconolite inclusions in gem-quality ruby
than in the host-rock (Bawlongyi marble).

5. Discussion and Conclusions

The zircons from gemstone samples and ruby- and spinel-bearing marble from Mogok area
reveal consistent radiometric U–Pb ages over a wide time range from Cretaceous to Early Miocene.
The youngest ages (Late Oligocene to Early Miocene) are found in the rim of accessory zircon in
the Bawlongyi marble. They are in good agreement with previously reported U–Pb ages on zircon
inclusions [16], as well as on a titanite inclusion in ruby from Thurein Taung (western Mogok) [14].
Similar U–Pb ages are also known from analyses carried out by commercial gemmological laboratories
on faceted gem-quality ruby and sapphire from Mogok [17–19].

The U–Pb ages calculated in the rim of zircon indicate a late regional metamorphic event and
are interpreted to be related to the formation of the marble-hosted ruby and spinel in the Mogok area.
The youngest concordia ages recorded from the rim of zircon inclusions in our studied gemstones
are 22.26 ± 0.36 Ma (ruby) and 22.88 ± 0.72 Ma (spinel). Based on the evident similarity of ages
of the zircon rims in both, ruby and spinel, we presume that ruby and spinel both formed during
Oligocene to Early Miocene and under similar granulite-facies regional metamorphic conditions as
recorded in the surrounding Mogok area [4,35,66,67]. Interestingly, the youngest age of zircon grains
in Bawlongyi marble is even younger with 17.11 ± 0.22 Ma. This is interpreted to be related to
post-regional metamorphic contact metamorphism [2,26,45,68] caused by the late intrusion of Kabaing
granite nearby (Figure 2). This youngest zircon age is in accordance with dating results on zircons
from Kabaing granite (16.8 ± 0.5 Ma) [26]. A comparison of geochronological data from this study
with previously reported data from literature is presented in Figure 8.

Moreover, we observe two age groups in the core of accessory zircon in the garnet-orthopyroxene
gneiss from Aunglan Taung (central Mogok): (1) Jurassic and (2) Cretaceous (Figure 6). Jurassic zircon
ages were previously recorded in granite from the Mogok area [2] and in orthogneiss of Kyanigan
Hills close to the Mogok area [39]. According to Mitchell [69] and references therein, the Mogok belt
was considered as a former northward continuation of the Sumatra-western Myanmar Late Cretaceous
magmatic arc, as suggested by several age results on granodioritic to tonalitic plutons and batholiths
from Banmauk area. The youngest rim ages of zircon grains in Aunglan Taung gneiss reveal a concordia
age at 31.98 ± 0.30 Ma, similar ages have been reported in other studies [16,70]. Accessory zircon in
the biotite-garnet gneiss from Kinn area shows discordant ages. The oldest U–Pb ages (Precambrian)
are found in the core of a zircon grain, which we interpreted as a detrital zircon based on its growth
zoning pattern (see Supplementary Figure S3).

These old age results are in accordance with former studies which attribute the metasediments of
Mogok a Precambrian age [27,28,41]. The Late Oligocene ages (e.g., 26.39 ± 1.24 Ma) from zircon rims
in Kinn gneiss are interpreted to represent the most recent regional metamorphic event.
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Zirconolite in ruby from Mansin reveals a U–Pb age of 18.06 ± 0.36 Ma using TOF-MS and 29.78
± 0.38 Ma using SF-MS. A difference is also observed with zirconolite intergrown with zircon in
ruby- and spinel-bearing marble (20.30 ± 0.30 Ma with TOF-MS and 23.61 ± 0.36 Ma with SF-MS).
This discrepancy is discussed in previous section. Despite these differences, the U–Pb ages are still
within the range of those previously reported in literature [2,20,21,28]. Further research is ongoing to
understand the cause of this discrepancy and to find a method to eliminate it in order to obtain more
accurate U–Pb ages on zirconolite.

To summarize, our U–Pb ages on zircon and zirconolite found as inclusions in gem-quality
ruby and spinel and as accessory minerals in ruby- and spinel-bearing marble and in adjacent
granulite-facies gneisses are well in agreement with data from the wider Mogok area reported
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previously in literature [14,21,38–40,68,71]. To visualize this larger context, Figure 9 presents a
summary of U–Pb ages from this study together with U–Pb data of the wider Mogok area [72]. Based
on the results of this study and in accordance with previous investigations, we conclude that the
Mogok area and its surroundings experienced a Paleogene granulite-facies regional metamorphic
overprint, influenced by post-collisional tectonics of the Eurasian and Indian plates [70,73]. We further
assume that the marble-hosted gem-quality ruby and spinel of the Mogok Stone Tract formed during
this regional metamorphic event between 30 Ma and 22 Ma, i.e., from Oligocene to Early Miocene.
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Simultaneously to U–Pb dating measurements, REE concentrations in zircon and zirconolite were
measured by LA-ICP-TOF-MS and chondrite-normalized REE diagrams were plotted in Figure 7a–d.
A positive Ce anomaly and a negative Eu anomaly such as observed in the investigated accessory
zircons in Aunglan Taung and Kinn gneisses (Figure 7c) are common in zircon [75,76] and generally
related to magmatic fractionation processes (e.g., by feldspar crystallizations and/or a function of the
oxygen fugacity and the Eu anomaly of the melt) [77]. Our focus is to characterize the studied zircon
and zirconolite inclusions and accessory minerals from Mogok (Myanmar). Specifically, as to our
knowledge, it is the first time that the full range of REEs in zirconolite from Mogok is reported. The
zircon and zirconolite REE concentrations (see Supplementary Data) and REE plots may aid in country
of origin determination for gem-quality ruby and spinels in commercial gemmological laboratories,
similar to a study on apatite inclusions in gem-quality corundum and spinel from Mogok and other
deposits [78].

The present study adds considerable new geochronological (U–Pb) and geochemical (REE) data
to previous research about the Mogok area in Myanmar. With a special focus on zircon and zirconolite
present as inclusions in gem-quality ruby and spinel and as accessory minerals in their marble host
rock and adjacent gneisses, our data provides a better understanding of ruby and spinel formation
within the Mogok Stone Tract, one of the finest ruby and spinel sources in the world.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/10/2/195/s1,
Figure S1: Typical laser ablation spot position on zircon and zirconolite grains as drawn overlapping with Figure 4,
Figure S2: Wetherill diagram of accessory zircon in Kinn gneiss, Figure S3: VPSE image of the zircon as accessory

http://www.mdpi.com/2075-163X/10/2/195/s1
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mineral in Kinn gneiss, where an oldest age was found in this study, Table S1: LA-ICP-MS instrument operating
parameters. Supplementary Data: U–Pb age result and REE concentration in zircon and zirconolite.
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