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Abstract: An efficient flotation process was developed to selectively recover elemental sulfur from
a high-sulfur pressure acid leaching residue of zinc sulfide concentrate. The process mineralogy
analysis showed that the sulfur content reached 46.21%, and 81.97% of the sulfur existed as elemental
sulfur which was the major mineral in the residue and primarily existed as pellet aggregate and
biconical euhedral crystal. An elemental sulfur concentrate product with 99.9% of recovery and
83.46% of purity was obtained using the flotation process of one-time blank rougher, two-time
agent-added roughers, and two-time cleaners with Z-200 as collector and Na2S + ZnSO4 + Na2SO3

as depressant. The flotation experiment using return water indicated that the cycle use of return
water had no adverse effect on the flotation performance of elemental sulfur. The process mineralogy
analysis manifested that main minerals in the residue directionally went into the flotation products.
Most of elemental sulfur entered the concentrate while other minerals almost completely went into
the tailing. Main valuable elements lead, zinc, and silver entered the tailing with sulfides and could
be recovered by lead smelting. The proposed process can realize the comprehensive recovery of
valuable components in the high-sulfur residue and thus it has wide industrial application prospect.

Keywords: high-sulfur zinc residue; elemental sulfur; process mineralogy; selective flotation; cycle
use of return water

1. Introduction

Zinc is currently the fourth most widely consumed metal in the world after iron,
aluminum, and copper, and it has been widely used in automobile, machinery, battery,
alloy, construction, shipping, and other industries [1,2]. Sphalerite (zinc sulfide, ZnS) is
the primary mineral from which most of the world’s zinc is produced [3]. Traditionally,
the pyro-metallurgical process was used to treat sphalerite to obtain the zinc metal [4].
However, it is inevitable for the high-temperature route to produce toxic and hazardous
flue gas containing SO2 and heavy metals such as mercury (Hg), lead (Pb), and cadmium
(Cd), which may result in serious environment problems if not treated effectively [5,6].

In order to avoid the above problem, the hydrometallurgical oxygen pressure acid
leaching process was developed as an efficient route to extract zinc from sphalerite [7,8],
and the leaching reaction can be expressed by the following equation:

ZnS + H2SO4 + 0.5O2 = ZnSO4 + H2O + S

As can be seen from the equation, zinc in sphalerite is converted into soluble zinc sul-
fate which can be used as the raw material for recovering zinc metal by electrowinning [9].
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Sulfur is oxidized into solid elemental sulfur and remains in residue [10]. Elemental sulfur
is the major component of the acid leaching residue whose content can reach 40–60% [11,12].
In addition, since sphalerite is often associated with other metallic sulfides such as chal-
copyrite (CuFeS2), pyrite (FeS2), and galena (PbS), thus the unreacted parts of these sulfides
also enter the residue [6].

The acid leaching residue is one of the most important raw materials for recovering
elemental sulfur and some other valuable elements such as silver, zinc, and lead [13,14].
As elemental sulfur has good hydrophobicity, and thus in the absence of agents, it can
be effectively recovered by froth flotation, a current prevailing beneficiation technique
which realizes the selective separation of target minerals from gangue minerals by making
use of their natural hydrophobicity difference [15–19]. The grade of elemental sulfur in
the concentrate product is generally low, mainly because of the simultaneous flotation of
gangue minerals, especially the above-mentioned metallic sulfides [20]. In order to further
obtain a high-purity elemental sulfur product, the hot filtration process is generally adopted
after floatation [21,22]. At 115–155 ◦C, elemental sulfur can be effectively separated from
the leaching residue by melting and filtration [23]. Unfortunately, a substantial portion
of the elemental sulfur still remains in the filter cake, and its recovery is only about
60% [4,24]. A previous study showed that the elemental sulfur content in acid leaching
residue needs to be greater than 70% for a high recovery by hot filtration, but this generally
cannot be reached for most of the residue [25]. In addition, the valuable elements are
generally scattered in elemental sulfur product and filter cake, which is unbeneficial to
their subsequent recovery.

The aim of the study is to develop an efficient flotation process to selectively separate
elemental sulfur from a high-sulfur pressure acid leaching residue of zinc sulfide concen-
trate. First, process mineralogy on the residue was studied to provide a theoretical basis
for a suitable flotation process. Then, the systematic flotation experiment was performed
to obtain the optimum flotation separation process. Afterwards, the flotation experiment
using return water was carried out to investigate the effect of cycle use of return water
on elemental sulfur recovery. Finally, process mineralogy on the concentrate and tailing
was conducted to explore the distribution of concerned elements and minerals in the two
flotation products.

2. Experimental
2.1. Material and Reagents

A pressure acid leaching residue of zinc sulfide concentrate from Hulun Buir Chihong
Mining Industry Co., Inner Mongolia, China, was used as the raw material. The yield
of the residue in the plant achieved 210,000 tons/year. The appearance of the residue
shown in Figure 1 indicated that it was red-orange solid powder. The residue was dried
at 70 ◦C for 24 h to remove its free moisture, and then it was thoroughly mixed and used
for subsequent analyses and flotation experiments. All the chemical reagents used in this
study were of analytical grade, and tap water was used in all experiments.

Minerals 2021, 11, x FOR PEER REVIEW 3 of 22 
 

 

 

Figure 1. Appearance of the pressure acid leaching residue of zinc sulfide concentrate. 

2.2. Experimental Methods 

The flotation experiments of pressure acid leaching residue were performed in a self-

aeration XFD-63 flotation machine [26–28]. At the beginning of the test, the residue and 

tap water were added into the cell and the pulp pH value was adjusted to 8.0 using lime. 

After that, the collector and foaming agent (methyl isobutyl carbinol, MIBC) were succes-

sively added into the pulp which was agitated at 1650 rpm for 2 min after the addition of 

each reagent. The aeration flotation was conducted for 5 min, and the obtained concen-

trate and tailing were dried and weighed for sulfur content detection to calculate sulfur 

recovery. 

2.3. Analytical Methods 

The elemental contents in solids were analyzed using acid digestion and atomic ab-

sorption spectrometer (AAS), and the elemental concentrations in solutions were meas-

ured by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The sulfur 

phase composition in the residue was determined by using a chemical selective dissolu-

tion method which was performed based on the different dissolution behavior of sulfur 

phase in different solvents [16]. The particle size distribution was examined by a wet 

screen analysis. The mineralogical composition was ascertained by the results of chemical 

composition combined with X-ray diffractometer (XRD, PANalytical BV, X'Pert3 Powder, 

Almelo, Netherlands), Leica DMLA polarized light microscopy (Leica Corporation, 

Wetzla, Germany), scanning electron microscope (SEM, JSM-6360LV, JEOL, Tokyo, Ja-

pan), and energy dispersive X-ray analysis (EDAX-GENESIS, California, San Diego, USA). 

The embedded characteristics of samples were analyzed by the above polarized light mi-

croscopy and scanning electron microscope. 

3. Results and Discussion 

3.1. Process Mineralogy of High-Sulfur Residue 

3.1.1. Chemical Composition and Sulfur Phase Distribution 

The chemical compositions of the pressure acid leaching residue are presented in Ta-

ble 1. Sulfur was the most abundant element whose content reached 46.21%, and the con-

tents of valuable elements lead, zinc, and silver achieved 1.92%, 4.31%, and 220 g/t. Thus, 

this was a high-sulfur residue and possessed a high economic value. The sulfur phase 

analysis in Table 2 showed that 81.97% of the sulfur in the residue existed as elemental 

sulfur, and the remaining sulfur mainly occurred in the form of sulfide. 

  

Figure 1. Appearance of the pressure acid leaching residue of zinc sulfide concentrate.



Minerals 2021, 11, 89 3 of 20

2.2. Experimental Methods

The flotation experiments of pressure acid leaching residue were performed in a self-
aeration XFD-63 flotation machine [26–28]. At the beginning of the test, the residue and tap
water were added into the cell and the pulp pH value was adjusted to 8.0 using lime. After
that, the collector and foaming agent (methyl isobutyl carbinol, MIBC) were successively
added into the pulp which was agitated at 1650 rpm for 2 min after the addition of each
reagent. The aeration flotation was conducted for 5 min, and the obtained concentrate and
tailing were dried and weighed for sulfur content detection to calculate sulfur recovery.

2.3. Analytical Methods

The elemental contents in solids were analyzed using acid digestion and atomic ab-
sorption spectrometer (AAS), and the elemental concentrations in solutions were measured
by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The sulfur phase
composition in the residue was determined by using a chemical selective dissolution
method which was performed based on the different dissolution behavior of sulfur phase
in different solvents [16]. The particle size distribution was examined by a wet screen
analysis. The mineralogical composition was ascertained by the results of chemical compo-
sition combined with X-ray diffractometer (XRD, PANalytical BV, X’Pert3 Powder, Almelo,
Netherlands), Leica DMLA polarized light microscopy (Leica Corporation, Wetzla, Ger-
many), scanning electron microscope (SEM, JSM-6360LV, JEOL, Tokyo, Japan), and energy
dispersive X-ray analysis (EDAX-GENESIS, California, San Diego, USA). The embedded
characteristics of samples were analyzed by the above polarized light microscopy and
scanning electron microscope.

3. Results and Discussion
3.1. Process Mineralogy of High-Sulfur Residue
3.1.1. Chemical Composition and Sulfur Phase Distribution

The chemical compositions of the pressure acid leaching residue are presented in
Table 1. Sulfur was the most abundant element whose content reached 46.21%, and the
contents of valuable elements lead, zinc, and silver achieved 1.92%, 4.31%, and 220 g/t.
Thus, this was a high-sulfur residue and possessed a high economic value. The sulfur phase
analysis in Table 2 showed that 81.97% of the sulfur in the residue existed as elemental
sulfur, and the remaining sulfur mainly occurred in the form of sulfide.

Table 1. Chemical compositions of the high-sulfur residue (mass fraction, %).

Element Cu Pb Zn S Fe SiO2 MgO

Content 0.20 1.92 4.31 46.21 15.4 6.91 1.38

Element Al2O3 CaO As Cd Mn Ag *

Content 0.51 1.60 0.23 0.03 0.27 220.00
* Unit g/t.

Table 2. Sulfur phase distributions of the high-sulfur residue (mass fraction, %).

Sulfur Phase Elemental Sulfur Sulfide Sulfate Total

Content 37.88 5.56 2.77 46.21
Distribution 81.97 12.03 6 100

3.1.2. Particle Size Distribution

The particle size distributions of the high-sulfur residue are shown in Table 3. The
portions of particles whose size fractions were +74 and −37 um achieved 22.77% and 66.00%
of the residue. Sulfur element was also mainly distributed in these two size fractions and
the ratios separately reached 36.53% and 43.91%. Although the thin particle with the size
fraction of −37 um had the largest sulfur distribution ratio, its sulfur grade was only 30.54%,
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which was evidently smaller than those (i.e. 72.07%, 83.18%, and 73.65%) of particles with
the size fraction of −44~+37 um, −74~+44 um, and +74 um. This is because most of the
other elements in the residue were also distributed in the size fraction of −37 um.

Table 3. Particle size distributions of the high-sulfur residue (mass fraction, %).

Size Fraction (um) 74 −74~+44 −44~+37 −37
Mass 22.77 8.06 3.17 66

S grade 73.65 83.18 72.07 30.54
S distribution ratio 36.53 14.58 4.98 43.91

3.1.3. Mineralogical Composition

The XRD spectrogram of the high-sulfur residue is shown in Figure 2, and the content
of each mineral is displayed in Table 4. It can be seen that the residue had a complex
mineralogical composition. Elemental sulfur was the major mineral which accounted for
37.88% of the residue. The remaining minerals could be mainly divided into four categories:
sulfides (pyrite, sphalerite, and chalcopyrite), sulfates (ferric sulfate and sardinianite),
oxides (quartz, massicot, and limonite), and silicates (calcium, magnesium, iron, and
aluminum silicates).
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Figure 2. XRD spectrogram of the high-sulfur residue.

Table 4. Mineralogical compositions of the high-sulfur residue.

Mineral Formula Content (%)

Elemental sulfur S 37.88
Ferric sulfate FeSO4 15

Pyrite FeS2 10
Limonite Fe2O3·3H2O 10
Sphalerite ZnS 3.5

Chalcopyrite CuFeS2 0.5
Massicot PbO 1.8

Sardinianite PbSO4 0.2
Silicates None 14.32
Quartz SiO2 2
Others None 4.8
Total None 100
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3.1.4. Embedded Characteristic of Elemental Sulfur

Elemental sulfur was the primary mineral in the high-sulfur residue, and its embedded
characteristic was analyzed and the results are shown in Figure 3a–d. From these figures,
it can be concluded that elemental sulfur mainly existed as the following three forms:
(1) Most of elemental sulfur existed in the form of pellet aggregate, which was generally
30–500 um in diameter (Figure 3a). A small amount of pyrite, sphalerite, and chalcopyrite
were wrapped in the aggregate, and emulsion droplet chalcopyrite was found in sphalerite
(Figure 3b). Elemental sulfur had estuary relation with the three metallic minerals. (2)
A spot of elemental sulfur occurring as biconical autochthonous crystal with the size of
5–90 um was distributed in iron sulfate and limonite (Figure 3c). (3) Bits of 1–5 um shells
of iron sulfate and limonite were observed on the surface of pellet aggregate of elemental
sulfur (Figure 3d).
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3.2. Flotation Experiment
3.2.1. Flotation Conditional Experiment

In order to realize the selective flotation separation of elemental sulfur from the high-
sulfur residue, it is very important to select a suitable collector and depressant. Since most
of the sulfur in the residue existed as elemental sulfur which has good hydrophobicity, and
thus blank flotation without adding any reagents was first conducted. The obtained tailing
was used for the collector selection test whose flow sheet was displayed in Figure 4a. In
addition, in the following conditional experiment, the grade and recovery of total sulfur in
the concentrate were considered for selecting the optimal condition because the higher the
grade and recovery of total sulfur, the higher the purity and recovery of elemental sulfur.

The effect of collector type on sulfur flotation was first investigated, and the result is
shown Figure 5a. When O-isopropyl-N-ethyl thionocarbamate (Z-200) (dosage: 10 g/t)



Minerals 2021, 11, 89 6 of 20

was used as the collector, the sulfur recovery and its grade in the concentrate separately
achieved 93.43% and 71.44%, which were larger than the results for the same dosage
of three other collectors including ammonium dibutyl dithiophosphate (ADDTP), ethyl
thiocarbamate (ETCM), and ethyl xanthate (EX). So, among the four collectors, Z-200
presented the optimal flotation performance for the sulfur in the high-sulfur residue.

To strengthen the separation of elemental sulfur from its gangue minerals, especially
metallic sulfides, suitable depressant needs to be added to inhibit their flotation. The flow
sheet is shown in Figure 4b, and the result of effect of depressant type on sulfur flotation
is displayed in Figure 5b. The sulfur grade separately increased to 79.18%, 78.36%, and
78.62% when the same dosages (1000 g/t) of Na2S, ZnSO4, and Na2SO3 were adopted.
Therefore, the use of three depressants was beneficial to improve the sulfur grade. When
the mixture of three depressants (dosage: (350 + 350 + 350) g/t) was used, the grade arrived
at 81.05%. So, the sulfur grade in the concentrate was further improved by the combination
of the three depressants.

From the above, Z-200 and Na2S + ZnSO4 + Na2SO3 were the optimal collector and
depressant. The effects of their dosages on sulfur flotation were investigated according to
the flow sheets in Figure 4c,d, and the results are displayed in Figure 6a,b. Both the sulfur
grade and recovery increased with the increase of Z-200 and Na2S + ZnSO4 + Na2SO3
dosages in the initial ranges of 0–10 g/t and (100 + 100 + 100) – (300 + 300 + 300) g/t. After
that, the two indexes began to drop with the further increase of collector and depressant
dosages. So, the optimal dosages of Z-200 and Na2S + ZnSO4 + Na2SO3 were 10 g/t and
(300 + 300 + 300) g/t.
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dosages on sulfur flotation.
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3.2.2. Flotation Flowchart Experiment

According to the above results of flotation conditional experiment, 90.28% of the
sulfur in the residue could be recovered and the sulfur grade in the obtained concentrate
achieved 82.05% by using the flotation flowchart of one-time blank rougher and one-time
agent-added rougher with 10 g/t Z-200 as the collector and (300 + 300 + 300) g/t Na2S
+ ZnSO4 + Na2SO3 as the depressant. In order to improve the grade and recovery, it is
necessary to increase the numbers of rougher and cleaner flotation. The flow sheets of
conditional experiments were displayed in Figures 7–12, and the results are shown in
Tables 5 and 6.

From Table 5, it can be known that when the agent-added rougher number was two,
the sulfur recovery increased to 94.16%. Further increase of agent-added rougher number
did not lead to the increase of the recovery. Thus, the suitable agent-added rougher number
was two. As shown in Table 6, the increase of the cleaner number effectively improved
the sulfur grade. When 2-time cleaners were conducted, the sulfur grade rose to 91.88%.
The grade did not evidently increase with the further increase of cleaner number. So, the
optimal cleaner number was also two.
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Table 5. Effect of the agent-added rougher number on sulfur flotation.

Rougher Number Product Yield (%) S Grade (%) S Recovery (%)

1
Concentrate 50.57 82.05 90.28

Tailing 49.43 9.07 9.72
Feed 100.00 45.95 100.00

2
Concentrate 62.94 68.73 94.16

Tailing 37.06 7.24 5.84
Feed 100.00 45.94 100.00

3
Concentrate 63.30 67.56 94.01

Tailing 36.70 7.42 5.99
Feed 100.00 45.49 100.00

Table 6. Effect of the cleaner number on sulfur flotation.

Cleaner Number Product Yield (%) S Grade (%) S Recovery (%)

1

Concentrate 48.26 85.16 89.37
Middling 1 17.43 13.39 5.07

Tailing 34.31 7.44 5.55
Feed 100.00 45.98 100.00

2

Concentrate 44.32 91.88 88.53
Middling 1 12.75 14.45 4.01
Middling 2 8.80 9.8 1.88

Tailing 34.13 7.53 5.59
Feed 100.00 45.99 100.00

3

Concentrate 44.33 92.15 89.21
Middling 1 11.70 14.05 3.59
Middling 2 7.44 8.98 1.46
Middling 3 3.11 4.05 0.28

Tailing 33.41 7.49 5.47
Feed 100.00 45.79 100.00

3.2.3. Flotation Closed-Circuit Experiment

In order to investigate the effect of middling return on sulfur flotation, a closed-circuit
flotation experiment was carried out. The flowchart is shown in Figure 13, where the tailing
of the 1st cleaner (middling 1) was returned to the blank rougher, and the tailing of the 2nd
cleaner (middling 2) went back to the 1st cleaner. Five-time repeated tests were conducted,
and the results are listed in Table 7. It can be known from the table that after closed-circuit
flotation of the high-sulfur residue, a concentrate with 91.25% of sulfur grade and 90.56%
of sulfur recovery was obtained.

The quantity–quality flowchart was drawn based on the flotation results, as shown in
Figure 14. The 90.56% of S, 9.27% of Zn, 6.20% of Ag, and 2.83% of Pb in the high-sulfur
pressure acid leaching residue entered the concentrate. Further, 9.44% of S, 90.73% of Zn,
93.80% of Ag, and 97.17% of Pb went into the tailing. The above results indicated that S
was enriched in the concentrate product while Zn, Ag, and Pb were enriched in the tailing
product. For the obtained two products, the elemental sulfur concentrate can be directly
sold out, and the tailing can be used as the raw material of lead smelting to further recover
valuable elements Zn, Ag, and Pb.
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Figure 13. The flowchart of the closed-circuit flotation experiment of high-sulfur residue.

Table 7. The results of the closed-circuit flotation experiment of high-sulfur residue.

Cycle Number Product Yield (%) S Grade (%) S Recovery (%)

1
Concentrate 45.17 92.73 91.34

Tailing 54.83 7.24 8.66
Feed 100.00 45.86 100.00

2
Concentrate 45.48 91.73 90.71

Tailing 54.52 7.84 9.29
Feed 100.00 45.99 100.00

3
Concentrate 45.66 91.27 90.71

Tailing 54.34 7.85 9.29
Feed 100.00 45.94 100.00

4
Concentrate 45.49 91.22 90.63

Tailing 54.51 7.87 9.37
Feed 100.00 45.79 100.00

5
Concentrate 45.00 91.25 90.36

Tailing 55.00 7.97 9.64
Feed 100.00 45.45 100.00

The average
result of the last

three tests

Concentrate 45.38 91.25 90.56
Tailing 54.62 7.90 9.44
Feed 100.00 45.72 100.00
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3.3. Cycle Use of Return Water

The cycle use of return water can not only reduce the consumption of limited fresh-
water resources, but also avoid the water pollution caused by the discharge of flotation
wastewater [29]. Thus, the closed-circuit flotation experiment was conducted to investigate
the effect of cycle use of return water on sulfur flotation. Here, five-time cycle tests were
performed using the flowchart in Figure 13, where for each cycle, the filtrates of flotation
concentrate and tailing are mixed and returned to the grinding and slurry mixing processes
of the next cycle.

The concentration variation of each element in the filtrates of flotation concentrate
and tailing with the increase of the cycle number is indicated in Tables 8 and 9. The con-
centrations of zinc, sulfur, calcium, sodium, and magnesium in the two filtrates increased
with the cycle number in the range of 1–3, and then gradually stabilized when the cycle
number was beyond three. The increased concentrations of the first four elements can be
ascribed to the use of depressant while the augment of magnesium concentration may be
due to the dissolution of magnesium-bearing minerals. In comparison, the variations of
other elements were not obvious. The effect of cycle number of filtrates on sulfur flotation
is shown in Table 10. The sulfur grade and recovery first exhibited a very slight decrease as
the cycle number increased, which can be ascribed to the unfavorable impacts originating
from the gradual accumulation of impurity elements in the filtrates. However, the two
indexes remained at a stable high level after three cycles. Thus, the cycle use of return
water did not exert obvious negative effect on sulfur flotation.
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Table 8. The total element analysis results of concentrate filtrate.

Element Concentration (mg/L)
Cycle Number

1 2 3 4 5

Zn 265.85 532.23 797.36 799.15 796.20
S 556.33 1022.67 1459.43 1467.22 1469.00

Mg 170.67 309.00 444.58 439.97 446.30
Ca 219.60 340.20 455.23 462.77 458.80
Na 37.97 55.94 68.20 71.13 73.90
Si 3.50 3.67 3.72 3.58 3.60
K 2.90 2.82 2.78 2.92 3.00

Cd 0.16 0.15 0.13 0.12 0.12
Al 0.99 1.01 0.87 0.92 0.80
Pb 0.03 0.01 0.02 0.02 0.02
Ni 0.09 0.12 0.05 0.07 0.08
Fe 0.22 0.18 0.25 0.12 0.10

Table 9. The total element analysis results of tailing filtrate.

Element Concentration (mg/L)
Cycle Number

1 2 3 4 5

Zn 744.12 1487.77 2232.53 2233.95 2231.00
S 825.68 1554.56 2267.88 2279.31 2280.00

Mg 239.30 448.43 618.37 622.89 651.50
Ca 243.12 384.88 524.76 526.88 528.70
Na 40.83 62.66 80.43 81.45 82.50
Si 3.79 3.85 3.97 4.14 4.00
K 2.79 2.80 2.93 3.05 3.20

Cd 0.19 0.20 0.23 0.23 0.23
Al 1.13 1.35 1.52 1.48 1.40
Pb 0.02 0.03 0.02 0.01 0.03
Ni 0.08 0.07 0.09 0.10 0.10
Fe 0.22 0.35 0.33 0.29 0.30

Table 10. Effect of cycle number of filtrates on sulfur flotation.

Cycle Number Product Yield (%) S Grade (%) S Recovery (%)

1
Concentrate 45.41 92.33 91.28

Tailing 54.59 7.34 8.72
Feed 100.00 45.94 100.00

2
Concentrate 45.59 91.23 90.55

Tailing 54.41 7.98 9.45
Feed 100.00 45.93 100.00

3
Concentrate 45.57 91.27 90.65

Tailing 54.43 7.88 9.35
Feed 100.00 45.88 100.00

4
Concentrate 45.33 91.24 90.49

Tailing 54.67 7.95 9.51
Feed 100.00 45.71 100.00

5
Concentrate 45.69 91.25 90.67

Tailing 54.31 7.9 9.33
Feed 100.00 45.98 100.00
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3.4. Process Mineralogy of Flotation Product
3.4.1. Chemical Composition and Sulfur Phase Distribution

After the closed-circuit flotation of the high-sulfur residue, a concentrate and a tailing
were obtained and their appearances are shown in Figure 15a,b. It can be seen that these
two flotation products were separately presented as light grey and red-orange powders,
and their chemical compositions are displayed in Tables 11 and 12.

The sulfur content in the concentrate achieved 91.25%, which was much larger than
that (i.e., 46.21%) in the leaching residue. The contents of silver, lead, and zinc were
separately 30 g/t, 0.12% and 0.88%, which were evidently lower than those (i.e., 220 g/t,
1.92% and 4.31%) in the residue. In comparison, the sulfur content in the tailing was only
7.90% while the contents of silver, lead and zinc were as high as 377 g/t, 3.42% and 7.16%.
Thus, it can be concluded that sulfur in the high-sulfur residue was effectively enriched in
the concentrate, and the main valuable elements including silver, lead, and zinc mainly
went into the tailing.

The results of sulfur phase analysis for the concentrate and tailing are displayed in
Tables 13 and 14. Further, 83.46% of the sulfur in the concentrate existed as elemental
sulfur, i.e., the purity of elemental sulfur concentrate product achieved 83.46%. Therefore,
elemental sulfur phase primarily went into the concentrate. In comparison, only 0.13% of
the sulfur in the tailing occurred as elemental sulfur, and the percentages of sulfide and
sulfate separately reached 36.20% and 63.67%. Thus, sulfide and sulfate phases mainly
entered the tailing.

Taking 100 kg of the high-sulfur residue as an example, the recovery of elemental
sulfur was calculated as follows:

Recovery = (100 × 45.38% × 83.46%)/(100 × 37.88%) = 99.9%.

The calculated result showed that 99.9% of the elemental sulfur in the high-sulfur
residue was recovered using the developed closed-circuit flotation process.
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Table 11. Chemical compositions of the concentrate product (mass fraction, %).

Element Cu Pb Zn S Fe SiO2 MgO

Content 0.45 0.12 0.88 91.25 4.18 0.49 0.23

Element Al2O3 CaO As Cd Mn Ag *

Content 0.03 0.14 0.03 0.005 0.13 30
* Unit g/t.
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Table 12. Chemical compositions of the concentrate product (mass fraction, %).

Element Cu Pb Zn S Fe SiO2 MgO

Content 0.13 3.42 7.16 7.90 27.00 13.93 0.37

Element Al2O3 CaO As Cd Mn Ag *

Content 0.01 0.38 0.39 0.05 0.17 377
* Unit g/t.

Table 13. Sulfur phase distribution for the concentrate product (mass fraction, %).

Sulfur Phase Elemental Sulfur Sulfide Sulfate Total

Content 83.46 7.74 0.05 91.25
Distribution 91.46 8.48 0.05 100

Table 14. Sulfur phase distribution for the tailing product (mass fraction, %).

Sulfur Phase Elemental Sulfur Sulfide Sulfate Total

Content 0.01 2.86 5.03 7.9
Distribution 0.13 36.2 63.67 100

3.4.2. Particle Size Distribution

The particle size distributions of the concentrate and tailing are shown in Tables 15 and 16.
The concentrate presented a scattered particle size distribution. Particularly, the particle
with the size fraction of +74 um accounted for the maximum proportion (38.43%), and S
distribution ratio in this fraction was also higher than those in other fractions. This may be
because the elemental sulfur, the main mineral in the high-sulfur residue, agglomerated
with each other during flotation and then entered the concentrate. In comparison, the parti-
cle size distribution of the tailing was concentrated. The proportion of the particle whose
size fraction was −7 um achieved 97.65% while those of other fractions were very low.

Table 15. Particle size distributions of the concentrate product (mass fraction, %).

Size Fraction (um) 74 −74~+44 −44~+37 −37
Mass 38.43 31.19 7.14 23.24

S grade 91.67 95.21 87.33 86.46
S distribution ratio 38.61 32.54 6.83 22.02

Table 16. Particle size distributions of the tailing product (mass fraction, %).

Size Fraction (um) 74 −74~+44 −44~+37 −37
Mass 0.05 1.56 0.74 97.65

S grade 8.16 17.62 7.81 7.75
S distribution ratio 0.05 3.48 0.73 95.74

3.4.3. Mineralogical Composition

The XRD spectrograms of the flotation concentrate and tailing products are displayed
in Figure 16a,b, and the content of each mineral is listed in Tables 17 and 18. The min-
eralogical compositions of the concentrate were simple, and elemental sulfur was the
only detected mineral whose content arrived at 83.46%. In comparison, the mineralogical
compositions of the tailing were complex. It mainly contained calcium, magnesium, iron,
and aluminum silicates and ferric sulfate, small amounts of pyrite, limonite, sphalerite,
and quartz, and trace amounts of elemental sulfur.
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Table 17. Mineralogical compositions of the concentrate product (mass fraction, %).

Mineral
Content

Elemental Sulfur
83.46

Ferric Sulfate
3.89

Pyrite
4.41

Limonite
1.83

Sphalerite
0.77

Chalcopyrite
0.55

Mineral
Content

Massicot
0.79

Sardinianite
0.06

Silicates
1.26

Quartz
0.88

Others
2.1

Total
100

Table 18. Mineralogical compositions of the flotation tailing product (mass fraction, %).

Mineral
Content

Elemental Sulfur
0.01

Ferric Sulfate
24.23

Pyrite
14.56

Limonite
16.79

Sphalerite
5.77

Chalcopyrite
0.46

Mineral
Content

Massicot
2.64

Sardinianite
0.32

Silicates
25.17

Quartz
2.93

Others
7.04

Total
100

3.4.4. Embedded Characteristic of Flotation Products

The embedded characteristics of major minerals in the concentrate and tailing are
shown in Figure 17a,b and Figure 18a–c. As indicated in Figure 17a,b, elemental sulfur,
the main mineral in the concentrate, mainly existed in the form of pellet aggregate. Part
of the elemental sulfur was closely associated with pyrite, sphalerite, and chalcopyrite,
and these three sulfides primarily presented as irregular particles and were wrapped
in the aggregate of elemental sulfur. It is difficult to separate this part of sulfides from
elemental sulfur, which accounted for the presence of some sulfides in elemental sulfur
concentrate. As displayed in Figure 18a–c, calcium, magnesium, iron, aluminum silicates
in the tailing mainly existed in irregular columnar and granular forms. In addition, sulfides
(i.e., chalcopyrite, sphalerite, and pyrite) and ferric sulfate had a close intergrowth relation.
Chalcopyrite occurred in the form of emulsion droplet and was wrapped by sphalerite.
Sphalerite and pyrite were embedded in ferric sulfate in disseminated or irregular granular
forms. The complex embedded relationships between sulfides and between sulfides and
sulfate made it difficult to separate them by flotation. Since the tailing contained high
amounts of silver, lead, and zinc according to the results of chemical composition analysis
in Section 3.4.1, thus it can mix with lead concentrate and be used as the raw material of
lead smelting to comprehensively recover these valuable elements.
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Figure 17. Embedded characteristics of major minerals in the concentrate (S: elemental sulfur; Py-pyrite; Sph: sphalerite;
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4. Conclusions

An efficient flotation process was proposed to selectively separate elemental sulfur
from a high-sulfur pressure acid leaching residue of zinc sulfide concentrate. Based on the
experimental results, the following conclusions can be drawn.

(1) The chemical composition and sulfur phase distribution showed that the sulfur
content in the residue arrived at 46.21%, and 81.97% of the sulfur existed as elemental
sulfur. The particle size distribution indicated that the portion of thin particle with the size
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of -37 um achieved 66.00%, and 43.91% of sulfur in the residue was distributed in this size
fraction. The mineralogical composition analysis confirmed that elemental sulfur was the
major mineral in the residue whose content reached 37.88%. The embedded characteristics
analysis manifested that elemental sulfur mainly existed as pellet aggregate and biconical
autochthonous crystal.

(2) An efficient flotation process of one-time blank rougher, two-time agent-added
roughers, and two-time cleaners with Z-200 as the collector and Na2S + ZnSO4 + Na2SO3
as the depressant was developed for recovering elemental sulfur in the high-sulfur residue.
Under the optimal conditions, the recovery of elemental sulfur and its purity in the obtained
concentrate separately reached 99.9% and 83.46%. The cycle use test of return water
indicated that the concentration of major elements in the return water gradually leveled
off with the increase of cycle number, and the return water still displayed a good flotation
performance for elemental sulfur after 5-time cycles.

(3) The chemical composition and quantity-quality flowchart analysis indicated that
the concerned elements in the high-sulfur residue were directionally distributed in the
concentrate and tailing products. Further, 90.56% of S in the residue entered the concentrate
while 90.73% of Zn, 93.80% of Ag, and 97.17% of Pb went into the tailing. The mineral
composition and embedded characteristic analysis manifested that the directional distri-
bution of main minerals in the residue was also realized. Elemental sulfur occurring as
pellet aggregate entered the concentrate, while silicates existing in irregular columnar and
granular forms, and sulfides and sulfates presenting close intergrowth went into the tailing.
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