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Abstract: The growing importance and demand of lithium (Li) for industrial applications, in 
particular rechargeable Li-ion batteries, have led to a significant increase in exploration efforts for 
Li-bearing minerals. To ensure and expand a stable Li supply to the global economy, extensive 
research and exploration are necessary. Artificial neural networks (ANNs) provide powerful tools 
for exploration target identification. They can be cost-effectively applied in various geological 
settings. This article presents an integrated approach of Li exploration targeting using ANNs for 
data interpretation. Based on medium resolution geological maps (1:50,000) and stream sediment 
geochemical data (1 sample per 0.25 km2), the Li potential was calculated for an area of 
approximately 1200 km2 in the surroundings of Bajoca Mine (Northeast Portugal). Extensive 
knowledge about geological processes leading to Li mineralisation (such as weathering conditions 
and diverse Li minerals) proved to be a determining factor in the exploration model. Furthermore, 
Sentinel-2 satellite imagery was used in a separate ANN model to identify potential Li mine sites 
exposed on the ground surface by analysing the spectral signature of surface reflectance in well-
known Li locations. Finally, the results were combined to design a final map of predicted Li 
mineralisation occurrences in the study area. The proposed approach reveals how remote sensing 
data in combination with geological and geochemical data can be used for delineating and ranking 
exploration targets of almost any deposit type.  

Keywords: lithium; mineral predictive mapping; exploration targeting; artificial neural networks; 
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1. Introduction 
Lithium (Li) is on the European Union’s (EU) list of critical raw materials [1], is an 

important element in modern technology applications, and plays a key role in the 
realisation of electromobility and effective energy storage. The supply of Li to the global 
industry depends on expanding the supply of resources. Therefore, the exploration of 
new Li deposits is vital to the establishment of a stable Li supply in the global economy. 
At present, about 50% of the global Li production is used in batteries, while 30% is used 
in the ceramics and glass sector. Minor shares are used in pharmaceuticals and the 
production of specialised lubricating grease [2]. Li-rich minerals (mainly from Li 
pegmatites) now account for more than half of the world’s lithium production. 

Li pegmatites have been extensively studied from an economic, petrographical, and 
geochemical point of view. The relative importance of pegmatite, brine, and other 
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deposits is discussed by [3], leading to the conclusion that Li pegmatites, while certainly 
much smaller in tonnage than brine deposits, are a valuable asset to the global Li market 
due to their widespread occurrence. Li pegmatites could therefore lead to a geographical 
diversification in lithium production that would counteract the geopolitically restricted 
distribution of brine deposits [4]. General characteristics for such Li pegmatites are 
enrichment in distinct elements (Rb, Cs, Be, Ta, Nb, Sn, Li, P, F, and B) and distinct 
geochemical composition, but limited volumes. Economic pegmatitic lithium 
mineralisations are dominated by the minerals spodumene (LiAlSi2O6), petalite 
(LiAlSi4O10), and lepidolite group minerals (K[Li,Al]3[Si,Al]4O10[F,OH]2), and [5] improved 
the understanding of the crystallisation conditions of rare-element pegmatites by 
constructing a lithium aluminosilicate phase diagram. However, mechanisms for Li 
predictivity are only rarely addressed [5].  

Portugal hosts considerable Li resources [3,6] and is the first Li-producing European 
country, but represents only 1.3% of world production [6]. Recent exploration by different 
mining companies increased the Portuguese reserves multiple times and significant 
research was performed to enhance the understanding of Li mineralisation types and 
deposits. An overview of Li-rich mineral occurrences in northern Portugal is provided by 
[7], and [8] covered the different styles of Li mineralisations (aplite–pegmatite dykes 
occurring in pegmatitic fields, Li mineralisation associated with leucogranitic cupolas, 
beryl–phosphate pegmatites, and quartz–montebrasite veins).  

Artificial neural networks (ANNs) are powerful in the early stages of resource 
exploration. In recent years, several studies proved the potential of ANNs and their uses 
in geological contexts, e.g., [9–12]. Neural networks have several advantages over existing 
methods, including the ability to respond to critical combinations of parameters, the 
combination of datasets without the loss of information inherent in existing methods, and 
results that are relatively unaffected by redundant data, spurious data, and data 
containing multiple populations [9]. A Geographic Information System (GIS), in concert 
with ANN software, offers great potential by providing a range of tools to query, 
manipulate, visualise, and analyse geological, geochemical, and geophysical data in 
mineral exploration applications [11]. Mineralisation potential maps can be easily 
produced to delineate areas for further exploration and therefore reduce the size of the 
actual fieldwork areas (thus time and expenditure) significantly. 

This study aims to use ANNs to process classical geological data (maps and 
geochemical analyses) reliably and cost-effectively to enhance exploration targeting. As 
part of the LIGHTS project (Lightweight Integrated Ground and Airborne Hyperspectral 
Topological Solution; http://lights.univ-lorraine.fr/; accessed on 23 September 2021), this 
study aims to design a new exploration process chain at the target scale. Prospective areas 
with previously unknown Li mineralisations will then strengthen the geological 
understanding of the area and refine geological and minerogenetic maps. Moreover, this 
study assesses for the first time the potential use of different datasets and their 
combination according to known metallogenic aspects of the study area. Similar 
approaches could be extended to other areas of the Iberian Peninsula or even the 
European Variscides, allowing an increase in the knowledge on Li pegmatite distribution. 

1.1. Geological Overview of the Test Area  
Li mineralisation can be traced across the whole Central Iberian Zone (CIZ) of the 

Iberian Massif [8,13]. The CIZ represents parts of the westernmost segment of the Variscan 
Orogenic Belt of Europe, the latter extending from the Bohemian Massif across the Massif 
Central and the Armorican Massif to the north-western tip of the Iberian Peninsula, e.g., 
[14]. Geologically, the CIZ is dominated by S-type Variscan granitoid batholith complexes 
and adjacent metasedimentary zones (e.g., [13,15,16]). The main Li mineralisation in the 
CIZ is associated with pegmatitic to aplitic textured intrusive dykes of granitic 
composition [8]. The most Li-enriched dykes are unzoned and exhibit aplitic textures, 
often showing host-rock-contact parallel layering [13]. Additionally, Li occurrences of 
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subsequent economic importance appear as quartz–phosphate veins and metasomatic 
modified cupolas of albite granites [8].  

The approximate 1200 km2 study area is located in north-western Portugal and covers 
major parts of the Fregenedra–Almendra pegmatitic field (FAF), CIZ (c.f. [17–19]) (Figure 
1). The area is characterised by various pegmatite and aplite textured dykes hosted by 
Precambrian to Cambrian metasediments of the schist–metagreywacke complex 
(Complexo Xisto-Grauváquico, [20,21]) north of the Meda-Penedono-Lumbrales 
Granitoid Complex [22], recently designated as the Figueira de Castelo Rodrigo–
Lumbrales Anatectic Complex [23,24]. The metasedimentary rocks of the schist–
metagreywacke complex may contain quartz, white mica, biotite, plagioclase, K-feldspar, 
chlorite, zircon, apatite, tourmaline, calcite, epidote, sphene, actinolite, monazite, and 
opaque minerals [25]. The Granitoid Complex is mainly composed of syn-Variscan two-
mica granites [26,27] composed of quartz, plagioclase, potassic feldspar, biotite, 
muscovite, chlorite, sillimanite, zircon, apatite, rutile, and opaque minerals [24]. The Li-
rich dykes are predominated by aplitic textures, with some exhibiting layering of Li-
mica+quartz alternating with albite+quartz sequences [8]. The mainly sub-vertical bodies 
display simple mineralogy including albite, k-feldspar, quartz, and muscovite (barren 
type) associated with spodumene, petalite, and Li-micas in variable proportions 
(intermediate and rare-element type) [8]. Common accessory minerals are Li-phosphates, 
cassiterite, and Nb–Ta oxides [8]. The FAF is bounded at the northeast by the Lower 
Ordovician quartzites from the Poiares’ syncline. Alternating Ordovician quartzites and 
phyllites occur in the smaller Castelo Melhor’s syncline. Cenozoic sedimentary deposits 
of diverse origins occur throughout the region [26–31]. 
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Figure 1. Extent of the simplified digitised geological maps, open-pit mines exploiting Li minerals, and the stream 
sediment data within the study area in NE Portugal (Coordinate System: Lisboa Hayford Transverse Mercator, Projection: 
Transverse Mercator). 

1.2. Remote Sensing Data 
Remote sensing is a powerful and cost-effective data source to collect up-to-date and 

historical information about the ground surface. In recent years, remote sensing data have 
been intensively used in geology applications for the exploration and identification of 
different mineralisation types and related mining activities, e.g., [32–34]. 

In the framework of the LIGHTS project, several methodological approaches have 
been developed to identify Li pegmatite areas through optical remote sensing data, 
including different types of satellite products such as ASTER, Landsat-5, Landsat-8, and 
Sentinel-2 [35,36]. In this regard, different machine learning algorithms have been 
employed to allow the automatic identification of Li pegmatites [37,38].  

In this study, we elaborate on the potential of new Sentinel-2 derivatives to improve 
the automatic detection of Li-bearing mineralisation and introduce a new approach to 
differentiate Li-bearing mineralisation from other features with similar spectral 
signatures. The use of Sentinel-2 satellite imagery brings three main advantages compared 
to the other free-of-charge optical remote sensing data: (1) low-to-medium spatial 
resolution (4 × 10 m Bands, 6 × 20 m Bands, 3 × 60 m Bands); (2) multispectral data from 
the Visible (VNIR) and Near Infra-Red (NIR) to the Short Wave Infra-Red (SWIR), in 13 
compressed JPEG-2000 images covering the total spectral range between 0.443 μm and 
2.190 μm; (3) a temporal resolution of 5 days at the Equator since 2015. Additional 
information may be found in guides available on the ESA Sentinel website: 
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi (accessed on 23 
September 2021). 

2. Data and Processing 
2.1. Geological Data 

Geological maps of the study area [28–31] provide the geological framework for this 
study and were used to identify and digitise pegmatites using ArcGIS software (ArcGIS 
10.6, Environmental Systems Research Institute, Redlands, CA, USA). Based on the 
Portuguese Geological Surveys 1:50,000 geological maps of Portugal [28–30], and, when 
not available, using the 1:80,000 geological map from the Côa Valley Archaeological Park 
[31], a unified geological map was created covering the entire study area. Afterwards, a 
simplified map (Figure 1) was produced by grouping the Variscan granitoids, the 
Precambrian and Paleozoic metasediments, and the Cenozoic sedimentary cover into 
distinct classes, to aid the masking and processing stages. Finally, topological data 
analysis was performed to check any mistakes committed during all the processes created 
in ArcGIS software (ArcGIS 10.6, Environmental Systems Research Institutery, Redlands, 
CA, USA). These digital maps were used to create rastered data of individual geological 
units for further use in the prediction software. 

2.2. Stream Sediment Data Processing 
Stream sediment geochemical data (survey spot position and geochemical analysis) 

were obtained from earlier studies [39–41] carried out on campaigns in the early 1980s by 
the French Bureau de Recherches Géologiques et Minières (BRGM) with the Portuguese 
institution Serviço de Fomento Mineiro (SFM). A total of 3.715 stream sediment samples, 
including 298 samples from a more detailed campaign near Bajoca Mine, were collected 
in the FAF region covering an area of >1.250 km2 in NE Portugal. The catchment creation 
was based on digital elevation model (DEM) data and the flow direction network. During 
the following procedure, center points of the catchment polygons were calculated using 
ArcGIS v10.6 software. Subsequently, raster datasets for various elements were created 
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applying inverse distance weighting (IDW) interpolation on the catchment center points 
containing related geochemical information. Stream sediment data included analyses of 
the elements/compounds Ag, Al2O3, As, B, Ba, Be, Bi, CaO, Cd, Co, Cr, Cu, Fe2O3, K2O, La, 
Li, MgO, MnO, Mo, Na2O, Nb, Ni, P2O5, Pb, Sb, SiO2, Sn, Sr, TiO2, V, W, Y, Zn, and Zr. The 
multi-element quantification was achieved on the fine fraction below 60 mesh (250 
microns or 0.25 mm) by optical emission spectrometry (quantometer studies, [39,40,42]). 
There is no information on the digestion methods and analytical precision of the analyses 
in the historical reports available. 

2.3. Exploration Model 
Li mineralisations in the study area occur principally in aplite–pegmatite bodies and 

hydrothermal veins [8], all with spatial relation to a granitic body (Figure 2). Regionally, 
Li mineralisation occurs in highly evolved aplite–pegmatite dykes hosted within 
metasedimentary rocks, with an increasing fractionation degree as the distance to the 
granite increases [8,42]. However, the regional granites are enriched in elements such as 
Li, P, or Rb when compared with the metasediments [13]. It is therefore important to 
separate these two lithologies, since Li signals could occur both in granites from their 
initial Li content (low Li content but huge volume) or Li pegmatites (high Li content but 
low volume), but cannot be clearly distinguished in the stream sediment data (Figure A1; 
Appendix A). Hence, we excluded stream sediment data from granite areas since 
pegmatitic Li mineralisations (in the study area) are commonly hosted only by 
metasedimentary rocks and apical or marginal areas of granitic intrusions hosted by 
metasediments [42]. Therefore, the prediction models will not cover the granitic areas 
(which are of low interest for Li-bearing pegmatites). 
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Figure 2. Geological profile of Bajoca Mine featuring Li-bearing pegmatite dykes with spatial relation to a granitic body 
hosted within metasedimentary rocks. The Li mineralisation is heterogeneously distributed within the dykes, since there 
is no internal zoning [13], while Sn mineralisation is concentrated along the aplite–pegmatite contact borders. The 
drillholes are projected in the profile, each one presenting variable directions and dips (from N115° E to N118° E; 39° to 
45° S for S3; N125° E; 40° to 45° S for S3A; and from N124° E to N127° E; 41° to 45°S for S22B). 

2.4. Unclassified Factor Analysis 
Unclassified factor analyses of the stream sediment data were conducted using the 

statistical software Statgraphics Centurion XV to obtain a preliminary overview of the 
elements related to local Li mineralisation and to reduce the overall input data for the 
prediction software. The stream sediment data were clipped by the buffered extent of the 
mapped pegmatites (buffer 1000 m) to reduce the obscuring influence of samples from 
granitic and metamorphic rocks on pegmatitic samples.  

Seven factor classes (with Eigenvalues > 1) could be identified and attributed: (1) 
metamorphic signature, (2) granitoid signature, (3) polymetallic signature, (4) siliceous 
signature, (5) Li-emphasised, (6) Sn(–Nb)-emphasised, and (7) W–Ti-emphasised. The Li-
emphasised class has relatively high Li contents and shows coherent enrichments in Sn, 
As, Mo, Cu, and Ag. The data from these elements were subsequently used in the ANN 
model. 

2.5. Sentinel-2 Imagery 
Sentinel-2 image data were freely downloaded from the online data archive of the 

European Space Agency (ESA) (https://scihub.copernicus.eu/dhus; accessed on 23 
September 2021). Their properties are described in Table 1. The selected acquisition meets 
the following criteria: (1) complete coverage of the study area; (2) cloud-free image over 
the study area; (3) good exposure of the Li mineralisation on the ground surface during 
the acquisition time.  

Table 1. Downloaded Sentinel-2 satellite image data over the study area. 

Tile Data Product Spatial 
Resolution 

Data 
Source 

Reference 
System 

Date of 
Acquisition 

Cloud 
Coverage 

T29TPF 2A 10m, 20m, 60m ESA UTM29N / 
WGS84 

20191002 2.3% 

The proposed approach for the identification of Li-bearing pegmatites with optical 
images applies only to vegetation-free or -less areas, and ideally to regions with visually 
exposed bedrock. In the present study case, the study area is dominated by poor 
vegetation coverage and therefore represents adequate conditions for the identification of 
Li pegmatites exposed on the ground surface. 

The selected satellite image is available as a Bottom-of-Atmosphere product (Level 
2A), i.e., the reflectance values are already atmospherically corrected and refer to the 
surface reflectance. The raw spectral reflectance values were further pre-processed as 
denoted in the following steps: 
1. Super-resolving Sentinel-2 Multispectral Imagery to 10 m spatial resolution 

The low-resolution spectral reflectance bands (20 m and 60 m) were super-resolved 
to 10 m ground sample distance, using a convolutional neural network (CNN) as 
introduced by Lanaras et al. [43]. This approach extracts details from pixels with the 
highest resolution (four bands at 10 m resolution) and propagates these details to all 
other spectral bands (eight bands at 20 m and 60 m resolution) using the local 
consistency between neighbour pixels, to obtain an image where all spectral bands 
have a resolution of 10 m while preserving the spectral characteristics. This pre-
processing step is useful for detecting features at the size of 200–250 m2.  

2. Dimensionality Expansion for Sentinel-2 Multispectral Imagery 
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In order to increase the multispectral data dimensionality and the performance of 
analysis (see Section 3), a method described in [44] to generate nonlinearly correlated 
spectral band images is implemented. For this purpose, suitable Sentinel-2 spectral 
bands for geological applications [33] are taken into consideration (Table 2).  

Table 2. Dimensionality expansion for Sentinel-2 multispectral imagery (√ = square root). 

Dimensionality Expansion Formula 
eB01–eB06 √ (B2, B3, B4, B8, B11, B12) 
eB07–eB12 Log (B2, B3, B4, B8, B11, B12) 
eB13–eB18 (B2, B3, B4, B8, B11, B12)2 

eB19–eB33 

B02 × B03, B02 × B04, B02 × B08, B02 × B11, B02 × B12 
B03 × B04, B03 × B08, B03 × B11, B03 × B12 

B04 × B08, B04 × B11, B04 × B12 
B08 × B11, B08 × B12 

B11 × B12 

2.6. External Data 
In order to reduce spectral variability, urban areas, transport infrastructure, and main 

water bodies were masked out using the Open Street Map (OSM) database. The OSM 
topographical dataset was downloaded at (https://download.geofabrik.de/; accessed 23 
September 2021). The used OSM layers included: 
- Polygon features of urban areas, stored in the “landuse” layer;  
- Polygon features of water bodies, stored in the “water” layer, and;  
- Polyline features of the road infrastructure, stored in the “roads” layer. 

The OSM features in the study area were corrected accordingly using the underlying 
Sentinel-2 image. They were used as controlling parameters to mask out these features 
from the remote sensing models. 

2.7. Training Patterns 
The study area is well-known for the presence of Li-bearing mineralisation 

(pegmatites). Typically, training patterns of exposed Li pegmatites over the ground 
surface have been collected at three open-pit mines over the study area: the Bajoca (located 
in Portugal), Feli, and Alberto mines (located in Spain) (Figure 1). All data are projected 
to the Lisboa_Hayford_Gauss_IGeoE coordinate system (WKID: 102164; EPSG:20790). A 
geographical grid projected into WGS_1984 is inserted into all presented maps for 
illustration purposes. The transformation succeeded with the transformation parameters 
integrated with the ArcGIS Software (ArcGIS 10.6, Environmental Systems Research 
Institutery, Redlands, CA, USA). 

In this context, it is important to consider that the reflection intensity of Li-bearing 
pegmatites (albedo) is expected to be slightly different at various locations due to the 
dominance of diverse Li minerals (petalite in Bajoca Mine, lepidolite in Feli Mine, and 
spodumene in Alberto Mine). Furthermore, the sample colour, rock surface structure, and 
weathering conditions of Li minerals might represent controlling factors too. For example, 
reflectance spectroscopy studies of petalite, spodumene, and lepidolite from the Bajoca, 
Alberto, and Feli mines, respectively, have shown that even fresh petalite and spodumene 
samples present diagnostic features of illite and/or other clay minerals (Supplementary 
Figure S2) [45–47]. Oppositely, lepidolite presented diagnostic absorption features that 
allowed its identification in the collected spectra from Feli Mine. Detailed petrographic, 
mineralogical, and geochemical studies conducted in Bajoca Mine showed that the same 
alteration minerals can be present in samples with distinct degrees of alteration [48]. This 
is reflected in the spectral signatures (reflectance values as a function of the wavelength) 
for all three mines (Supplementary Figure S2). Obviously, the Li-bearing minerals in 
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Alberto Mine depict slightly different properties, explained through the different 
exposure conditions of Li minerals in the mine, respectively. Nonetheless, it is noteworthy 
that Li-bearing minerals show relevant hydroxyl-related absorption features that coincide 
with Sentinel-2 Band 12 (Supplementary Figures S1 and S2). This absorption is also 
observed on the spectral signature collected in the pixels of the training areas 
(Supplementary Figure S2). 

Taking this into account, the training patterns for the supervised machine learning 
algorithm were only collected in Bajoca Mine, due to its size and exposure on the ground 
surface and the representative spectra of the Li pegmatites. The polygons were digitised 
based on the Sentinel-2 image to represent the actual state of the mine site during the 
acquisition time of satellite imagery. For this purpose, different RGB combinations, 
suitable for geologic applications, were used as background images (Figure 3). The three 
stockpiles at the centre are from the Li pegmatite itself, whereas the two westernmost and 
the southmost piles are waste piles from the host rock and feature lower Li contents. Waste 
rock piles were used as additional training areas to simulate the metasomatism of host 
rocks. 

 
Figure 3. Training patterns (red outlines) with different RGB compositions in the background: (a) Sentinel-2 RGB 
composition b03–b02–b11, (b) Sentinel-2 RGB composition √b08–√b04–√b03. The yellow and greenish pixels in subfigure 
a and b, respectively, correspond to areas hosting Li mineralisation exposed on the ground surface. 

3. Methods: Prediction Modelling  
The ANNs of multilayer perceptron type are implemented in the advangeo® 

Prediction Software from Beak Consultants GmbH (www.advangeo.com; accessed on 23 
September 2021). The modelling and prediction software is developed to model spatial 
data and analyse complex relationships between a wide variety of spatial influencing 
parameters and a given prognostic event or occurrence, by using methods of artificial 
intelligence within a familiar GIS environment. The base principle is the ability of artificial 
neural networks to generalise and learn from non-linear relationships and model natural 
complex processes and events, which are difficult or impossible to be described with 
analytical mathematics [49]. The software is available as a standalone application with a 
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user-friendly interface, which enables the user to flexibly create and build parametrised 
models. 

In this study, the prediction software is used to perform artificial neural networks of 
multilayer perceptron type to identify Li mineralisation over the given study area 
according to the processing schema in Figure 4. 

The main workflow is described through the following steps: 
1. Collection of model input data, i.e., data that control the modelled feature (here the 

Li mineralisation) including geological units and structures (e.g., granite bodies, 
metamorphic sequences, pegmatites), selected stream sediment data, cloud-free pre-
processed Sentinel-2 satellite imagery, and OSM topographical data (settlements, 
infrastructure, water bodies, etc.). 

2. Data processing of the spatial data to become suitable for use in analysing models, 
including the projection of input data to the project coordinate system, resampling to 
the specified spatial resolution according to project requirements, and clipping of 
input datasets to the extent of the project area as well as linear scaling of continuous 
raster data values between 0 and 1 and the conversion of discrete vector data into a 
binary raster with 0 and 1 value. 

3. Design of ANN models in the prediction software for different use cases, i.e., using 
different controlling parameters and suitable training patterns. The training patterns 
for remote sensing modelling are ideally in obvious spectral contrast to the 
surrounding environment and with distinctive spectral reflectance characteristics. 
The training scenario comprises the controlling and the network parameters (number 
of hidden layers, number of neurons for each layer, the maximum number of training 
epochs, etc.). 

4. Training of the ANN models using collected training patterns at the Bajoca Mine site, 
a well-known location for the presence of Li-bearing minerals. Other known locations 
(Feli and Alberto Mine) were used to validate the application model. The trained 
ANN will serve to identify similar Li-bearing pegmatite locations in unknown 
locations over the study area.  

5. Validation of the trained ANNs: There are several possibilities to evaluate the 
accuracy and reliability of a trained ANN by the identification of known locations 
that have not been used for network training (Feli and Alberto Mine), considerations 
of the network (MSE) error including statistical evaluation (histograms, all pixels vs. 
the positive pixels), and analysis of the model parameter weights. Typically, MSE 
errors below 0.2, balanced parameter weights, and a high probability of modelled 
pixels are indicators of stable and good neural network quality. 

6. Model application: After successful validation, the training network can be used in 
unknown locations for the prediction of similar events over the entire study area. The 
result is a distribution probability raster map. 

7. Refinement and presentation: The ANN classification results are irregular pixel-
based raster data. In many cases, the classification results have to be further refined 
and processed to improve the cartographic representation of the result. 

8. The final distribution map of Li-bearing mineralisation: Combination of the 
distribution map result based on remote sensing data with the result obtained from 
modelling with geological and geochemical data. The combination of both geological 
and remote sensing data into one ANN model was tested, but it resulted in many 
false interpretations, as the controlling parameters refer to/explain different targets. 
Therefore, we chose the approach to merge the two ANN models only as a final step 
once distribution maps of Li-bearing mineralisation were created. 
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Figure 4. General processing schema in the advangeo® prediction software. 

4. Results 
Several prediction models with different controlling parameters have been designed 

with the described principles and workflow. Here, the most significant models and results 
are presented. 

4.1. Geological Model 
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Controlling parameters of the geological model include digitised geological units 
(1:50,000), digitised pegmatites (1:50,000), and selected stream sediment data. The 
modelling was carried out using ANNs of multilayer perceptron type. The model 
accuracy is evaluated by the following quality parameters: 
1. The network (MSE) error: The model error is shown in Supplementary Figure S3. 

Clearly, the model error converges after approximately 20 iterations and the final 
error is below 0.2, indicating that the neural network is stable and accurate. This 
means that the designed model was able to find correlations between the controlling 
parameters and the training data. 

2. Statistical evaluation: Additionally, the histograms (Supplementary Figure S3) reveal 
that the algorithm was able to identify >80% of the pixels in the training patterns with 
a scale better than 0.9. 
The prediction software delivers a distribution probability map in the value range of 

0–1, illustrating the Li potential over the study area (Figure 5). Areas depicted with 1 or 
close to 1 are the areas with the highest probability of Li-bearing rocks. Within the study 
area (approximately 1200 km2), 50 km2 are mapped with Li potential between 0.1 and 1 
(Figure 5). These areas are mainly located in regions of metamorphic rocks in the vicinity 
of granite intrusions, compatible with possible greisen cupolas or pegmatites and their 
host rocks. High predictive areas (>0.5 Li probability) extend over 6.4 km2 and are mainly 
located directly to the south/southwest of Bajoca Mine (5.6 km2) and to a lesser extent 
north of the town of Meda (0.47 km2) as well as southwest of Santa Comba village (0.35 
km2). 

 
Figure 5. Probability map of Li mineralisation across the study area as a result of the geological/geochemical modelling 
approach (without remote sensing data). 
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4.2. Remote Sensing Models 
4.2.1. Remote Sensing Model 1 

Controlling parameters of Remote Sensing Model 1 include: Sentinel-2 super-
resolved spectral bands (visible, NIR, red-edge, and SWIR) and OSM topographical 
dataset.  

The modelling was carried out using ANNs of multilayer perceptron type. The model 
accuracy is evaluated by the following quality parameters:  
1. The network (MSE) error: The model error converges after approximately 40 

iterations and the final error is below 0.2 (Supplementary Figure S4), indicating that 
the ANN is stable and accurate. This means that the designed model was able to find 
correlations between the controlling parameters and the training data. 

2. Statistical evaluation: The histograms (Supplementary Figure S4) reveal that the 
algorithm was able to identify about 90% of the pixels in the training patterns with a 
scale better than 0.9. 

3. The model parameter weights: The model weights confirm the Sentinel-2 visible (b2, 
b3, b4), NIR (b8, b8A), and SWIR (b11) spectral bands to be the most suitable for 
geological applications. On the other hand, the spectral bands in the red-edge part of 
the electromagnetic spectrum seem to be irrelevant for this application. The spectral 
bands with the highest weight contribution in the designed model are b2, b3, and b11. 
This is in accordance with Cardoso-Fernandes et al. (2019), who proposed the RGB 
combination Green–Blue–SWIR for the identification of Li mineralisation in the same 
region. The RGB composition out of b3–b2–b11 was further analysed in ArcGIS 
software 10.6 (Figure 6). Indeed, the well-known areas for Li mineralisation are 
successfully identified and highlighted compared to their surrounding environment. 
However, similar symbology is also assigned to other features with similar spectral 
properties as the target features. 

4. The distribution probability raster map: The prediction software delivers a 
distribution probability map in the value range of 0–1, illustrating locations of 
potentially identified Li-bearing pegmatites in the study area (Figure 6). With 1 are 
depicted areas with the highest probability to represent Li-bearing mineralisation. In 
the resulting map, pixel values with a probability value higher than 95% were 
assigned as “positive” locations. The threshold value is defined based on the 
histograms in Supplementary Figure S4. 
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Figure 6. Results of Remote Sensing Model 1: (a) RGB composition detail using the super-resolved bands b3–b2–b11 in 
which mines with known Li mineralisation patterns are shown in light yellow, (b) Distribution probability map of Remote 
Sensing Model 1. 
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The validation of the identified areas in the resulting map with the underlying 
Sentinel-2 image revealed that all known locations of the open-pit mines with exposed Li 
pegmatites were successfully detected (Figure 7). As expected from the results of spectral 
analysis (Supplementary Figure S2), Li-bearing mineralisation at Alberto Mine was only 
partially detected due to the different mineralogical composition in contrast to Bajoca 
Mine. 
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Figure 7. Li distribution probability map of Remote Sensing Model 1 for the three training areas: (a) 
Bajoca Mine, (b) Feli Mine, (c) Alberto Mine. High potentials are in red. Ground truths are marked 
with black polygons. 

However, the validation of the distribution map over the entire study area revealed 
that other features with no evidence of Li presence (other mine sites, barren areas with 
exposed bedrock, etc.) but with similar spectral reflectance properties were also classified 
as “positive” pixels. Some examples are highlighted in Figure 8. 

For a more detailed investigation, samples of “positive” classified pixels were 
randomly collected and their spectral reflectance properties were further analysed using 
the extended spectral bands described in Table 2. 

 
Figure 8. Example areas of possible false positives (misclassified pixels) from Remote Sensing Model 1: Póvoa de Penela, 
Touça (light brown), Touça (blue), Poio’s quarry (orange), and Marialva (green). 

Analysis of Spectral Signatures 
The misclassified areas with similar surface reflectance properties as the target 

features (Li pegmatites) were further analysed to depict the most suitable bands to 
differentiate them. For this purpose, samples of features with similar spectral properties 
based on Model 1 were collected and their spectral signatures were graphically analysed 
and compared. These analyses revealed the most suitable extended bands to identify Li 
pegmatites and differentiate them from other features with similar spectral properties. 
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The graphs are illustrated in Supplementary Figure S5. The reference spectral signature 
of the main outcropping lithologies (Li pegmatites, metasediments, and granitoid rocks) 
is presented in Supplemental Figure 6. In the case of the spectra of the metasedimentary 
rocks, they correspond to samples collected in the false positive area identified with an 
orange circle in Figure 8. 

These analyses revealed that some of the extended bands were more likely to provide 
the best class separability between the selected patterns. The relevant bands are 
highlighted in Table 3 and were used in a second prediction model to better identify Li 
pegmatites.  

Table 3. Suitable extended bands (eB) for automatic identification of Li-bearing pegmatites. 

Extended Band eB14 eB15 eB16 eB24 eB25 eB28 eB29 eB31 
Formula b3² b4² b8² b3 × b4 b3 × b8 b4 × b8 b4 × b11 b8 × b11 

4.2.2. Remote Sensing Model 2 
Controlling parameters of Remote Sensing Model 2 include selected Sentinel-2 

extended bands (Table 3), the distribution probability map from Model 1, and the OSM 
topographical dataset. The modelling was carried out using ANNs of multilayer 
perceptron type. The model accuracy is evaluated by the following quality parameters: 
1. The network MSE error: A stable network MSE error that converges after 20 iterations 

and exceeds a final error lower than 0.001 (Supplementary Figure S7);  
2. Statistical evaluation: Similar plausible histograms as shown in Supplementary 

Figure S7;  
3. The model parameter weights: Distributed weights of controlling parameters. The 

combinations (b3²), (b3 × b4), and (b8 × b11) were revealed to be significantly decisive 
for the prediction model. 
Furthermore, the well-known locations for the presence of Li pegmatites were 

successfully detected in the distribution probability map of Remote Sensing Model 2 
(Figure 9). The validation of the distribution map over the entire study area revealed that 
noises were drastically reduced compared to the results from Model 1. This is reflected 
through the following statistics (Table 4).  

Table 4. Statistics of the identified “positive” pixels in Models 1 and 2. 

Parameter Model 1 Model 2 
Number of “positive” pixels 12,088 3526 

Analogously to Model 1, the results were validated using the underlying Sentinel-2 
RGB composition from the visible bands. The selected areas for the illustration of 
misclassified pixels in Figure 6 were re-validated with the results obtained from Model 2 
(Figure 10). These sections show an obvious reduction/elimination of the misclassified 
pixels over the study area and thus an improved distribution map based only on remote 
sensing data. 
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Figure 9. Reduction/elimination of misclassified pixels of Li distribution probabilities when comparing Remote Sensing 
Model 1 and 2 for the three training areas: (a) Bajoca Mine, (b) Feli Mine, (c) Alberto Mine. 

The distribution raster map was further refined using GIS tools available in ArcGIS 
software, such as Boundary Clean, Majority Filter, etc., to remove the isolated pixels to 
improve the cartographic representation of the map.  

The resulting raster was converted into vector data and further refined using tools 
such as Aggregate Polygons to cluster near-lying polygons representing the same physical 
feature. 

The actual designed map (Figure 11) illustrates high-probability locations for Li 
mineralisation, exposed to the ground surface, based only on remote sensing data.  
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In the next step, this result was combined with the model based on geological 
datasets to finally conclude on the location of Li-bearing minerals over the study area. The 
final map result based only on remote sensing data is shown in Figure 11.  

 
Figure 10. Reduction/elimination of misclassified pixels when comparing Remote Sensing Model 1 and 2. 
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Figure 11. Result map of possible locations of Li pegmatites based only on remote sensing data. 

4.3. Combination of the Geological- and Remote Sensing Models 
The prediction model result based on geological data (Figure 5) was further 

combined with the improved classification results based on remote sensing data to design 
a final map of Li mineralisation occurrences in the study area (Figure 12). The remote 
sensing models are limited to the detection of features of similar spectral characteristics 
exposed to the ground surface. On the other hand, the geological model is based on data 
related to the geological formations and geochemical characteristics (not always exposed 
on the ground surface). The combination of geological and remote sensing data into one 
ANN model resulted in many false interpretations, as the controlling parameters refer 
to/explain different targets. The results of the geological model and the knowledge from 
previous field campaigns helped us to exclude locations such as the Li-barren quarry at 
the Coa River (marked as False in Figure 12). The resulting map shows that the Bajoca and 
Feli mines, with a confirmed presence of Li pegmatites, could be successfully identified in 
both ANN models. Other potential areas identified from the geological-based model are 
not exposed to the ground surface and therefore could not be identified from the remote 
sensing data. 

Through a combination of result maps, the identified location near the Coa River 
based on remote sensing data (marked as False in Figure 12) was automatically excluded. 
Further research allied with a previous field campaign revealed that this is a schist quarry 
without the confirmed presence of Li at the mine site 
(https://www.solicel.pt/site/index.php/produtos; accessed on 02 February 2021). 
Additionally, in the case of the westernmost location identified using Sentinel-2 (Figure 
11), the integration with available geological maps allowed us to identify it as another 
false positive since in the FAF the Li-bearing pegmatites are not emplaced within the 
granitoid rocks [17–19]. It is worth mentioning that a combination of the models based on 
geological data and remote sensing data could only succeed in areas where all data are 



Minerals 2021, 11, 1046 20 of 26 
 

 

available. The lack of geology information throughout the entire study area made it 
impossible to draw conclusions for the other identified locations in Figure 11. 

 
Figure 12. Predicted Li mineralisation based on geological and remote sensing data. 

5. Discussion 
The potential of low-to-medium resolution Sentinel-2 images was evaluated to 

automatically detect Li-bearing pegmatites exposed on the ground surface, depending on 
the weathering conditions of the Li-bearing rocks. Besides the raw spectral reflectance 
bands, dimensionality expansion techniques can be integrated to improve the 
classification workflows and distinguish features with similar spectral signatures to the 
Li-bearing minerals. Despite the potential to give insights on other locations with similar 
surface reflectance to Li pegmatites, the remote sensing data only allowed the 
identification of Li-bearing rocks at known mines. These results show the limitations of 
the remote sensing data since most unexploited pegmatite bodies are often covered by 
vegetation, thus preventing their identification using only remote sensing data. On the 
other hand, integration with the geological and geochemical data was crucial to identify 
false positive areas resulting from the satellite-based approach. This indicates that the 
remote sensing model alone was not sufficient for prospectivity mapping. Field 
campaigns also helped to exclude some of the potential areas identified using the remote 
sensing models. The spectral signature of the rocks of one of the identified false positive 
areas (orange circle of Figure 8) was confronted with the spectra of Li-bearing pegmatites 
(Supplementary Figure S6c). Overall, the spectral behaviour of the two rocks is distinct 
enough to allow their spectral discrimination using hyperspectral data. Since this 
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discrimination was not achieved using Sentinel-2 data, this may indicate that their spectral 
resolution may not be adequate. Moreover, even the spatial resolution of the images may 
have limited the identification of some of the smaller Li pegmatite bodies of the FAF that 
only reach less than 5 m in thickness [24]. 

These results are in line with previous research for the identification of Li pegmatites 
based only on remote sensing data and using traditional methods as well as machine 
learning algorithms such as ANN, Random Forest, Support Vector Machines, etc., [36–38] 
that have shown that the results are limited to features with similar spectral properties to 
Li-bearing mineralisations. For instance, Li mine sites could not be distinguished from the 
other within-scene elements in the study area using multispectral data due to their similar 
spectral properties. Despite this, field validation campaigns, the improvement of training 
areas, and algorithm parameterisation allowed us to decrease the number of false positive 
areas and increase the separability of Li mine sites [50]. In this paper, the knowledge 
acquired from previous field campaigns was integrated, including the insights provided 
by the reference spectra of the main outcropping lithologies (Supplementary Figure S6). 
Taking this into account, we investigated how the fusion of remote sensing data and 
geology knowledge improved the identification results and provided a more realistic 
approach, by allowing us to exclude false positive areas with no further interest for Li 
exploration 

The presence of Li-bearing minerals is strongly related to specific geological 
formations such as pegmatites. For this reason, in this study, the prediction of Li 
mineralisation resulted in a combination of models based on remote sensing data (related 
to the ground surface) and geological/geochemical data (related to the geological 
formations at the ground surface). The proposed approach requires available geological 
data and remote sensing data over the entire study area; otherwise, a combination of the 
models is not made possible. Geophysical data could further enhance the model, e.g., 
gravimetry could aid in the detection of hidden granite cupolas and related Li 
mineralisations, and pegmatite modelling could be enhanced by induced polarisation (IP) 
to measure contacts with the metasediments. 

The prediction modelling based only on geological data was limited to the 
Portuguese side of the study area due to the availability of the geological and stream 
sediment data. The results shown in Figure 12 provide information on the spatial 
distribution of predicted Li mineralisation potential across the study area. The spatial 
distribution of Li-predictive areas in the transition of metasediments and granites could 
be a result of possible (hidden) greisen cupolas or pegmatites (Figure 5). As a result of the 
strong generalisation of geological units (metamorphics, intrusives, etc.), the areas with Li 
potential are mainly related to stream sediment geochemistry. Particularly straight area 
borders are caused by the boundaries of the main geological formations. Comparing the 
distribution of different elements across the study area (Sn, W, Li, Mo, As), several areas 
could be ruled out regarding Li mineralisation sensu stricto (pegmatites). As a result, only 
Bajoca Mine was used to validate the ANN model. However, the model was able to also 
predict the Li mineral deposits located near the cross-boundary of Portugal and Spain in 
the north-east part of the study area. The presence of Li mineralisation in this area is 
confirmed from the mining activities in the Riba D’Alva mine [51]. Further research is 
needed to validate the proposed approach in other areas, i.e., to check the high-potential 
areas identified through the mineral prospectivity mapping for the occurrence of 
unknown mineralisation. In the end, the resultant Li mineralisation prediction map 
(Figure 12) can be a useful tool for future exploration campaigns for exploration and 
mining companies, since it can help to delineate smaller interest areas in a large 
geographic area (>1.250 km2). We recommend focusing future exploration activities on the 
following locations with high predicted Li potential: areas surrounding Bajoca Mine, Li 
anomalies in the west Meda, possible greisen cupolas in the south of the study area, and 
areas north of Feli Mine. 



Minerals 2021, 11, 1046 22 of 26 
 

 

6. Conclusions 
In this study, geological/geochemical data and remote sensing data (Sentinel-2 

images) were used to create separate geological and remote sensing models using the 
ANN algorithm, respectively. In the end, the best remote sensing model was integrated 
with the geological one to delineate a Li mineralisation potential map for the FAF. 

Using the ANN algorithm and Sentinel-2 multispectral data, it was possible to 
identify mine site locations and bare soil with similar reflectance properties to the training 
data. Overall, the Sentinel-2 data on their own are not enough to delineate other Li 
pegmatite occurrences, since only the known mine sites were correctly identified. The 
remaining highlighted areas corresponded to false positives. The exclusion of these false 
positive areas was only possible due to the knowledge obtained from field campaigns but 
also through the integration with the obtained geological model. The analysis of the 
reflectance spectra of selected pixels and reference samples (collected in field surveys) 
revealed that the coarse spectral resolution of Sentinel-2 is not able to reflect all significant 
characteristics of Li-bearing minerals and pegmatites. Therefore, the identification of Li 
pegmatite bodies specifically based only on Sentinel-2 data seems to be challenging due 
to the limited spectral and spatial resolution of the used satellite data and also the existing 
vegetation coverage (although sparse).  

However, the combination of the satellite data with the geological model provides a 
potential approach to automatically predict the location of Li-bearing mineralisation using 
ANNs. Careful consideration of training patterns, spectral bands, and geological data 
proved to be key factors in establishing a working model. The proposed combined 
approach is a first step towards expeditious Li mineralisation prediction. The integration 
of the models allowed us to enrich the remote sensing classification results, since the 
geological prediction model gives insights on formations that are suitable to host Li 
pegmatites. Thus, the approach of combining the modelling results based on geological 
and remote sensing data is promising, not only to identify the known exposed Li 
pegmatites on the ground surface and exclude false features with similar signatures in the 
spectral reflectance, but also to reveal potential locations for further exploration. 
Nonetheless, Li pegmatite prediction needs to be improved in the future through the use 
of high spectral and spatial resolution data in the remote sensing modelling step. The 
proposed approach can also be used for other metals or raw materials and will make a 
cost-efficient contribution to raw material exploration in general. 

Supplementary Materials: The following are available online at 
www.mdpi.com/article/10.3390/min11101046/s1, Figure S1: Reference spectral signatures of (a) 
petalite samples from Bajoca Mine, (b) spodumene samples from Alberto Mine, and (c) lepidolite 
samples from Feli Mine; Figure S2: Spectral signatures for Alberto, Bajoca and Feli mines based on 
Sentinel-2 data; Figure S3: Histogram (a) and Network MSE error (b) for the Geological Model; 
Figure S4: Histogram (a) and Network MSE error (b) for Remote Sensing Model 1; Figure S5: 
Spectral signatures for the extended spectral bands: (a) 1–6, (b) 7–12, (c) 13–32; Figure S6: Reference 
spectral signatures of (a) lepidolite-bearing pegmatites, (b) pet-alite-bearing pegmatites (Bajoca 
Mine), (c) schist–metagreywacke complex (CXG) metasediments, and (d) granitoid rocks; Figure S7: 
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Figure A1. Geochemical anomaly maps for Li (A) and Sn (B) before excluding the granitic areas. 
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