Next Issue
Volume 11, December
Previous Issue
Volume 11, October

Minerals, Volume 11, Issue 11 (November 2021) – 148 articles

Cover Story (view full-size image): Cyanobacterial communities connected with carbonate sediments of the freshwater bodies feeding the historical Peterhof fountains (Saint Petersburg, Russia) were studied by metagenome analysis and optical microscopy. Carbonates associated with cyanobacterial communities (both in situ and in vitro) were studied using powder X-ray diffraction analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Cyanobacteria play a leading role in the biomineralization of carbonates in the fresh water of the Peterhof fountain water supply system. The mineral composition of carbonate sediments (calcite, aragonite) is associated with the cyanobacteria species living at the sites of carbonate formation. Species of the family Oscillatoriaceae (Phormidium spp., Lyngbya sp., Oscillatoria formosa) demonstrate significant contribution to the biomineralization of [...] Read more.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
Industrial Heap Bioleaching of Copper Sulfide Ore Started with Only Water Irrigation
Minerals 2021, 11(11), 1299; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111299 - 22 Nov 2021
Viewed by 313
Abstract
Sulfuric acid solution containing ferric iron is the extractant for industrial heap bioleaching of copper sulfides. To start a heap bioleaching plant, sulfuric acid is usually added to the irrigation solution to maintain adequate acidity (pH 1.0–2.0) for copper dissolution. An industrial practice [...] Read more.
Sulfuric acid solution containing ferric iron is the extractant for industrial heap bioleaching of copper sulfides. To start a heap bioleaching plant, sulfuric acid is usually added to the irrigation solution to maintain adequate acidity (pH 1.0–2.0) for copper dissolution. An industrial practice of heap bioleaching of secondary copper sulfide ore that began with only water irrigation without the addition of sulfuric acid was successfully implemented and introduced in this manuscript. The mineral composition and their behavior related to the production and consumption of sulfuric acid during the bioleaching in heaps was analyzed. This indicated the possibility of self-generating of sulfuric acid in heaps without exogenous addition. After proving by batches of laboratory tests, industrial measures were implemented to promote the sulfide mineral oxidation in heaps throughout the acidifying stages, from a pH of 7.0 to 1.0, thus sulfuric acid and iron was produced especially by pyrite oxidation. After acidifying of the heaps, adapted microbial consortium was inoculated and established in a leaching system. The launch of the bioleaching heap and finally the production expansion were realized without the addition of sulfuric acid, showing great efficiency under low operation costs. Full article
(This article belongs to the Special Issue Recent Advances in Copper Ore Processing and Extraction)
Show Figures

Figure 1

Article
A Fundamental Economic Assessment of Recovering Rare Earth Elements and Critical Minerals from Acid Mine Drainage Using a Network Sourcing Strategy
Minerals 2021, 11(11), 1298; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111298 - 22 Nov 2021
Viewed by 320
Abstract
In recent years, acid mine drainage (AMD) has emerged as a promising unconventional source of rare earth elements (REEs) and other critical minerals (CMs) such as cobalt and manganese. In this regard, AMD provides a natural heap leaching effect that extracts and concentrates [...] Read more.
In recent years, acid mine drainage (AMD) has emerged as a promising unconventional source of rare earth elements (REEs) and other critical minerals (CMs) such as cobalt and manganese. In this regard, AMD provides a natural heap leaching effect that extracts and concentrates REE/CM from the host strata creating a partially enriched feedstock suitable for downstream extraction, separation, and recovery. While several prior studies have described processes and approaches for the valorization of AMD, very few have described the supply chain and infrastructure requirements as well as the associated economic assessment. To that end, this paper provides a fundamental economic assessment of REE/CM recovery from AMD using a network sourcing strategy in addition to a robust, flexible feedstock separations and refining facility. The methodology of this paper follows that of a typical techno-economic analysis with capital and operating costs estimated using AACE Class IV (FEL-2) guidelines. To demonstrate the range of possible outcomes, four pricing scenarios were modeled including contemporary prices (September, 2021) as well as the minimum and maximum prices over the last decade. In addition, five production scenarios were considered reflecting variations in the product suite, ranging from full elemental separation to magnet REE and CM production only (i.e., Pr, Nd, Tb, Dy, Y, Sc, Co, and Mn). The results of this analysis show that, with the exception of the minimum price scenario, all operational configurations have positive economic indicators with rates of return varying from 25% to 32% for the contemporary price scenario. The optimal configuration was determined to be production of Co, Mn, and all REEs except for mischmetal, which is not recovered. Sensitivity analysis and Monte Carlo simulation show that capital cost and HCl consumption are the two major factors influencing rate of return, thus indicating opportunities for future technology development and cost optimization. Implications of the study and a cooperative profit-sharing model for sourcing are also described. Full article
Show Figures

Figure 1

Article
Improvement in pH and Total Iron Concentration of Acid Mine Drainage after Backfilling: A Case Study of an Underground Abandoned Mine in Japan
Minerals 2021, 11(11), 1297; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111297 - 22 Nov 2021
Viewed by 261
Abstract
If the excavated underground veins are not backfilled, they may be a factor in the continued outflow of acid mine drainage (AMD). The flow rate of AMD can be reduced by backfilling underground drifts from abandoned mines. In addition, the quality of AMD [...] Read more.
If the excavated underground veins are not backfilled, they may be a factor in the continued outflow of acid mine drainage (AMD). The flow rate of AMD can be reduced by backfilling underground drifts from abandoned mines. In addition, the quality of AMD may be improved as the flow rate of AMD reduces. In this paper, the quality of the AMD after backfilling was evaluated by a three-dimensional geochemical analysis model when the groundwater level was recovered after backfilling. The measured dissolved iron (Fe) and sulfate ion (SO42−) concentrations and pH before backfilling the drift were reproduced by the calibration of the simulation. Using the calibrated model, the pH at the outlet of the drift was changed from about pH 3 before backfilling to about pH 4 to 5 after backfilling. When calcite was contained in the filling materials of the drift, the pH approached neutral. However, when gypsum was formed, the neutralization was inhibited. The Fe concentration discharged from the drift was calculated at approximately 0.002 mol/L before backfilling. The total Fe concentration was calculated at 0.0004 mol/L or less after backfilling, and the dissolved Fe concentration decreased by several orders of magnitude after backfilling. A geochemical model quantitatively evaluated the improvement in water quality after backfilling the drifts. This method can be applied to the other abandoned mines with similar hydrogeological conditions. Full article
(This article belongs to the Special Issue Environmental Geochemistry in the Mining Environment)
Show Figures

Figure 1

Article
The Inadvertent Activation of Silicate Minerals Flotation and Their Depression in Molybdenite Beneficiation
Minerals 2021, 11(11), 1296; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111296 - 22 Nov 2021
Viewed by 229
Abstract
The Wushan Operation has been studied as a case study, particularly relevant to the copper-molybdenum separation circuit, in which efforts have been made to improve the quality of the molybdenum concentrate through diagnostic analysis. A key finding has been the appearance of coarser [...] Read more.
The Wushan Operation has been studied as a case study, particularly relevant to the copper-molybdenum separation circuit, in which efforts have been made to improve the quality of the molybdenum concentrate through diagnostic analysis. A key finding has been the appearance of coarser silicate minerals in the molybdenum concentrate due to their inadvertent activation in flotation. The suitable silicate minerals flotation conditions occurs, most likely, due to upstream bulk flotation regarding the usage of novel collectors and metal cations bearing process water. The flotation of silicate minerals can be diminished by the implementation of water glass and regrinding. The mechanisms underlying flotation behaviors have been revealed by using advanced in-situ surface analysis and particle size analysis techniques. Full article
(This article belongs to the Special Issue Progress of Reagents in Minerals Flotation)
Show Figures

Figure 1

Article
Geochemical Insights from Clinopyroxene Phenocrysts into the Magma Evolution of an Alkaline Magmatic System from the Sanshui Basin, South China
Minerals 2021, 11(11), 1295; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111295 - 22 Nov 2021
Viewed by 205
Abstract
The Sanshui Basin is located at the northern continental margin of the South China Sea and characterized by a continental rift basin. The bimodal volcanic rocks in Sanshui Basin record the early Cenozoic magmatic activity in the South China Block, but the magmatic [...] Read more.
The Sanshui Basin is located at the northern continental margin of the South China Sea and characterized by a continental rift basin. The bimodal volcanic rocks in Sanshui Basin record the early Cenozoic magmatic activity in the South China Block, but the magmatic evolution that produced the bimodal volcanic rocks is poorly understood. Clinopyroxenes in bimodal volcanic rocks in the Sanshui Basin provide an opportunity to investigate magma during magma ascent. In this work, we classified nine types of clinopyroxene phenocrysts according to composition and texture in cogenetic basalt-trachyandesite-comenditic trachyte, while the composition of unzoned clinopyroxene have an evolution sequence of diopside-hedenbergite-aegirine along with an increase in trace element contents with a decrease of Mg#, indicating that the genesis of clinopyroxene was dominated by fractional crystallization in a closed magma system. However, the clinopyroxenes with reversed zoning and multiple zoning record the process of magma mixing and recharge indicating an open magma system. While fractional crystallization is the dominant process, magma mixing, recharge, and crystal settling were also found to influence magma evolution. Thermobarometric calculations showed that clinopyroxene crystallized a several structural levels in the crust during magma ascent. In this study, we established a magma plumbing system that provides new constraints for the magma evolution in the Sanshui Basin. Full article
Show Figures

Figure 1

Article
An Intelligent Rockburst Prediction Model Based on Scorecard Methodology
Minerals 2021, 11(11), 1294; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111294 - 22 Nov 2021
Viewed by 232
Abstract
Rockburst is a serious hazard in underground engineering, and accurate prediction of rockburst risk is challenging. To construct an intelligent prediction model of rockburst risk with interpretability and high accuracy, three binary scorecards predicting different risk levels of rockburst were constructed using ChiMerge, [...] Read more.
Rockburst is a serious hazard in underground engineering, and accurate prediction of rockburst risk is challenging. To construct an intelligent prediction model of rockburst risk with interpretability and high accuracy, three binary scorecards predicting different risk levels of rockburst were constructed using ChiMerge, evidence weight theory, and the logistic regression algorithm. An intelligent rockburst prediction model based on scorecard methodology (IRPSC) was obtained by integrating the three scorecards. The effects of hazard sample category weights on the missed alarm rate, false alarm rate, and accuracy of the IRPSC were analyzed. Results show that the accuracy, false alarm rate, and missed alarm rate of the IRPSC for rockburst prediction in riverside hydropower stations are 75%, 12.5%, and 12.5%, respectively. Setting higher hazard sample category weights can reduce the missed alarm rate of IRPSC, but it will lead to a higher false alarm rate. The IRPSC can adaptively adjust the threshold and weight value of the indicator and convert the abstract machine learning model into a tabular form, which overcomes the commonly black box problems of machine learning model, as well as is of great significance to the application of machine learning in rockburst risk prediction. Full article
Show Figures

Figure 1

Article
Apatite and Zircon Geochemistry in Yao’an Alkali-Rich Porphyry Gold Deposit, Southwest China: Implications for Petrogenesis and Mineralization
Minerals 2021, 11(11), 1293; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111293 - 20 Nov 2021
Viewed by 411
Abstract
The Yao’an gold deposit is located in the middle of the Jinshajiang-Ailaoshan alkali-rich metallogenic belt, and this belt hosts many porphyry-type Cu-Au-Mo deposits formed at 46–33 Ma. Yao’an porphyry gold-mineralization is intimately associated with biotite syenite porphyry, whereas the contemporaneous quartz syenite porphyry [...] Read more.
The Yao’an gold deposit is located in the middle of the Jinshajiang-Ailaoshan alkali-rich metallogenic belt, and this belt hosts many porphyry-type Cu-Au-Mo deposits formed at 46–33 Ma. Yao’an porphyry gold-mineralization is intimately associated with biotite syenite porphyry, whereas the contemporaneous quartz syenite porphyry is barren. In this study, we compared the major and trace elements of apatite and zircon and isotopic compositions of zircon from the biotite syenite porphyry and quartz syenite porphyry, to explore their geochemical differences that may affect their mineralization potential. The results show that both porphyries were derived from the partial melting of the thickened lower crust, which has been modified by slab-derived fluids, but has different mineral crystallization sequences, magma fluid activities, and magma oxidation states, respectively. REE contents in apatite and zircon can be used to reveal the crystallization sequence of minerals. A rapid decrease of (La/Yb)N ratio in apatite from both porphyries may be caused by the crystallization of allanite. Large variation of Cl contents and negative correlation between F/Cl and (La/Yb)N in apatite from fertile porphyry indicate that it has experienced the exsolution of Cl-bearing hydrothermal fluid. Higher Y/Ho and lower Zr/Hf in zircon from fertile porphyry indicate a stronger fluid activity than barren porphyry. The high S, V, As contents, δEu, low δCe in apatite, as well as high Ce4+/Ce3+ and log(fO2) estimated from zircon geochemistry from fertile porphyry, indicate high a oxidation state of fertile porphyry, similar to other fertile porphyries in this metallogenic belt. High fluid activity and fluid exsolution are conducive to the migration and enrichment of metal elements, which are very important for mineralization. High oxygen fugacity inhibits the precipitation of metal in the form of sulfide, thereby enhancing the mineralization potential of rock. Therefore, the exsolution of Cl-bearing hydrothermal fluid and high oxygen fugacity are the key factors promoting mineralization in Yao’an area. Full article
(This article belongs to the Special Issue Rare Metal Ore Formations and Rare Metal Metallogeny)
Show Figures

Figure 1

Article
Experimental Stand for Sorting Components Dismantled from Printed Circuit Boards
Minerals 2021, 11(11), 1292; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111292 - 20 Nov 2021
Viewed by 447
Abstract
There is nothing new about the fact that higher concentrations (up to 50 times) of valuable materials can be found in e-waste, compared to mined ores. Moreover, the constant accumulation of excessive amounts of waste equipment has a negative impact on the environment. [...] Read more.
There is nothing new about the fact that higher concentrations (up to 50 times) of valuable materials can be found in e-waste, compared to mined ores. Moreover, the constant accumulation of excessive amounts of waste equipment has a negative impact on the environment. The components found in electronic equipment may contain hazardous materials or materials that could be recycled and reintroduced into production processes, thus reducing the carbon footprint created by waste electrical and electronics equipment (WEEE). Sustainable e-waste recycling requires high-value, integrated recovery systems. By implementing a two-stage experimental sorting stand, this paper proposes an efficient and fast sorting method that can be industrially scaled up to reduce the time, energy and costs needed to sort electronic waste (e-waste). The sorting equipment is in fact an ensemble of sensors consisting of cameras, color sensors, proximity sensors, metal detectors and a hyperspectral camera. The first stage of the system sorts the components based on the materials’ spectral signature by using hyperspectral image (HSI) processing and, with the help of a robotic arm, removes the marked components from the conveyor belt. The second stage of the sorting stand uses a contour vision camera to detect specific shapes of the components to be sorted with the help of pneumatic actuators. The experimental sorting stand is able to distinguish up to five types of components with an efficiency of 89%. Full article
Show Figures

Figure 1

Article
Human Health Risk Assessment of Trace Elements in Tap Water and the Factors Influencing Its Value
Minerals 2021, 11(11), 1291; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111291 - 20 Nov 2021
Viewed by 468
Abstract
(1) Background: The influence of tap water fittings construction and internal pipe-work on the release of heavy metals was investigated. (2) Methods: A statistical approach was applied for the examination of the chemistry of tap water in five different cities in southern Poland. [...] Read more.
(1) Background: The influence of tap water fittings construction and internal pipe-work on the release of heavy metals was investigated. (2) Methods: A statistical approach was applied for the examination of the chemistry of tap water in five different cities in southern Poland. In total, 500 samples were collected (from 100 to 101 samples in each city). The sampling protocol included information on the construction of the water supply network and the physicochemical parameters of measured tap water. (3) Results: The statistical analysis allowed to extract the crucial factors that affect the concentrations of trace elements in tap water. Age of connection, age of tap, age of pipe-work as well as material of connection, material of pipe-work and material of appliance reveal the most significant variability of concentrations observed for As, Al, Cd, Cu, Fe, Mn, Pb, and Zn. Calculated cancer risks (CRs) decrease with the following order of analysed elements Ni > Cd > Cr > As = Pb and can be associated with the factors that affect the appearance of such elements in tap water. The hazard index (HI) was evaluated as negligible in 59.1% of the sampling points and low in 40.1% for adults. For children, a high risk was observed in 0.2%, medium in 9.0%, negligible in 0.4%, and low for the rest of the analysed samples. Full article
(This article belongs to the Special Issue Trace Metal Distribution and Cycling in Aquatic Environments)
Show Figures

Figure 1

Article
Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland
Minerals 2021, 11(11), 1290; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111290 - 20 Nov 2021
Viewed by 304
Abstract
Civilization development has contributed to environmental pollution. In recent years, the number of vehicles has increased significantly; according to the Central Statistical Office, the number of passenger cars in Poland in 2000 was nearly 10 million, while in 2020 it was slightly more [...] Read more.
Civilization development has contributed to environmental pollution. In recent years, the number of vehicles has increased significantly; according to the Central Statistical Office, the number of passenger cars in Poland in 2000 was nearly 10 million, while in 2020 it was slightly more than 25 million. The study aimed to determine the content and spatial distribution of trace elements (Fe, Mn, Cd, Pb, Cr, Ni, Zn and Cu) in the roadside topsoil along the trunk road Białystok–Budzisko on different types of land use (urban, rural, agricultural and forestal areas). Forty-five soil samples were collected from a 160 km road section, at intervals of approximately 4 km. Metal contents were analyzed by atomic absorption spectrometry. The concentrations of metals in roadside soils occurred in the following order: Fe > Mn > Zn > Cr > Cu > Pb > Ni > Cd. The average contents of Cd, Zn, Cu, and Pb were higher than the geochemical background values of the Polish soils. Moreover, the values of the Igeo showed for Cd moderate to strong, while for Zn, Cu and Pb, moderate soil contamination. The study indicates that significant metal-binding factors in the studied roadside soils are Fe and Mn oxides. The crucial source of metals is road transport, depending on its intensity, which means amount, type, and speed of vehicles. Moreover, based on the analysis of the course of the factor values and their dynamics, it was observed that the areas where typical activities connected with the population take place (urban and agricultural areas) are additional sources of heavy metals. The results of this paper are relevant to the prevention and control of heavy metal pollution in roadside soils. The study can contribute to reducing the concentration of toxic elements in ecosystems due to vehicle emissions with appropriate land-use policies. Full article
(This article belongs to the Special Issue Concentration and Distribution of Heavy Metals in Soils)
Show Figures

Figure 1

Article
Determination of Trace Metal (Mn, Fe, Ni, Cu, Zn, Co, Cd and Pb) Concentrations in Seawater Using Single Quadrupole ICP-MS: A Comparison between Offline and Online Preconcentration Setups
Minerals 2021, 11(11), 1289; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111289 - 19 Nov 2021
Viewed by 381
Abstract
The quantification of dissolved metals in seawater requires pre-treatment before the measurement can be done, posing a risk of contamination, and requiring a time-consuming procedure. Despite the development of automated preconcentration units and sophisticated instruments, the entire process often introduces inaccuracies in quantification, [...] Read more.
The quantification of dissolved metals in seawater requires pre-treatment before the measurement can be done, posing a risk of contamination, and requiring a time-consuming procedure. Despite the development of automated preconcentration units and sophisticated instruments, the entire process often introduces inaccuracies in quantification, especially for low-metal seawaters. This study presents a robust method for measuring dissolved metals from seawater accurately and precisely using a seaFAST and quadrupole Inductively Coupled Plasma Mass Spectrometer (ICPMS), employed in both offline (2016–2018) and online (2020–2021) setups. The proposed method shows data processing, including the re-calculation of metals after eliminating the instrumental signals caused by polyatomic interferences. Here, we report the blank concentration of Fe below 0.02 nmol kg−1, somewhat lower values than that have been previously reported using high-resolution and triple-quad ICPMS. The method allows for the accurate determination of Cd and Fe concentrations in low-metal seawaters, such as GEOTRACES GSP, using a cost-effective quadrupole ICPMS (Cdconsensus: 2 ± 2 pmol kg−1, Cdmeasured: 0.99 ± 0.35 pmol kg−1; Feconsensus: 0.16 ± 0.05 nmol kg−1, Femeasured: 0.21 ± 0.03 nmol kg−1). Between two setups, online yields marginally lower blank values for metals based on short-term analysis. However, the limit of detection is comparable between the two, supporting optimal instrumental sensitivity of the ICPMS over 4+ years of analysis. Full article
(This article belongs to the Special Issue Trace Metal Distribution and Cycling in Aquatic Environments)
Show Figures

Figure 1

Article
Albite ± Actinolite-Altered Porphyry Dykes in Archean Gold Deposits of the Boulder Lefroy-Golden Mile Fault System, Yilgarn Craton, Western Australia: Petrography, Chronology, and Comparison to Canadian Albitites
Minerals 2021, 11(11), 1288; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111288 - 19 Nov 2021
Viewed by 246
Abstract
The Boulder Lefroy-Golden Mile fault system in the Archean Yigarn Craton is the most productive gold-mineralized structure in Australia (>2300 t Au). The New Celebration deposit (51 t Au) is part of a group of hematite- and anhydrite-bearing mesothermal deposits and Fe-Cu-Au skarns [...] Read more.
The Boulder Lefroy-Golden Mile fault system in the Archean Yigarn Craton is the most productive gold-mineralized structure in Australia (>2300 t Au). The New Celebration deposit (51 t Au) is part of a group of hematite- and anhydrite-bearing mesothermal deposits and Fe-Cu-Au skarns associated with monzodiorite-tonalite intrusions in the strike-slip fault system. Ore-grade biotite-carbonate and late sericite-carbonate-alkali feldspar replacement is bound to the contacts of a felsic (low Cr, Ni, V) quartz-plagioclase porphyry dyke dated at 2676 ± 7 Ma. The sodic-potassic alteration of the felsic boudinaged dyke contrasts with the albite-actinolite alteration in the adjacent mafic (high Cr, Ni, V) plagioclase porphyry dated at 2662 ± 4 Ma, although both share the same sulfide-oxide assemblage: pyrite ± chalcopyrite, magnetite ± hematite. The younger porphyry locally crosscuts foliation and is bordered by post-kinematic actinolite-pyrite selvages overprinting talc-chlorite-phlogopite-dolomite schist. It contains auriferous pyrite (70 ppb Au; 610 ppb Ag) where sampled for zircon U-Pb chronology at +224 m elevation. Above the sample site, the dyke was mined as gold ore (1–6 g/t Au) at +300–350 m. Temperature estimates based on actinolite-albite pairs (300–350 °C) agree with the fluid inclusion trapping temperature of main-stage auriferous veins (330 ± 20 °C). These relationships are interpreted to indicate syn-mineralization emplacement. Gold-related albite-altered porphyry dykes (albitites) also occur in the world-class Hollinger-McIntyre (986 t Au) and Kerr Addison-Chesterville deposits (336 t Au), Abitibi greenstone belt, Canada. Full article
(This article belongs to the Special Issue Geology and Mineralogy of Hydrothermal Gold Deposits)
Show Figures

Figure 1

Article
Chromite-PGM Mineralization in the Lherzolite Mantle Tectonite of the Kraka Ophiolite Complex (Southern Urals, Russia)
Minerals 2021, 11(11), 1287; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111287 - 19 Nov 2021
Viewed by 338
Abstract
The mantle tectonite of the Kraka ophiolite contains several chromite deposits. Two of them consisting of high-Cr podiform chromitite—the Bolshoi Bashart located within harzburgite of the upper mantle transition zone and Prospect 33 located in the deep lherzolitic mantle—have been investigated. Both deposits [...] Read more.
The mantle tectonite of the Kraka ophiolite contains several chromite deposits. Two of them consisting of high-Cr podiform chromitite—the Bolshoi Bashart located within harzburgite of the upper mantle transition zone and Prospect 33 located in the deep lherzolitic mantle—have been investigated. Both deposits are enveloped in dunite, and were formed by reaction between the mantle protolith and high-Mg, anhydrous magma, enriched in Al2O3, TiO2, and Na2O compared with boninite. The PGE mineralization is very poor (<100 ppb) in both deposits. Laurite (RuS2) is the most common PGM inclusion in chromite, although it is accompanied by erlichmanite (OsS2) and (Ir,Ni) sulfides in Prospect 33. Precipitation of PGM occurred at sulfur fugacity and temperatures of logƒS2 = (−3.0), 1300–1100 °C in Bolshoi Bashart, and logƒS2 = (−3.0/+1.0), 1100–800 °C in Prospect 33, respectively. The paucity of chromite-PGM mineralization compared with giant chromite deposits in the mantle tectonite in supra-subduction zones (SSZ) of the Urals (Ray-Iz, Kempirsai) is ascribed to the peculiar petrologic nature (low depleted lherzolite) and geodynamic setting (rifted continental margin?) of the Kraka ophiolite, which did not enable drainage of the upper mantle with a large volume of mafic magma. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

Article
Infiltration Depth of Mineral Particles in Gravel-Bed Rivers
Minerals 2021, 11(11), 1285; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111285 - 19 Nov 2021
Viewed by 284
Abstract
This article discusses the results of an experimental study of a spill of mineral particles in gravel-bed rivers due to mining accidents. The purpose of this research is to characterize the dynamics of the fine mining particles spilled on a bed of immobilized [...] Read more.
This article discusses the results of an experimental study of a spill of mineral particles in gravel-bed rivers due to mining accidents. The purpose of this research is to characterize the dynamics of the fine mining particles spilled on a bed of immobilized gravel as a hyper-concentrated mixture and to experimentally characterize the infiltration phenomenon. We analyzed the type of infiltration considering the dimensionless coarse to fine particle size relationship, the dimensionless weight of the fine particles, the relative density of the particles, and the relationship between the subsurface and surface velocities, in addition to the densimetric Froude and Reynolds numbers of the fine particles. We found that the dimensionless infiltration depth is not associated with hydraulic parameters or the weight of the fine sediment spilled; however, fine sediment deposition decreases with depth, and infiltration depth may increase if subsurface flow decreases over time. Finally, a relationship of the dimensionless maximum infiltration depth with the relative density of the mining particles, the ratio of the bed sediment and the mining particles sizes, and the ratio between the subsurface and surface velocities is established. Full article
(This article belongs to the Special Issue Fluid Engineering in Mineral Processing)
Show Figures

Figure 1

Article
Assessment of the Impact of Modification of Calcium Sorbents and the Possibility of Their Use in Desulfurization for Oxy-Fuel Combustion Process
Minerals 2021, 11(11), 1284; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111284 - 19 Nov 2021
Viewed by 256
Abstract
The paper describes the possibilities of simple and effective modification of calcium sorbents used for flue gas desulfurization with a size between of 125–250 µm. The additives to the sorbents in the amount of 0.5% and 1.0% were inorganic sodium and lithium compounds. [...] Read more.
The paper describes the possibilities of simple and effective modification of calcium sorbents used for flue gas desulfurization with a size between of 125–250 µm. The additives to the sorbents in the amount of 0.5% and 1.0% were inorganic sodium and lithium compounds. The research on the reactivity of sorbents was analyzed in the process of simultaneous calcination and sulfation at the temperature of 850 °C. The type of Na+ or Li+ cations and the inorganic salt anions have an influence on the modification of calcium sorbents in order to improve the efficiency of the calcination and sulfation process. Modification of calcium sorbents by adding inorganic sodium and lithium compounds, regardless of the amount, changes the reactivity coefficient RI [mol/mol] and the absolute sorption coefficient CI [g S/kg sorbent]. In the case of inorganic sodium salt (Additive 1), regardless of the amount of modifier added, there was a visible improvement in the reactivity of the sorbent: 1.0% of the additive caused an increase in the RI coefficient in relation to the raw sorbent by over 14%, and in the case of the CI coefficient by over 24%. Additional research was the analysis of the limestone behavior mechanism during the simultaneous calcination and sulfation (SCS) process under conditions of elevated temperature and with variable CO2 and O2 contents in the flue gas. The behavior of sorbents with a size distribution of 125–250 µm was assessed on the basis of the change in mass of the samples by determining the reactivity coefficient RI, [mol/mol] and the absolute sorption coefficient CI, [g S/kg sorbent]. Using the mercury porosimetry technique, the change in sorbent porosity in the subsequent stages of the simultaneous calcination and sulfation process was investigated. The process was carried out in the temperature range corresponding to the oxy-combustion (i.e., from 850 °C to 1000 °C). Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Review
Replacing Fossil Carbon in the Production of Ferroalloys with a Focus on Bio-Based Carbon: A Review
Minerals 2021, 11(11), 1286; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111286 - 18 Nov 2021
Viewed by 522
Abstract
The production of ferroalloys and alloys like ferronickel, ferrochromium, ferromanganese, silicomanganese, ferrosilicon and silicon is commonly carried out in submerged arc furnaces. Submerged arc furnaces are also used to upgrade ilmenite by producing pig iron and a titania-rich slag. Metal containing resources are [...] Read more.
The production of ferroalloys and alloys like ferronickel, ferrochromium, ferromanganese, silicomanganese, ferrosilicon and silicon is commonly carried out in submerged arc furnaces. Submerged arc furnaces are also used to upgrade ilmenite by producing pig iron and a titania-rich slag. Metal containing resources are smelted in this furnace type using fossil carbon as a reducing agent, which is responsible for a large amount of direct CO2 emissions in those processes. Instead, renewable bio-based carbon could be a viable direct replacement of fossil carbon currently investigated by research institutions and companies to lower the CO2 footprint of produced alloys. A second option could be the usage of hydrogen. However, hydrogen has the disadvantages that current production facilities relying on solid reducing agents need to be adjusted. Furthermore, hydrogen reduction of ignoble metals like chromium, manganese and silicon is only possible at very low H2O/H2 partial pressure ratios. The present article is a comprehensive review of the research carried out regarding the utilization of bio-based carbon for the processing of the mentioned products. Starting with the potential impact of the ferroalloy industry on greenhouse gas emissions, followed by a general description of bio-based reducing agents and unit operations covered by this review, each following chapter presents current research carried out to produce each metal. Most studies focused on pre-reduction or solid-state reduction except the silicon industry, which instead had a strong focus on smelting up to an industrial-scale and the design of bio-based carbon for submerged arc furnace processes. Those results might be transferable to other submerged arc furnace processes as well and could help to accelerate research to produce other metals. Deviations between the amount of research and scale of tests for the same unit operation but different metal resources were identified and closer cooperation could be helpful to transfer knowledge from one area to another. Life cycle assessment to produce ferronickel and silicon already revealed the potential of bio-based reducing agents in terms of greenhouse gas emissions, but was not carried out for other metals until now. Full article
(This article belongs to the Special Issue Ferroalloy Minerals Processing and Technology)
Show Figures

Figure 1

Essay
Combined Experimental and Theoretical Studies: Lattice-Dynamical Studies at High Pressures with the Help of Ab Initio Calculations
Minerals 2021, 11(11), 1283; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111283 - 18 Nov 2021
Viewed by 244
Abstract
Lattice dynamics studies are important for the proper characterization of materials, since these studies provide information on the structure and chemistry of materials via their vibrational properties. These studies are complementary to structural characterization, usually by means of electron, neutron, or X-ray diffraction [...] Read more.
Lattice dynamics studies are important for the proper characterization of materials, since these studies provide information on the structure and chemistry of materials via their vibrational properties. These studies are complementary to structural characterization, usually by means of electron, neutron, or X-ray diffraction measurements. In particular, Raman scattering and infrared absorption measurements are very powerful, and are the most common and easy techniques to obtain information on the vibrational modes at the Brillouin zone center. Unfortunately, many materials, like most minerals, cannot be obtained in a single crystal form, and one cannot play with the different scattering geometries in order to make a complete characterization of the Raman scattering tensor of the material. For this reason, the vibrational properties of many materials, some of them known for millennia, are poorly known even under room conditions. In this paper, we show that, although it seems contradictory, the combination of experimental and theoretical studies, like Raman scattering experiments conducted at high pressure and ab initio calculations, is of great help to obtain information on the vibrational properties of materials at different pressures, including at room pressure. The present paper does not include new experimental or computational results. Its focus is on stressing the importance of combined experimental and computational approaches to understand materials properties. For this purpose, we show examples of materials already studied in different fields, including some hot topic areas such as phase change materials, thermoelectric materials, topological insulators, and new subjects as metavalent bonding. Full article
(This article belongs to the Special Issue First Principles Calculations of Minerals and Related Materials)
Show Figures

Figure 1

Review
Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance
Minerals 2021, 11(11), 1282; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111282 - 18 Nov 2021
Viewed by 228
Abstract
Natural and modified clay minerals have been extensively used for the adsorption/desorption of organic substances, especially pesticides, from waters and wastewater, aiming at pollution control and more efficient use of the herbicides through controlled release. While natural clay minerals efficiently remove organic cations [...] Read more.
Natural and modified clay minerals have been extensively used for the adsorption/desorption of organic substances, especially pesticides, from waters and wastewater, aiming at pollution control and more efficient use of the herbicides through controlled release. While natural clay minerals efficiently remove organic cations such as paraquat and diquat, the adsorption of anionic or neutral species demands surface chemical modification with, for instance, quaternary ammonium salts containing long alkyl chains. Basic pesticides, on the other hand, are better absorbed in clay minerals modified with polycations. Kinetic studies and adsorption/desorption isotherms provide the parameters needed to evaluate the clay mineral’s adsorptive performance towards the pollutant target. However, the direct comparison of these parameters is complicated because the experimental conditions, the analytical techniques, the kinetic and isotherm models, and the numerical fitting method differ among the various studies. The free-energy-related Langmuir constant depends on the degree of site occupation; that is, it depends on the concentration window used to construct the adsorption isotherm and, consequently, on the analytical technique used to quantify the free concentrations. This paper reviews pesticides’ adsorption on natural and modified clay minerals and proposes guidelines for designing batch adsorption/desorption studies to obtain easily comparable and meaningful adsorption parameters. Articles should clearly describe the experimental conditions such as temperature, contact time, total concentration window, the solution to adsorbent ratio, the analytical technique, and its detection and quantification limits, besides the fitting models. Research should also evaluate the competitive effects of humic substances, colloidal inorganic particles, and ionic strength to emulate real-world adsorption experiments. Full article
Show Figures

Figure 1

Article
Informed Local Smoothing in 3D Implicit Geological Modeling
Minerals 2021, 11(11), 1281; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111281 - 18 Nov 2021
Viewed by 245
Abstract
Geological models are commonly used to represent geological structures in 3D space. A wide range of methods exists to create these models, with much scientific work focusing recently on implicit representation methods, which perform an interpolation of a three-dimensional field where the relevant [...] Read more.
Geological models are commonly used to represent geological structures in 3D space. A wide range of methods exists to create these models, with much scientific work focusing recently on implicit representation methods, which perform an interpolation of a three-dimensional field where the relevant boundaries are then isosurfaces in this field. However, this method has well-known problems with inhomogeneous data distributions: if regions with densely sampled data points exist, modeling artifacts are common. We present here an approach to overcome this deficiency through a combination of an implicit interpolation algorithm with a local smoothing approach. The approach is based on the concepts of nugget effect and filtered kriging known from conventional geostatistics. It reduces the impact of regularly occurring modeling artifacts that result from data uncertainty and data configuration and additionally aims to improve model robustness for scale-dependent fit-for-purpose modeling. Local smoothing can either be manually adjusted, inferred from quantified uncertainties associated with input data or derived automatically from data configuration. The application for different datasets with varying configuration and noise is presented for a low complexity geologic model. The results show that the approach enables a reduction of artifacts, but may require a careful choice of parameter settings for very inhomogeneous data sets. Full article
(This article belongs to the Special Issue 3D-Modelling of Crustal Structures and Mineral Deposit Systems)
Show Figures

Figure 1

Review
A Review of the Milestones Reached by the Attainable Region Optimisation Technique in Particle Size Reduction
Minerals 2021, 11(11), 1280; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111280 - 18 Nov 2021
Viewed by 209
Abstract
The attainable region (AR) is an optimization method adopted for use in comminution to achieve different objective functions, which all converge to optimising the production of the desired particle size distributions for downstream processes. The technique has so far mostly been used to [...] Read more.
The attainable region (AR) is an optimization method adopted for use in comminution to achieve different objective functions, which all converge to optimising the production of the desired particle size distributions for downstream processes. The technique has so far mostly been used to optimise the breakage of particles in tumbling mills. It achieved the desired purpose by unveiling all possible outcomes derived from a combination of operational parameters that are bound by trajectories showing the limitations of a system. The technique has given the scientific community lenses to see the behaviour of different parameters in ball mills otherwise known as the black boxes due to their concealing nature. Since its inception, the AR technique has been applied to data obtained from the laboratory tests and simulated industrial mills and the results sometimes contradict or confirm the conventional milling practices in the industry. This makes the already conservative mining industry sceptical about its adoption. This review thus assesses the milestone covered as far as the AR development in comminution is concerned. It also helps to clarify the sources of the discrepancies between the AR results and the conventional knowledge concerning the optimisation of ball mill operational parameters. Full article
(This article belongs to the Special Issue Comminution and Comminution Circuits Optimisation)
Show Figures

Figure 1

Article
The Hydrothermal Alteration of the Cordón de Inacaliri Volcanic Complex in the Framework of the Hidden Geothermal Systems within the Pabelloncito Graben (Northern Chile)
Minerals 2021, 11(11), 1279; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111279 - 18 Nov 2021
Viewed by 288
Abstract
Detailed mineralogical analyses in areas with surface hydrothermal alteration zones associated with recent volcanism (<1 Ma) in the Central Andean Volcanic Zone could provide key information to unravel the presence of hidden geothermal systems. In the Cordón de Inacaliri Volcanic Complex, a geothermal [...] Read more.
Detailed mineralogical analyses in areas with surface hydrothermal alteration zones associated with recent volcanism (<1 Ma) in the Central Andean Volcanic Zone could provide key information to unravel the presence of hidden geothermal systems. In the Cordón de Inacaliri Volcanic Complex, a geothermal field with an estimated potential of ~1.08 MWe·km2 has been recently discovered. In this work, we focus on the hydrothermal alteration zones and discharge products of this area, with the aim to reconstruct the geological processes responsible for the space-time evolution leading to the geothermal records. We identified (1) discharge products associated with acid fluids that could be related to: (i) acid-sulfate alteration with alunite + kaolinite + opal CT + anatase, indicating the presence of a steam-heated blanket with massive fine-grained silica (opal-CT), likely accumulated in mud pots where the intersection of the paleowater table with the surface occurred; (ii) argillic alteration with kaolinite + hematite + halloysite + smectite + I/S + illite in the surrounding of the acid-sulfate alteration; and (2) discharge products associated with neutral-alkaline fluids such as: (i) discontinuous pinnacle-like silica and silica deposits with laterally developed coarse stratification which, together with remaining microorganisms, emphasize a sinter deposit associated with alkaline/freshwater/brackish alkaline-chlorine water bodies and laterally associated with (ii) calcite + aragonite deriving from bicarbonate waters. The scarce presence of relics of sinter deposits, with high degree crystallinity phases and diatom remnants, in addition to alunite + kaolinite + opal CT + anatase assemblages, is consistent with a superimposition of a steam-heated environment to a previous sinter deposit. These characters are also a distinguishing feature of paleosurface deposits associated with the geothermal system of the Cordón de Inacaliri Volcanic Complex. The presence of diatoms in heated freshwater bodies at 5100 m a.s.l. in the Atacama Desert environment could be related with the last documented deglaciation in the area (~20–10 ka), an important factor in the recharge of the hidden geothermal systems of the Pabelloncito graben. Full article
Show Figures

Figure 1

Editorial
Editorial for Special Issue “U-Pb Dating and Chemistry of Zircon in Metamorphic, Magmatic and Sedimentary Rocks”
Minerals 2021, 11(11), 1278; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111278 - 18 Nov 2021
Viewed by 247
Abstract
This Special Issue was conceived with the aim of contributing to disclosure of the applications of U-Pb dating and zircon chemistry for deciphering the growth and the evolution of the continental crust [...] Full article
Article
Basalt from the Extinct Spreading Center in the West Philippine Basin: New Geochemical Results and Their Petrologic and Tectonic Implications
Minerals 2021, 11(11), 1277; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111277 - 18 Nov 2021
Viewed by 223
Abstract
We present geological, bulk-rock geochemical and Sr–Nd–Hf isotopic data for mafic rocks from the West Philippine Basin (WPB). These mafic rocks comprise pillow basalts characterized by a vesicular structure. The mid-ocean ridge basalt (MORB)-normalized trace element patterns of basalts from the study area [...] Read more.
We present geological, bulk-rock geochemical and Sr–Nd–Hf isotopic data for mafic rocks from the West Philippine Basin (WPB). These mafic rocks comprise pillow basalts characterized by a vesicular structure. The mid-ocean ridge basalt (MORB)-normalized trace element patterns of basalts from the study area display depletions in Nb. In addition, the chondrite-normalized lanthanide patterns of basalts from the WPB are characterized by significant depletions in the light lanthanides and nearly flat Eu to Lu segments. The investigated rocks have initial 87Sr/86Sr ratios (87Sr/86Sr(i)) of 0.703339–0.703455 and high εNd(t) values (8.0 to 8.7). Furthermore, basalts from the WPB have 176Hf/177Hf ratios that range from 0.28318 to 0.28321 and high εHf(t) from 15.2 to 16.3. Semi-quantitative modeling demonstrates that the parental melts of basalts from the study area were derived by ~20% adiabatic decompression melting of a rising spinel-bearing peridotite source. The Sr–Nd–Hf isotopic compositions of basalts from the WPB indicate that their parental magmas were derived from an upper mantle reservoir possessing the so-called Indian-type isotopic anomaly. Interpretation of the isotopic data suggests that the inferred mantle source was most likely influenced by minor inputs of a sediment melt derived from a downgoing lithospheric slab. Collectively, the petrographic and geochemical characteristics of basalts from the study area are analogous to those of mafic rocks with a back-arc basin (BAB)-like affinity. As such, the petrogenesis of basalts from the WPB can be linked to upwelling of an Indian-type mantle source due to lithospheric slab subduction that was followed by back-arc spreading. Full article
Show Figures

Figure 1

Review
Geology and Geochemistry of Selected Gold Deposits in the Ailaoshan Metallogenic Belt, China: Origin of Ore-Forming Fluids
Minerals 2021, 11(11), 1276; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111276 - 18 Nov 2021
Viewed by 292
Abstract
The formation of the Ailaoshan metallogenic belt was the result of: the Neoproterozoic super mantle plume, the Indosinian and South China blocks in the Late Triassic after the Paleo-Tethys Ocean closure, and Oligocene-Eocene continental-scale shearing related to the India-Eurasia collision. It is one [...] Read more.
The formation of the Ailaoshan metallogenic belt was the result of: the Neoproterozoic super mantle plume, the Indosinian and South China blocks in the Late Triassic after the Paleo-Tethys Ocean closure, and Oligocene-Eocene continental-scale shearing related to the India-Eurasia collision. It is one of the most important Cenozoic gold ore province in the world. In this paper, the geological characteristics, isotopic geochemistry, and geochemical data of ore-forming fluids of four large-scale gold deposits in the Ailaoshan metallogenic belt (Mojiang Jinchang, Zhenyuan Laowangzhai, Yuanyang Daping, and Jinping Chang’an) are comprehensively compared. The features of host-rock alteration, metallogenetic periods and stages, geochronology, fluid inclusion, and C-H-O-S-Pb isotopes of gold deposits are summarized and analyzed. The gold mineralization in the Ailaoshan metallogenic belt occurred mostly in 50–30 Ma, belonging to the Himalayan period. The gold mineralization is closely related to silicification, argillation, carbonation, and pyritization due to the strong mineralization of hydrothermal fluid, the development of alteration products, and the inconspicuous spatial zonation of alteration types. The ore-forming fluid is mainly composed of mantle fluid (magmatic water) and metamorphic fluid (metamorphic water). The ore-forming materials of the Jinchang, Chang’an, and Laowangzhai gold deposits mainly originate the host-rock strata of the mining area, and the carbon is more likely to from marine carbonate. The carbon in the Daping gold deposit from the original magma formed by the partial melting of the mantle. Pb isotopes have characteristics of crustal origin, accompanied by mixing of mantle-derived materials and multisource sulfur mixing, and are strongly homogenized. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Article
Dust Characterization and Its Potential Impact during the 2014–2015 Fogo Volcano Eruption (Cape Verde)
Minerals 2021, 11(11), 1275; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111275 - 17 Nov 2021
Viewed by 316
Abstract
Fogo (Fogo Island) is the youngest and most active volcano of Cape Verde. The last eruption occurred in 2014–2015. Aiming to assess the dust sources that impacted the air quality during the present study period, fresh lava samples were collected, while Saharan dust [...] Read more.
Fogo (Fogo Island) is the youngest and most active volcano of Cape Verde. The last eruption occurred in 2014–2015. Aiming to assess the dust sources that impacted the air quality during the present study period, fresh lava samples were collected, while Saharan dust intrusions and transport were modeled. Rooftop dust was also collected on the island dwellings and a mineralogical and chemical characterization was undertaken. Air quality monitors were used to obtain concentrations of atmospheric particulate matter (PM) and gaseous pollutants. The mineralogical constitution was assessed by XRD and Electron Microprobe. The pseudototal chemical concentration was performed by XRF, ICP-MS and SEM; the latter includes particles morphology. During the study, WRF-CHIMERE results showed the intrusion of desert dust which affected the air quality. Lava was classified as tephritic to basanitic, with high potassium content. The Pollution Load Index for rooftop dust was >1 in all samples, suggesting an enrichment. Higher values were found in dust size fraction <63 µm, with contamination factor pointing to high enrichment of As, Ni and Pb, and very high enrichment of Cd. The non-carcinogenic hazard estimated for children suggested that health problems may arise. The carcinogenic risk was above the target risk, mostly due to As > Pb > Co. Ingestion was the main exposure route. PM10 concentrations exceeded the 24-h mean of 50 µg/m3 recommended by WHO. Nevertheless, TVOCs displayed levels lower than guidelines. The highest levels of CO2 were recorded in more populated villages and farthest from the volcano. Full article
Show Figures

Figure 1

Article
The Recent Progress China Has Made in the Backfill Mining Method, Part I: The Theory and Equipment of Backfill Pipeline Transportation
Minerals 2021, 11(11), 1274; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111274 - 17 Nov 2021
Viewed by 334
Abstract
The backfill mining method is one of the common methods of mine mining worldwide, due to its capacity to maximize the recovery of mineral resources and protect the underground and the surface environment. Similar to the developing conditions of China’s mining industry, China’s [...] Read more.
The backfill mining method is one of the common methods of mine mining worldwide, due to its capacity to maximize the recovery of mineral resources and protect the underground and the surface environment. Similar to the developing conditions of China’s mining industry, China’s backfill mining technology started late, and the level of its equipment is weak, but its development is particularly rapid. Especially after entering the 21st century, China has paid more attention to mining safety, environmental protection, and the continuous implementation of resources development, China’s backfill mining method has increasingly improved, and the level of filling equipment has gradually reached the most advanced level worldwide, which means China has been making great progress in the equipment of backfill mining method, and in recent years, China has also made great progress in the theory of backfill pipeline transportation. Therefore, Part I mainly focuses on both the theory and equipment of backfill pipeline transportation and the recent progress China has made in is introduced in two sections as follows: (1) the theory of backfill pipeline transportation and (2) the equipment of the backfill mining method. Finally, the authors claim that this paper serves just as a guide, tossing out a brick to get a jade gem, and we hope many more experts and scholars will be interested and engage in the research of this field. Full article
(This article belongs to the Special Issue Backfilling Materials for Underground Mining, Volume II)
Show Figures

Figure 1

Article
Sedimentary Setting and Ore-Forming Model in the Songtao Manganese Deposit, Southwestern China: Evidence from Audio-Frequency Magnetotelluric and Gravity Data
Minerals 2021, 11(11), 1273; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111273 - 17 Nov 2021
Viewed by 217
Abstract
The break-up of the supercontinent Rodinia in the late Neoproterozoic led to the formation of the Nanhua rift basin within the South China Block. The Datangpo-type manganese deposit, which developed in the Nanhua rift basin, is one of the most important types of [...] Read more.
The break-up of the supercontinent Rodinia in the late Neoproterozoic led to the formation of the Nanhua rift basin within the South China Block. The Datangpo-type manganese deposit, which developed in the Nanhua rift basin, is one of the most important types of manganese deposits in South China. Although it is widely accepted that deep sedimentary structures significantly affect the manganese ore system, the relationship between the manganese deposits in South China and the Nanhua rifting process is still unclear. The origin of the manganese ore layer remains controversial. In this paper, we integrated the audio-frequency magnetotelluric (AMT) data, gravity data, and comprehensive geological and borehole data analysis to characterize the structure of the Datangpo-type manganese deposit in Songtao, Guizhou Province. The resistivity and density models produced an inclined layered structure, which correlated well with the coeval sediment strata of the Nanhua rift basin. A high-resistivity cap was observed from the surface to a depth of 800 m, corresponding to the Cambrian Loushanguan (ϵ34ls) and Palang dolomite formation (ϵ2p), which has helped the storage of the manganese ore. The most significant low-resistivity anomaly (25–40 Ω·m) resides at a depth of 1400 m in the Nantuo (Nh3n) gravel sandstone and Datangpo (Nh2d) silty and carbonaceous shale, corresponding to the ore-forming layer. This distinct low-resistivity layer was possibly produced by aqueous fluids and pyrite in the syn-sedimentary fault and alteration zone. The accumulations of sulfide minerals in the rock samples suggest a possible anoxic-euxinic deposition environment during the manganese mineralization and precipitation. The fault revealed in the resistivity models is perhaps a previous fault zone produced by extension in the Nanhua rifting process, which provided migration and upwelling channels for ore-forming minerals. Based on our resistivity models, density models, and geological survey, the manganese ore-forming model was derived, which can help to provide geophysical evidence for the origin of the Datangpo-type manganese deposit. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Article
Reactive Transport Modelling of the Long-Term Interaction between Carbon Steel and MX-80 Bentonite at 25 °C
Minerals 2021, 11(11), 1272; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111272 - 16 Nov 2021
Viewed by 367
Abstract
The geological disposal in deep bedrock repositories is the preferred option for the management of high-level radioactive waste (HLW). In some of these concepts, carbon steel is considered as a potential canister material and bentonites are planned as backfill material to protect metallic [...] Read more.
The geological disposal in deep bedrock repositories is the preferred option for the management of high-level radioactive waste (HLW). In some of these concepts, carbon steel is considered as a potential canister material and bentonites are planned as backfill material to protect metallic waste containers. Therefore, a 1D radial reactive transport model has been developed in order to better understand the processes occurring during the long-term iron-bentonite interaction. The numerical model accounts for diffusion, aqueous complexation reactions, mineral dissolution/precipitation and cation exchange at a constant temperature of 25 °C under anoxic conditions. Our results suggest that Fe is sorbed at the montmorillonite surface via cation exchange in the short-term, and it is consumed by formation of the secondary phases in the long-term. The numerical model predicts precipitation of nontronite, magnetite and greenalite as corrosion products. Calcite precipitates due to cation exchange in the short-term and due to montmorillonite dissolution in the long-term. Results further reveal a significant increase in pH in the long-term, while dissolution/precipitation reactions result in limited variations of the porosity. A sensitivity analysis has also been performed to test the effect of selected parameters, such as corrosion rate, diffusion coefficient and composition of the bentonite porewater, on the corrosion processes. Overall, outcomes suggest that the predicted main corrosion products in the long-term are Fe-silicate minerals, such phases thus should deserve further attention as a chemical barrier in the diffusion of radionuclides to the repository far field. Full article
Show Figures

Figure 1

Article
Enhancement of Flotation Performance of Oxidized Coal by the Mixture of Laurylamine Dipropylene Diamine and Kerosene
Minerals 2021, 11(11), 1271; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111271 - 16 Nov 2021
Viewed by 262
Abstract
Conventional hydrocarbon oil cannot adhere effectively to oxidized coal, resulting in a low yield of clean coal. In this study, a high-speed homogenizer was used to emulsify LDD (laurylamine dipropylene diamine) and kerosene, which enhanced the flotation efficiency of oxidized coal. The flotation [...] Read more.
Conventional hydrocarbon oil cannot adhere effectively to oxidized coal, resulting in a low yield of clean coal. In this study, a high-speed homogenizer was used to emulsify LDD (laurylamine dipropylene diamine) and kerosene, which enhanced the flotation efficiency of oxidized coal. The flotation results showed an increase from 4.12% (only kerosene) to 23.33% (emulsified oil). An increase in contact angle indicated that the mixture reagent can increase the hydrophobicity of coal particles, which is attributed to the adsorption of LDD onto the coal particle surface and the decrease of the oil droplet A lower surface tension of LDD allows it to produce a stable layer of froth than the layer generated by kerosene alone. Full article
(This article belongs to the Special Issue Flotation Reagents, Volume II)
Show Figures

Figure 1

Article
A Role of Mineral Oxides on Trace Elements Behavior during Pulverized Coal Combustion
Minerals 2021, 11(11), 1270; https://0-doi-org.brum.beds.ac.uk/10.3390/min11111270 - 15 Nov 2021
Viewed by 306
Abstract
The issues of trace element emissions during coal combustion has been a concern in recent years due to their environmental pollutant. To study the trace element transformation, the thermodynamic calculation (FactSage 7.2) was used. Five kinds of pure mineral oxides (Al2O [...] Read more.
The issues of trace element emissions during coal combustion has been a concern in recent years due to their environmental pollutant. To study the trace element transformation, the thermodynamic calculation (FactSage 7.2) was used. Five kinds of pure mineral oxides (Al2O3, CaO, Fe2O3, K2O, and MgO) and As, B, Cr, F, and Se in fly ash were considered for trace elements. The results confirm that all mineral oxides have a good correlation with arsenic to form Ca3(AsO4)2, FeAsO4, K3AsO4, and Mg3(AsO4)2. Boron has a good relationship with Al, Ca, and Mg to form (Al2O3)9(B2O3)2, Ca3B2O6, and Mg3B2O6. Chromium has a good correlation with K and Ca to form K2CrO4, CaCr2O4. Furthermore, FeF3(s) KF(s), and AlF3(s) are predicted from the interaction of fluorine with Fe2O3, K2O, and Al2O3. The effect of mineral oxides on selenium partitioning are not observed. The inhibition order of trace elements by mineral oxides is as follow: As (Al2O3 > MgO > CaO > Fe2O3 > K2O), B (Al2O3, CaO, Fe2O3, K2O, > MgO), Cr (CaO > K2O > Al2O3, MgO, Fe2O3), F (CaO > MgO > Al2O3 > Fe2O3 > K2O). The results will be useful to control the trace element emissions. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop