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Abstract: The production of ferroalloys and alloys like ferronickel, ferrochromium, ferromanganese,
silicomanganese, ferrosilicon and silicon is commonly carried out in submerged arc furnaces. Sub-
merged arc furnaces are also used to upgrade ilmenite by producing pig iron and a titania-rich
slag. Metal containing resources are smelted in this furnace type using fossil carbon as a reducing
agent, which is responsible for a large amount of direct CO2 emissions in those processes. Instead,
renewable bio-based carbon could be a viable direct replacement of fossil carbon currently inves-
tigated by research institutions and companies to lower the CO2 footprint of produced alloys. A
second option could be the usage of hydrogen. However, hydrogen has the disadvantages that
current production facilities relying on solid reducing agents need to be adjusted. Furthermore,
hydrogen reduction of ignoble metals like chromium, manganese and silicon is only possible at very
low H2O/H2 partial pressure ratios. The present article is a comprehensive review of the research
carried out regarding the utilization of bio-based carbon for the processing of the mentioned products.
Starting with the potential impact of the ferroalloy industry on greenhouse gas emissions, followed
by a general description of bio-based reducing agents and unit operations covered by this review,
each following chapter presents current research carried out to produce each metal. Most studies
focused on pre-reduction or solid-state reduction except the silicon industry, which instead had a
strong focus on smelting up to an industrial-scale and the design of bio-based carbon for submerged
arc furnace processes. Those results might be transferable to other submerged arc furnace processes
as well and could help to accelerate research to produce other metals. Deviations between the amount
of research and scale of tests for the same unit operation but different metal resources were identified
and closer cooperation could be helpful to transfer knowledge from one area to another. Life cycle
assessment to produce ferronickel and silicon already revealed the potential of bio-based reducing
agents in terms of greenhouse gas emissions, but was not carried out for other metals until now.

Keywords: biomass; nickel; manganese; silicon; chromium; ilmenite; submerged arc furnace; green-
house gas; ferroalloys; bio-based carbon

1. Introduction

Compared to the pre-industrial era, the anthropogenic emissions of greenhouse gases
are on a historically high level, which is a dominant reason for climate change. In the last
century, not only an increase in average land and ocean temperatures, greenhouse gas
concentrations in the atmosphere and sea levels were observed, but also acidification of
the oceans due to accelerated CO2 uptake. Since the 1950s an intensification in extreme
climate and weather events can also be seen, which is most likely at least partially due to
human influence. It is expected, that a continuous emission of anthropogenic greenhouse
gases could lead to even more severe changes in the climate conditions [1]. One industry
responsible for such gas emissions is the metallurgical industry. To decrease those emis-
sions, two possibilities are evident: implementation of breakthrough technologies or the
usage of CO2 lean fuels. Possibilities could be the usage of biomass, bio-based carbon or
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hydrogen. Bio-based carbon can be considered CO2 neutral if the same amount of biomass
consumed is recultivated [2] and therefore, the replacement of fossil carbon carriers by
for example charcoal could lead to a decrease in specific CO2 emissions [3]. Hydrogen is
also CO2 neutral, if the electricity used to produce hydrogen is CO2 neutral. However,
hydrogen has the disadvantage, that major changes in the current production processes
and facilities for the investigated metals have to be employed. In addition, hydrogen has
a lower affinity to oxygen than carbon, which makes it unsuitable for the reduction of
ignoble metals. Figure 1 shows the Gibbs free energy of relevant reactions for pre-reduction
or reduction for metal oxides of nickel, iron, chromium, manganese and silicon covered by
this review at 1 atm per mole of carbon or hydrogen. The reaction module of FactSageTM

8.0 [4] and the databases FactPS and FToxid were used as a source.

Figure 1. Gibbs free energy of reduction reactions per mole reducing agent. (a) pre-reduction with carbon; (b) reduction
with carbon; (c) pre-reduction with hydrogen; (d) reduction with hydrogen.

As shown by Figure 1, the pre-reduction and reduction of the oxides by carbon is
thermodynamically feasible, if the temperature is high enough. Hydrogen can only be
used for the pre-reduction of Fe2O3 and Mn2O3 and the reduction of NiO. However, since
Figure 1 is calculated for an activity of 1 for condensed substances and a partial pressure
of 1 atm for gaseous compounds, the reactions with hydrogen are possible, if the partial
pressure ratio of H2O to H2 is low enough. Though, the reduction of CrO, MnO and SiO2
with hydrogen will require a low ratio, which is shown in the Supplementary Materials
(Figure S1). The usage of hydrogen is suitable for ferronickel production, ilmenite treatment
and pre-reduction of iron oxides and manganese oxides, but if hydrogen is used for the
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production of chromium, manganese or silicon, it will only be possible to accept an off-gas
with a high hydrogen content.

The use of bio-based carbon in metallurgical applications does not only have a positive
impact on the environment due to the non-polluting nature and the renewability, but it can
also lead to several social and economic benefits, like rural industrialization, transfer of
capital from industrial to rural areas, savings of foreign exchanges and job creation [5,6].
On the other hand, non-sustainable forest management is contributing to deforestation, loss
of biodiversity, forest degradation and increases the chance of droughts and floods [7–9].
Therefore, it is necessary to meet the demand for bio-based carbon by harvesting sustainable
sources of biomass or currently unused vegetative waste.

The usage of bio-based carbon has already been extensively investigated for the
iron and steel industry [2,10–18]. Compared to the iron and steel industry, less research
was carried out to substitute fossil carbon with bio-based carbon for the production of
alloys reviewed by this article. This is likely because the production figures for the metals
investigated by this paper are significantly lower compared to the production of raw steel,
as can be seen in Table 1.

Table 1. Production figures of some alloys for 2016 in million tons, excluding the USA.

Alloy FeCr [19] FeMn [19] SiMn [19] FeNi [19] FeSi [19] Si [20] Raw Steel [21]

Production in
million tons 11.900 4.655 12.500 3.740 6.870 2.850 1551.5

Although the production figures for ferroalloys are even in sum significantly lower
than for steel, the substitution of fossil carbon by renewably sourced bio-based carbon can
reduce the emission of greenhouse gases. Based on the yearly production figures presented
in Table 1 and the generic CO2 emission per ton of produced liquid alloy reported by
Lindstadt et al. [22] for FeCr, HC FeMn, SiMn, FeSi65 and Si, the CO2 emissions for the
production of those metals in the year 2016 can be estimated. The specific generic CO2
emissions and the total generic CO2 emissions are presented in Table 2. The total emissions
are calculated by multiplying the emission factors and the production figures. As there
are deviations in the applied processes, alloy grades and reducing agents utilized in the
industry, those values are only rough estimates. Nevertheless, it is a fair assumption that
million of tons of CO2 emissions could be avoided each year by replacing fossil carbon
with renewable carbon sources to produce these metals.

Table 2. Exemplary generic CO2 emissions for the production of ferroalloys per metric ton of liquid
alloy and the total emissions for 2016, excluding the USA.

Alloy FeCr HC FeMn SiMn FeSi65 Si

Ton CO2/ton liquid metal [22] 1.3 1.3 1.4 3.6 5.0
Million tons CO2/per year 15.5 6.1 17.5 24.7 14.3

Using the calculated total generic emissions for the alloys presented in Table 2 and
the available data for greenhouse gas emissions, [23,24] the share of the generic emissions
for the production of those alloys can be calculated. In 2016 the global greenhouse gas
emissions were 49.4 billion tons of CO2eq while the energy consumption in industries
contributed to 24.2% of the total emissions [23,24]. Figure 2 shows the share of different
industries contributing to those emissions. As the emissions for the production of ferroal-
loys are included in the category for iron and steel [25], the generic emissions from Table 2
resulting in 78.1 million tons of CO2 are deducted from the iron and steel share and are
listed as their own category. Furthermore, Figure 2 shows the stake of FeCr, FeMn, SiMn,
FeSi and Si contributing to the total generic CO2 emissions of the mentioned ferroalloys. In
comparison to the worldwide CO2 emissions, the generic CO2 emissions from those alloys
are equal to the mean CO2 emission of 11.8 million people, taking the CO2 emissions per
capita of 2016 as a reference [23].
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Figure 2. Global greenhouse gas Emissions by industries in 2016, based on data from [23,24] and share of the generic CO2

emissions of ferroalloys.

Even though the positive influence of charcoal on the environment, process and
product quality were already expressed nearly 20 years ago for the ferroalloy industry [26],
fossil carbon carriers are still highly relevant and for example, at least until 1998, no
biological carbon was used for the production of manganese ferroalloys and chromium
ferroalloys in Norway, instead, coke was the main reducing agent [27]. Probably, because
the specific price related to the fixed carbon content of charcoal or wood compared to
fossil reducing agents is normally higher [26]. However, in some countries like Brazil
with large forests and scarce coal deposits the use of charcoal can also be accompanied
by reduced costs [6]. Furthermore, there are technical and practical issues to solve, if a
replacement of fossil carbon like coke by bio-based carbon is planned. Biomass fuels can
show undesirable characteristics like low energy density, low bulk density and limited
carbon content, leading to high transportation and storage costs [28]. Therefore, upgraded
biomass is considered for metallurgical applications, but even pyrolyzed biomass is still
associated with those disadvantages [29,30]. Furthermore, biomass sources are quite
diffuse and it might be difficult to obtain quantities sufficient [28] to have an impact on
the greenhouse gas emissions of the ferroalloy industry. Another challenge, especially for
large shaft furnaces, is the inferior mechanical properties like the crushing strength, density
and friability [31].

Approaches to utilize bio-based carbon in the ferroalloy industry accepting those
undesirable characteristics or to overcome those obstacles are shown in this article. First, an
overview of the ultimate and proximate analysis of reducing agents used in the industry
and research are presented, followed by an introduction about common unit operations to
produce alloys containing nickel, chromium, silicon, manganese and for the upgrading of
ilmenite ore. The subsequent chapters present research carried out in the last decades inves-
tigating the usage of bio-based carbon to produce the investigated metals. Subchapter 6.2.
investigating the production of agglomerates containing biomass is especially mentioned,
because the agglomerates considered for the usage in silicon submerged arc furnaces may
also be usable in other smelting processes described by this article.

2. Characterization of Reducing Agents

As quite different biomass-based reducing agents are either currently considered
in metallurgical research as a replacement for fossil carbon or partially already used for
industrial operations, biomass-based reducing agents are categorized into five categories in
this study and compared to coal and coke as a fossil reference. Table 3 shows examples of
used biomass-based and fossil reducing agents and in which category they were assigned.
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Table 3. Examples of reducing agents or feedstocks used by authors cited in this study and own data.

Category Examples Reference

Wood Sawdust, Chips, Twigs, Needles, Branches, Bark [32–44]

Vegetative Waste Olive Pulp, Straw, Shells, Husks, Pith [32,33,45–52]

Charred Waste Charred-Olive Pulp, Corn Cobs, Vegetative Waste, Fruit
Cuttings, Straw [37,44,52–55] & own data

Shell Charcoal Charred-Coconut Shells, Palm Kernel Shells [56–67] & own data

Wood Charcoal Charred- Bamboo, Cypress, Lamtoro, Pine, Spruce,
Eucalyptus, Mallee [26,30,35,38–41,43,44,51,54,57,68–72] & own data

Coal Coal, Anthracite, Newcastle Blend Coal, Bitumite [3,35–37,44,55–61,68–70]

Coke Lignite Coke, Coke, Semi-Coke, Petroleum Coke, Coke Breeze [3,22,30,35,37,41,43,44,54,55,60,64,68–70,73] & own data

The composition of coke or coal is commonly reported as a proximate analysis or
ultimate analysis. The proximate analysis is subdivided into four categories: moisture-,
ash-, volatile matter- and fixed carbon content. The ultimate analysis is subdivided into six
categories: ash-, carbon-, hydrogen-, nitrogen-, sulfur- and oxygen content. Proximate and
ultimate analyses from the references in Table 3 and own data are compared in this chapter.
However, the standard analytical methods are described first briefly, to understand what
the proximate and ultimate analysis represents.

The moisture content can be determined either by a two-stage method or a single-stage
method. For the two-stage method, a sample is dried in air at temperatures below 40 ◦C,
the mass loss of the sample is the free-moisture content, followed by crushing the sample
and drying at 105 ◦C to 110 ◦C under nitrogen or air to determine the residual moisture
content. The single-stage method is conducted similar to the second stage of the previous
method, a sample is crushed and either dried under nitrogen or air at 105 ◦C to 110 ◦C to
determine the mass loss [74].

The volatile matter content can be determined by heating a sample without contact to
air at 900 ◦C for seven minutes. The mass loss minus the moisture content is the volatile
matter content [75].

The ash content can be determined by burning a sample at 815 ◦C in air until the
sample reaches a constant mass. The remaining mass is the ash content of the sample [76].

The fixed carbon content (wt%Cfix) can be calculated by Equation (1) after the ash content
(wt%Ash), moisture content (wt%M) and volatile matter content (wt%VM) are determined [77].

wt%Cfix,ad = 100% − (wt%Ash,ad + wt%M,ad + wt%VM,ad) (1)

wt%x,ad: weight percent of proximate analysis value x in air-dried sample
Instead of calculating the fixed carbon content, the total carbon content of a sample

after the removal of volatile matter can be measured by a total combustion method. The
fixed carbon content can then be calculated by Equation (2). However, if the ash in
the sample contains carbonates, Equation (2) would yield a higher fixed carbon content
compared to Equation (1).

wt%Cfix =
wt%Cafter VM determination · mafter VM determination

minitial sample
(2)

msample: sample mass in arbitrary units
Carbon, hydrogen and nitrogen are measured by complete combustion in oxygen

at elevated temperatures. Interfering combustion products are removed and nitrogen
oxides are reduced to N2, before CO2, H2O and N2 are analyzed by instrumental gas
analysis procedures [78].
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Sulfur can be in fuels as inorganic sulfates, inorganic sulfides and organic sulfur.
The total sulfur content can be obtained by combusting a sample in an oxygen stream at
1350 ◦C. Water vapor and solid matter are removed from the gas stream and the gas is
afterward analyzed by a calibrated infrared absorption detector [79].

If the previous described values are available, the oxygen content can be calculated
for an air-dried (ad) basis using Equation (3) [80].

wt%O,ad=100% − (wt%C,ad + wt%H,ad + wt%N,ad + wt%S,ad + wt%Ash,ad + wt%H2O,ad) (3)

wt%X,ad: weight percent of element X in air-dried sample

2.1. Proximate Analysis
Figure 3 shows box plots of the proximate analysis of referenced data from Table 3 and own data

sorted by ascending mean fixed carbon contents. The fixed carbon content and volatile matter content
are displayed on a dry and ash-free basis, to allow comparability between different studies. The ash-
and moisture content are displayed as received. In Figure 3, the cross inside the boxes displays the
average value, the line in the box displays the median, the box reaches from the 25th percentile to
the 75th percentile (interquartile range), the whiskers either include the maximum and minimum
value of the dataset, or the last value within a maximum distance of 1.5 times the interquartile range.
Outliers with a larger distance to the box are displayed as points.

Figure 3. Box plots of parameters obtained by proximate analysis of different reducing agents sorted by ascending fixed
carbon content. (a): Fixed carbon, dry and ash-free. (b): Volatile matter, dry and ash-free. (c): Ash content, as received.
(d): Moisture content, as received.

Not surprisingly, raw biomass like wood or vegetative waste has the lowest fixed
carbon content and highest volatile matter content. The fixed carbon content of charred
vegetative waste, shell charcoal and wood charcoal are surpassing the fixed carbon content
of coal, but have lower fixed carbon contents compared to coke. Generally, for metallurgical
applications, a reducing agent with a higher fixed carbon has a better quality compared
to a reducing agent with a lower fixed carbon content [81]. Another advantage of coke
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in regards to the fixed carbon content is the uniformity represented by the smallest box
between the first quartile and third quartile. Shell charcoal and wood charcoal are deviating
slightly more compared to coke, while especially the charred vegetative waste samples
show a strong deviation in the fixed carbon content.

Wood and wood charcoal have the lowest mean ash content, while coke and charred
vegetative waste have the highest ash content. In practice, the ash content should be low,
since ash is a non-productive component of a reducing agent and can increase the amount
of slag produced and alter the chemical composition of the slag [82]. Since the comparison
of the ash content solely on the absolute basis is disregarding the amount of the reducing
agent needed for a process, Table 4 is comparing the amount of ash per ton of fixed carbon.
The upper quartile and lower quartile are also shown in the table.

Table 4. Mass of ash in relation to a constant fixed carbon amount in reducing agents.

Reducing Agent Wood Vegetative Waste Coal Charred Waste Shell Charcoal Wood Charcoal Coke

Mean mass of ash in kg per ton
fixed carbon 91.6 393.7 91.3 117.3 83.4 41.1 110.4

Upper quartile
in kg 128.9 587.7 117.1 192.1 85.3 46.0 121.9

Lower quartile
in kg 41.6 147.7 28.3 46.6 23.4 12.7 79.3

Moreover, in numbers relative to the fixed carbon content, wood charcoal has the
lowest amount of ash, however, raw wood has now a higher amount of ash compared to
shell charcoal and coal. In relation to the fossil reference, shell charcoal and wood charcoal
perform better compared to coal and coke in terms of the mean mass of ash per fixed
carbon. Based on these numbers, the replacement of coke by wood charcoal would result
in a 62.6% lower ash load for a metallurgical operation.

2.2. Ultimate Analysis

Part of an ultimate analysis of coal is the determination of the hydrogen-, carbon- and
oxygen content. A common method to display those values is a diagram containing the
atomic hydrogen to carbon ratio over the atomic oxygen to carbon ratio. Van Krevelen [83]
proposed this method since principal reactions like decarboxylation (Decarboxy.), demetha-
nation (Demeth.), dehydration (Dehydr.), dehydrogenation and oxidation are represented
as straight lines in this diagram [83]. Figure 4 shows such a diagram containing the data of
the samples mentioned in Table 3 and lines representing the pathway of the mentioned
reactions. In addition to the individual values, the ellipses show the average absolute
deviation of the mean values for each category, while the points represent individual
data point.

Noticeable are higher variations in the atomic O/C ratio for wood, coal and coke
compared to the atomic H/C ratio, while vegetative waste, charred vegetative waste,
shell charcoal and wood charcoal have a higher deviation in the atomic H/C ratio. The
highest deviations are shown by vegetative waste and charred vegetative waste, which
could impede their usage in metallurgical processes, as constant properties are desirable
in industrial operations. The smallest deviations are shown by coke, followed by shell
charcoal, coal and wood charcoal. Shell charcoal and wood charcoal exhibit a higher total
carbon content compared to coal according to the Van Krevelen diagram. As shown by the
proximate analysis in Figure 3, shell charcoal and wood charcoal also have a higher fixed
carbon content compared to coal.

Sulfur is an unwanted impurity in steel [84] and since ferroalloys are used in the
steel industry as a master alloy, maximum sulfur contents are regulated by international
standards [85–89]. In carbothermic reduction processes, most of the sulfur input comes
in the form of reducing agents, for example, nearly 90% of the sulfur in a high carbon
ferrochromium process comes from the coke input [90]. Therefore, the sulfur content in
reducing agents should be as low as possible. To compare the sulfur content, it is again
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shown in relation to a constant amount of fixed carbon in Table 5. The upper quartile and
lower quartile are also shown in the table.

Figure 4. Van Krevelen diagram including different reducing agents used to produce ferroalloys in an industrial-scale or in
research facilities.

Table 5. Mass of sulfur in relation to a constant fixed carbon amount in reducing agents.

Reducing Agent Wood Vegetative Waste Coal Charred Waste Shell Charcoal Wood Charcoal Coke

Mean mass of sulfur in kg per ton
fixed carbon 2.1 4.7 7.9 0.6 1.0 0.3 5.4

Upper quartile
in kg 2.8 7.6 9.0 0.9 1.2 0.4 6.7

Lower quartile
in kg 0.9 2.1 6.4 0.3 0.8 0.1 3.8

According to Table 5, the sulfur content in the fossil reducing agents is the highest.
Additionally noticeable is that the heat-treated reducing agents have a lower sulfur to fixed
carbon ratio compared to the raw material. Wood charcoal has the lowest sulfur to fixed
carbon ratio and a replacement of coke by wood charcoal would result in a 94% lower
sulfur load for a metallurgical operation.

3. Unit Operations Presented in this Review

In the production route of the metals subject of this review, a considerable number of
unit operations is used, often for more than one metal addressed here. Many unit operations
included already have the potential to use bio-based carbon. One subchapter is dedicated
to introduce the established conditioning processes sintering, briquetting, calcination or
pre-reduction in a rotary kiln and the subsequent reduction smelting in a submerged arc
furnace. In laboratory trials, other furnaces are also used like resistance- or induction
furnaces, however, it is more likely that the presented state of art equipment is used for
industrial applications. One subchapter is devoted to introduce innovative processes like
segregation, and experiments using microwave heating or solar heating. Those processes
are not carried out on an industrial-scale yet, but could be a breakthrough technology for
the production of the considered metals. In the figures showing the schematic processes,
the areas to substitute fossil carbon by bio-carbon reported are highlighted by a green
dashed box.
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3.1. Established Unit Operations Carried out in the Industry

Figure 5 shows a schematic sketch of a sintering plant. Sintering is used to agglomerate
ore, fines, and fluxes by using a carbon carrier like coke breeze or coal. The raw materials
are mixed and a burner ignites the carbon carrier in the mixture. Wind boxes force air
through the mixture while burning carbon supplies the energy for the process. The high
temperature enables an agglomeration by surface melting. The sinter is finally crushed to
lumps and charged into a smelting furnace. In this review, published research about the
substitution of fossil carbon for the sintering of manganese and chromite ore is compiled.

Figure 5. Schematic sintering process.

Another option for agglomeration is briquetting of raw material. Figure 6 shows
a sketch of a briquetting process. Fine raw material is compacted by force into a lump
briquette. Those briquettes can already contain a reducing agent like coke, but it is also
possible to include bio-based carbon in this process. A further example of agglomeration is
pelletizing using a pelletizing disk or pelletizing drum, which is not shown by a sketch in
this review. The incorporation of bio-based carbon in agglomerates produced by briquetting
or pelletizing has also been reported for the production of ferroalloys containing nickel,
chromium, silicon and manganese and is addressed in this paper.

Figure 6. Schematic briquetting process.

Pre-reduction or solid-state reduction of ore is commonly carried out in a rotary kiln
with a slight downward slope. It is typically heated by a gas-, oil-, or coal burner. Raw
materials like ore, fines, coke breeze, coal and fluxes are either mixed and pelletized or
directly charged at the higher side of the kiln. While the raw material is descending, it
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is heated and depending on the used mixture, oxides are either pre-reduced or reduced.
The calcine is used as a feedstock for smelting for example in a submerged arc furnace.
By pre-heating the calcine, the specific energy consumption in the smelting furnace is
reduced and pre-reduction can minimize the amount of carbon carriers necessary for a full
reduction of the feed in a furnace. Conditioning of ore for a subsequent hydrometallurgical
treatment can also be carried out in a rotary kiln, for example to modify the mineralogical
composition of ore. A schematic sketch of the calcination or pre-reduction operation is
shown in Figure 7. Research carried out to substitute fossil carbon with bio-based carbon
are presented in the chapters about nickel, chromium and manganese production and in
the upgrading of ilmenite ore.

Figure 7. Schematic calcination process.

Common smelting reactors for the production of ferroalloys are submerged arc fur-
naces, refractory- or carbon-lined and heated by electricity conducted through electrodes
into the furnace. Figure 8 shows a sketch of a submerged arc furnace with three elec-
trodes. Other configurations are also common, for example with one top-electrode and a
conductive hearth coupled with a bottom electrode or configurations with six electrodes.
Those differences are not crucial for this review and therefore not further discussed. In
those furnaces, ore, agglomerates or sinter are charged from the top with or without fluxes
and carbon-containing materials like coke. Smelting processes using bio-based carbon are
discussed for the production of nickel, chromium, silicon and manganese-containing alloys
in this paper.

Figure 8. Schematic submerged arc furnace.
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3.2. Innovative Unit Operations of Current Research Interest

Segregation of primary concentrates is currently investigated to produce metal-rich
particles, which can be separated from gangue material by using established mineral
beneficiation methods. This is especially of interest, if the valuable metals in ore cannot
be directly concentrated by current mineral processing. In a segregation process, ore is
heated together with a carbon carrier and an additive for example in a rotary kiln, which
enables the liberation of valuable metals by volatilization. Chlorides could be used for this
process which would result in the formation of gaseous HCl. The metal oxides then react
with gaseous HCl according to Equation (4) [91,92].

MeO(s) + 2HCl(g) 
 MeCl2(g) + H2O(g) (4)

The generated water vapor is then reduced at solid carbon resulting in the formation
of hydrogen according to Equation (5) [91].

C(s) + 2H2O(g) 
 H2(g) + CO2(g) (5)

Hydrogen is then able to reduce the metal chloride according to Equation (6) while
HCl is regenerated to react with leftover metal oxides again [91].

MeCl2(g) + H2(g) 
 Me(s) + 2HCl(g) (6)

After the reaction is complete, residual gangue particles and carbon particles with
deposited metal are produced. Those carbon particles with deposited metal are then
collected by mineral processing and used in a smelting process, while the demetallized
gangue is discarded. Figure 9 shows a schematic segregation process. This review presents
research done about segregation processes using bio-based carbon for the enrichment of
nickel and chromium resources.

Figure 9. Schematic segregation process.

An option to avoid CO2 emissions generated to heat material, can be the usage of
solar thermal energy or microwave heating by using renewable electricity. Currently, only
laboratory-scale studies were found using those innovative heating sources coupled with
the usage of bio-based carbon as reducing agent for metal oxides. A schematic set-up for
the usage of solar heating and microwave heating is shown in Figure 10. These options are
presented for the production of silicon and the upgrading of ilmenite, while microwave
heating is already investigated for the pre-reduction of manganese ore and upgrading
of ilmenite.



Minerals 2021, 11, 1286 12 of 39

Figure 10. Schematic set-up for solar and microwave heated trials.

4. Production of Nickel Alloys Using Bio-Based Carbon

Research carried out to substitute fossil carbon in the production of nickel-containing
alloys by bio-based carbon, either via solid-state reduction or smelting processes are
presented in this chapter. In addition, life cycle assessments (LCA) investigating the
replacement of fossil coal by bio-based carbon for the production of nickel are shown in
this chapter.

4.1. Solid-State Processes Using Bio-Based Carbon for the Production of Nickel Alloys

The solid-state reduction chapter is divided into studies investigating the pre-reduction
and the segregation of nickel resources.

4.1.1. Pre-Reduction of Nickel Resources Using Bio-Based Carbon

Pre-reduction and pre-heating of nickel ore are commonly used in the rotary kiln/electric
furnace (RKEF) smelting process to lower the energy consumption in the electric furnace.
Most commonly fossil carbon like anthracite, bituminous coal or lignite coal is used in the
rotary kiln operation [93–99]. However, it is also possible to use bio-based carbon instead of
fossil carbon in rotary kilns. This chapter presents some work carried out in this direction.

Already in 1960, the Hanna Nickel Smelting Co. in Oregon, USA presented the
possibility of using wood waste in a rotary kiln to reduce trivalent iron into the divalent
state. Back then Hanna Nickel used the Ugine reduction process. Crushed and screened ore
was dried in an oil-fired rotary kiln and the hot calcine was smelted in an electric furnace.
The molten ore was hydraulically tilted into a reaction ladle. After charging the molten ore,
liquid ferronickel as seed metal and solid ferrosilicon as a reducing agent was fed into a
reaction ladle. The content of the reaction ladle was poured into an empty ladle and back
several times until the reduction was completed. Finally, the slag was transferred to a slag
ladle for subsequent water granulation. Afterward, the ferronickel was transferred to a
refining furnace [100]. Figure 11 shows a simplified process sheet of the Hanna Nickel
Smelting Co [100].

Figure 11. Simplified process of the Hanna Nickel smelting operation (after [100]).
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As nearly 45% of ferrosilicon was used to reduce trivalent iron, tests were conducted to
reduce the ferrosilicon consumption. The melting furnace consisted of a water-cooled steel
shell and it was not possible to remove metal from the electric furnace in the original design.
Therefore, approaches like adding reductants into the electric furnace were approached
with caution. Furthermore, attempts to add carbon to the reaction ladle resulted in carbon
boils or had no significant impact on ferrosilicon consumption. Instead, successful tests
were carried out to add carbon or sawdust with the feed in the rotary kiln. In both
cases, the ferrosilicon consumption decreased by 15% and the electrode consumption was
reduced by 10–12%, while sawdust had lower costs per pound of fixed carbon [100]. Those
successful tests led to an installation of a sawdust system in the calcining operation already
in 1960 [101].

Instead of using wood waste, a more recently investigated biomass-based reducing
agent is shell charcoal like coconut or palm shell charcoal.

Shofi et al. [61] investigated a solid-state reduction process using sodium chloride,
sodium sulfate and sodium carbonate as additives to produce a metallic concentrate from
nickel laterites in a muffle furnace and to recover nickel by wet magnetic separation. Palm
shell charcoal was the only reducing agent in this work, which does not allow a comparison
with other reducing agents. The study showed the advantages of a sodium sulfate addition
on the process. Adding 10 wt% of sodium sulfate and 5 wt% of palm shell charcoal at a
reduction temperature of 1150 ◦C and a reduction time of 60 min yielded the highest nickel
recovery of 73.2% and a nickel grade of 4.6 wt% in the concentrate. Furthermore, the grain
size of the produced ferronickel particles was nearly three times higher (~30 µm) compared
to the other additives [61].

Petrus et al. [56] investigated and compared the reduction behavior of anthracite coal
and coconut shell charcoal for the roasting reduction of limonitic laterite. Laterite and the
reducing agent were pelletized and treated in a muffle furnace at different temperatures
and holding times. In the study, no ferronickel or wustite could be identified, instead, only
a partial pre-reduction of iron oxides to magnetite occurred. A mineralogical comparison
of the yielded products after a reduction time of 120 min at 900 ◦C yielded no significant
difference in terms of the formation of olivine, quartz, magnetite and hematite for both
reducing agents. However, kinetic analysis revealed, that according to a Jander model,
the apparent activation energy slightly deviated with a value of 3.7092 kJ/mol for the
reduction with anthracite and 4.4370 kJ/mol for the reduction with coconut shell charcoal,
which was stated as a comparable performance by the authors [56].

Chen et al. [102] investigated the reduction of pelletized saprolite and limonite nickel
ore with torrefied oil palm fiber at temperatures between 900 ◦C and 1400 ◦C. The limonite
ore was also treated with coal as a comparison at temperatures between 900 ◦C and 1100 ◦C.
Figure 12 shows the measured iron- and nickel content of the treated limonite ore for
varying temperatures. The raw ore has an iron content of 41.1 wt% and a nickel content of
1.18 wt% Ni.

Figure 12. Iron- and nickel content after reduction of limonite with coal and bio-coal (based on
data from [102]).
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The comparison of coal and the bio-coal sample showed slightly higher nickel- and
iron contents for reduction temperatures of 1000 ◦C and 1100 ◦C, whereas at a temperature
of 900 ◦C coal yielded a higher iron- and nickel content in the sample. Higher reaction
temperatures were not used for the comparison and were only carried out with bio-coal.
The X-ray diffraction patterns presented by Chen et al. [102] of ore samples reduced with
this type of bio-coal revealed, that at reduction temperatures above 1000 ◦C, the main phase
in the reduced limonite samples is iron, whereas, for saprolite samples, the first peaks
attributed to metallic phases occurred over 900 ◦C already. Chen et. al. [102] described,
that at temperatures between 800 ◦C and 1100 ◦C, the pellets formed a dense shell and
a loose core. The soft melting temperature was determined to be 1200 ◦C, where small
metal particles were formed for the first time. At 1400 ◦C a separation between iron and
oxides occurred [102].

Nurjaman et al. [58] investigated the production of metallic concentrates from laterite
ores with a nickel content of 1.4 wt% using sodium sulfate as an additive and anthracite
coal or palm shell charcoal as a reducing agent. Magnetic separation was employed to
remove the tailings from magnetic ferronickel particles. Both reducing agents were suitable
to produce metallic concentrates, however, the nickel grade in the concentrate produced
with anthracite was higher (6.1 wt%) compared to the concentrate produced using palm
shell charcoal (4.6 wt%). This was explained by the higher sulfur content in anthracite
compared to palm shell charcoal, which leads to an additional generation of FeS particles
and a decreased iron metallization [58].

Swamy et al. [103] studied the extraction of nickel from chromitiferous overburden
concentrate granules with CO2-CO-N2 gas mixtures in a vertical bed reactor. In this
setup, the addition of only 2.5 wt% charcoal increased the nickel extraction by 11% to 19%
compared to trials without charcoal addition. Nickel extractions slightly above 90% were
obtained [103]. However, no comparison with other reducing agents like fossil coal or coke
was carried out in the study.

Further research proposed the utilization of palm kernel shell charcoal as a partial sub-
stitute in nickel rotary kilns [59], rice husks as a reducing agent for limonite ore [46], lamtoro
charcoal [57,71,104], palm kernel shells [47,105–107], palm kernel shell charcoal [62,108] or
coconut shell charcoal [57,63,109] as a reducing agent for laterite ores.

4.1.2. Segregation Processes Using Nickel Resources and Bio-Based Carbon

Oxidic nickel ores have been treated by using the segregation process (see chapter 3.2),
where minerals are chlorinated at elevated temperatures and volatile nickel- and iron
chlorides deposit on a carbon surface. The generated metal-carbon particles can later be
separated from gangue material by flotation or magnetic separation. Compared to the sole
pre-reduction presented in the previous chapter, the additional usage of chlorides aids
the liberation of valuable metals from the gangue matrix. In the 1980s, pilot-scale trials
with a capacity of one metric ton of ore per hour were conducted successfully with nickel
recoveries over 90% and nickel grades of 60 wt% in the concentrate. Based on those trials,
energy savings compared to a smelting process of 25–30% were estimated [110]. However,
due to decreasing nickel prices the plant was closed [92].

Grimsey et al. [111] investigated the segregation process using different layers of a
laterite ore deposit. As the mineralogical composition of the ore was the main investigated
parameter in the study, carbon- and calcium chloride addition was not varied, but two
reducing agents were compared. Metallurgical coke with a specific surface area of 4.3 m2/g
and activated coconut carbon with a specific surface area of 1160 m2/g were used in the
study. In all cases, the recovery through segregation using activated coconut carbon was
lower compared to metallurgical coke. The nickel recovery dropped from 80% to 67% at
900 ◦C for limonite, from 71% to 67% at 950 ◦C for nontronite and from 65% to 48% at 950 ◦C
for garnierite. The decreased nickel yield for activated coconut carbon was explained by
the occurring in situ reduction of nickel due to its reactivity. The higher surface area of
activated carbon led to a lower oxygen partial pressure compared to metallurgical coke
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and under these conditions, metallic nickel formed directly to some extent and was not
volatilized and segregated on the carbon particles. Those fine metallic nickel inclusions
were difficult to recover from the calcine via magnetic separation [111]. Even though the
recovery efficiency for nickel was lower in this study using the biomass-based reducing
agent, the reduction to metallic nickel occurred fast as lower reaction time was needed
to decrease the oxygen partial pressure to values low enough to reduce metallic nickel
due to an increased rate of the Boudouard reaction [111]. Therefore, if the target is sole
to pre-reduce ore in a solid-state reaction, the activated charcoal carbon could have an
advantage compared to metallurgical coke.

4.2. Smelting Processes Using Bio-Based Carbon to Produce Nickel Alloys

This subchapter covers the usage of bio-based carbon for the production of nickel
alloys like ferronickel and nickel pig iron. The main difference between those alloys is the
concentration of nickel in the final product. While nickel pig iron contains 1–15 wt% nickel,
ferronickel contains 20–40 wt% nickel [112].

Compared to the solid-state reduction processes, only a few studies were published
investigating the opportunity to use bio-based carbon for the smelting of nickel ores. Three
experimental studies were reported about the smelting of nickel laterite ore from Poomala,
Indonesia [60,113,114]. Supriyatna and Sihotang et al. [113,114] investigated the effect of
various palm kernel shell charcoal additions and the smelting time for the production of
nickel pig iron in a laboratory-scale electric arc furnace using 9.7 kg of ore per trial. Nickel
recovery of 92.53% was obtained for the best parameters with an addition of 20.6 wt%
of palm kernel shell charcoal and a smelting time of 90 min [113,114]. Andika et al. [60]
compared the usage of standard coke (62.97 wt% fixed carbon), coal (37.25 wt% fixed
carbon) and coconut shell charcoal (55.02 wt% fixed carbon). An electric arc furnace using
30 kg of ore per trial was used to produce nickel pig iron as well. Even though the fixed
carbon content varied in the reducing agents, in each trial 7 kg of a reducing agent was
used. The nickel extraction with coconut shell charcoal was inferior compared to the usage
of coal and coke, with the highest obtained nickel extraction for coke. However, the iron
yield was the highest for coconut shell charcoal, also the obtained metal mass was the
highest using coconut shell charcoal [60].

Even though there are not a lot of studies about smelting trials with bio-based carbon
for the production of ferronickel, the reduction of greenhouse gas emissions by substitut-
ing coal with bio-based carbon was already evaluated in two “cradle-to-gate” life cycle
assessments (LCA) [115,116].

Figure 13 compares the global warming potential (GWP) as reported by Bartzas et al. [116]
and by Norgate et al. [115] for a baseline scenario and a green scenario replacing 50% of
fossil reducing agents by bio-based carbon. Additionally, the primary energy demand
(PED) reported for both scenarios by Bartzas et al. [116] is included.

Figure 13. GWP and PED of the pyrometallurgical nickel production using fossil and bio-based
carbon (based on Data by [115,116]).
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The LCA of Norgate et al. [115] compared different production routes for nickel and
proposed several possibilities to reduce the specific greenhouse gas (GHG) emissions. One
suggestion was the replacement of coal with biochar. An LCA of the biochar production
has already been published previously by the author [117] and used as a basis for the
smelting of ferronickel. For ferronickel smelting, typically 3.9 tons of coal are used per
ton of ferronickel resulting in 22.4 t CO2eq/t Ni. A complete replacement of coal by the
proposed biochar would reduce the GWP to 12.3 t CO2eq/t Ni, not considering the credits of
by-products obtained from biochar production (bio-oil and electricity). If those by-product
credits are also included in the calculation, a partial replacement of 70% coal by biochar
would result in a GWP of 0 t CO2eq/t Ni. Even without by-product credits, a complete
replacement of biochar leads to a lower GWP compared to the other presented options by
Norgate et al. One of these options was the recovery of waste heat from the slag, which
yielded a GWP of slightly above 20 t CO2eq/t Ni. The second option was the use of a bath
smelting operation with more efficient utilization of the embodied energy in the off-gas
due to post-combustion in the furnace, which allowed savings in electrical energy and
results in a GWP of 13.7 t CO2eq/t Ni [115]. Since the investigated bath smelting option
used coal, a replacement by biochar could decrease the GWP in a bath smelting furnace
even more.

Bartzas et al. [116] conducted an LCA of the ferronickel production using a typical
Greek laterite ore as a feedstock. One investigated scenario was the replacement of 50%
of the commonly used coal and lignite by biochar derived from agricultural waste and
assuming that 50% of the total electricity consumption is sourced from renewable energy.
A second scenario was the partial utilization of the slag in the construction industry. The
baseline scenario without any changes results in a GWP of 12.6 t CO2eq/t FeNi. The partial
usage of biochar and electricity from renewable sources reduced the GWP by 4.38 t CO2eq/t
FeNi. Without the assumption of using electricity from renewable sources, the savings in
GHG emissions are 18% compared to the baseline scenario. The optimized usage of slag in
the construction industry reduced the GWP by 13% and was therefore inferior compared
to the replacement of coal and lignite by biochar. The PED decreased by 17.1% in the green
scenario compared to the baseline scenario. In the green scenario, nearly 36% of the PED
were covered by biomass and biochar. Another side benefit of biochar usage is the lower
acidification potential. Due to the lower sulfur content in biochar compared to coal and
lignite, savings of 0.018 t SO2eq/t FeNi were reported for the scenario using 50% biochar
and 50% of electricity from renewable sources [116].

5. Production of Chromium Alloys Using Bio-Based Carbon

Research for substituting fossil carbon was also carried out in the production of
chromium. Bio-based carbon was used for investigating mainly the solid-state process,
compared to nickel while only limited research was carried out in smelting operations to
generate chromium alloys. An LCA about chromium production using bio-based carbon
was not published to our knowledge.

5.1. Solid-State Processes Using Bio-Based Carbon for the Production of Chromium Alloys

Solid-state research was dedicated to pre-reduction and segregation. This also includes
investigations with a focus on agglomeration processes like pelletizing followed by thermal
treatment and sintering studies carried out in semi-industrial and industrial-scale.

5.1.1. Pre-Reduction and Agglomeration of Chromium Resources Using Bio-Based Carbon

First publications about the usage of bio-based carbon for the solid-state reduction of
chromite were already published in the 1960s. Jochens et al. [118] investigated the possibil-
ity of selectively reducing iron to metal or carbide in a laboratory-scale fluosolid reactor.
Afterward, iron is removed by leaching with sulfuric acid to increase the chromium to iron
ratio in the furnace feed. Experiments were carried out with wood charcoal as a reducing
agent, chromite ore as raw material, and nitrogen as fluidizing gas. Temperatures between
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1000 ◦C and 1250 ◦C were investigated. Even though the fluidizing itself worked stable,
only a small increase in chromium to iron ratio was observed. A probable explanation
was an insufficient contact between charcoal and chromite. As a modification, oxygen
was added to the nitrogen gas to enable the generation of carbon monoxide in the reactor,
but the trials were still not successful. Instead, non-renewable town gas was used as a
fluidizing gas, which yielded satisfactory results increasing the chromium to iron ratio
from 1.6–1.8 up to 3 and higher [118]. A renewable alternative to town gas in this process
could be biomass-derived syngas, which was already used for direct reduction of iron by
Guo et al. [119].

Khan [120,121] conducted isothermal pre-reduction and reduction experiments with
several chromite ores pelletized with charcoal, coal or without reducing agents in a CO-CO2
atmosphere. A resistance-heated thermogravimetric setup was chosen to determine the
reduction rates at 1350–1600 ◦C [121] and at 1500 ◦C and 1600 ◦C [120]. At 1600 ◦C the
reduction rate of the charcoal was higher compared to the trials with coal, at 1500 ◦C,
one chromite sample showed a higher reduction rate with charcoal and two chromite
samples showed a higher reduction rate with coal [120]. Figure 14 shows the degree of
reaction of three chromite ore samples studied by Khan [121]. In isothermal reduction
trials at 1550 ◦C, charcoal resulted in a significantly higher degree of reaction using the
“CR Ore”, the degree of reaction for “CG Ore” was the same using charcoal and coal.
The degree of reaction for the “CB Ore” was significantly higher using charcoal in the
beginning, but after 45 min, coal yielded a higher degree of reaction [121]. The ores differed
in chromium and iron content, “CR Ore” had the lowest chromium content and highest
iron content, followed by “CG Ore”. “CB Ore” had the highest chromium content and the
lowest iron content. Furthermore, the oxidation state of iron differed, “CB Ore” and “CR
Ore” contained iron mostly in the trivalent state, while “CG Ore” contained iron mostly in
the divalent state [121].

Figure 14. Time-dependent degree of reaction of various chromite ores at 1550 ◦C with coal and
charcoal (based on data by Khan [121]).

Nurjaman et al. [64] investigated the beneficiation and smelting of low-grade chromite
sands from Indonesia. The raw chromite sand had a chromium to iron ratio of 0.9, which
could be increased to 1.31 by magnetic separation. A second beneficiation step was carried
out by reduction roasting at 1100 ◦C with coconut shell charcoal (69.91 wt% fixed carbon
content) and limestone as an additive. Magnetic separation of the pre-reduced chromite
sand yielded a chromium to iron ratio of 1.60. Thirty kg of beneficiated concentrate were
smelted per trial in a three-phase submerged arc furnace and additional trials were carried
out with the as-received low-grade chromite sand. The reducing agent for the electric arc
furnace process was coke instead of coconut shell charcoal in the study. The smelting of raw
ore yielded ferrochromium with 35.2 wt% chromium and 53.2 wt% iron. The highest grade
obtained was 50.7 wt% chromium in the alloy and an iron content of 47.7 wt% smelting
beneficiated ore [64].
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Sommerfeld et al. [122] examined the pre-reduction of magnesia-rich chromite ore in
a laboratory-scale conducting isothermal pre-reduction trials between 1000 ◦C and 1300 ◦C.
As renewable reducing agents, coconut shell charcoal, olive pomace charcoal, corn cob
charcoal and bamboo charcoal were examined, while fossil lignite coke was used as a
reference. Since at 1000 ◦C and 1150 ◦C the pre-reduction was below 34.3% in the best
case using olive pomace charcoal, a focus was on the trials at 1300 ◦C. At this temperature,
the pre-reduction of the four renewable reducing agents yielded similar results at reaction
times of 360 min between 65.4% using coconut shell charcoal and 61.0% using bamboo
charcoal. Lignite coke only yielded a degree of reaction of 51.9%. However, it has to be
noted, that at lower reaction times up to 90 min the pre-reduction also differed more using
bio-based reducing agents. The highest pre-reduction for lower holding times was reached
using olive pomace charcoal, followed by coconut shell charcoal, corn cob charcoal and
bamboo charcoal. Still, as only pre-reduction was carried out in a laboratory-scale, it is
still unclear how those reducing agents will influence the processing in a larger scale, since
the renewable reducing agents contained a higher amount of chlorine than coke, which
could increase the wear of off-gas treatment plants. Furthermore, the metal quality could
be influenced by the renewable reducing agents, as the phosphorous content was elevated
in the ash of the charcoal samples compared to the lignite coke. However, as a benefit the
bio-based charcoals contained a significantly lower portion of sulfur [122].

Another option to include biomass in the production route of ferrochromium is the
replacement of coke or coal during the sintering operation to agglomerate chromite fines,
which was already investigated several times recently for the sintering of iron ore [123–134]
and the pelletizing of iron ore [34,35,48,54,119,135]. However, there are also difficulties
to overcome when charcoal is used for sintering. Lopes [136] described trials at Ferbasa
carried out in the 1980s with a semi-industrial sintering plant producing 2000 metric tons
of sinter. Sintering of chromite fines generally leads to positive effects like more stable
submerged arc furnace operation, reduced dust emission, lower energy and charcoal
consumption and increased productivity. But difficulties attributed to the usage of charcoal
were stated. Due to the high reactivity of charcoal lower maximum temperatures were
reached in the sintering bed, which makes sintering of ores with a high softening point
like chromite difficult, also the low density of charcoal leads to a higher volume of the
sintering charge and larger voids in the sinter decreased the mechanical stability [136].
Nearly thirty years later, Rocha et al. [72] presented results from an industrial sintering test
also carried out at Ferbasa. The sintering equipment had a capacity of 10 tons sinter per
batch. Chromite lumps were used as a false great and chromite concentrate and ore fines
were used as chromium carriers. FeSiCr slag was used as a flux and charcoal was used
as a carbon carrier, coke or coal was not added. Due to the high ash content in the used
charcoal, a liquid phase formed easily, which increased the sintering yield. The addition
of FeSiCr slag as a flux in the sintering operation had a positive effect as well. The trial
with FeSiCr slag and 6.5 wt% charcoal in the blend yielded the same technical performance
compared to a trial with 9.5 wt% charcoal without FeSiCr slag. This can be explained by
entrained metal droplets in the slag, that are oxidized in the high-temperature zone of the
sintering strand [72].

Sakaranaho et al. [137] investigated the substitution of coke breeze by charcoal in
chromite pellets in 2018. Fine chromite concentrate with a mean size of 200 µm is normally
pelletized with fine coke and coke dust from off-gas filters. Laboratory trials were carried
out with a batch size of 550 g. Chromite, coke (85.21 wt% C, 0.741 wt% S) and birch charcoal
(96.18 wt% C, 0.006 wt% S), bentonite and water were pelletized in the study. Different
ratios of coke and charcoal, varying carbon additions and varying particle sizes were
variable parameters in this article. Green pellets were then burned in a resistance-heated
furnace with a constant air supply. The cold compression strength (CCS) and electrical
conductivity of the pellets were measured to evaluate the quality of the pellets. The CCS
decreased with an increased share of charcoal in the mixture. A mixture of 50% charcoal
resulted in a CCS 7.7% lower than the reference trial where only coke was used. Higher
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charcoal ratios in the fuel mixture decreased the CCS more drastically, a charcoal ratio of
75% reduced the CCS by 40.7%. Particle size and increasing carbon additions were also
investigated, but the effect on the CCS was not as significant as the ratio of coke to charcoal
in the mixture. The relative permittivity of the pellets at room temperature decreases when
charcoal is added in the mixture, furthermore, it was stated, that the decrease is lower
if the reduction degree of pellets is higher. The authors concluded, that the significant
potential in reduced SOx emissions, due to the lower sulfur content in charcoal, justifies the
replacement of 50% coke by charcoal, as the reduction in CCS was still low in that case [137].

5.1.2. Segregation Processes Using Chromium Resources and Bio-Based Carbon

Similar to the segregation studies already mentioned for the treatment of nickel,
Yu et al. [91] investigated the segregation process using chromite ore. CaCl2 was used as
a chlorine-containing additive and charcoal and petroleum coke were used as reducing
agents, both with a similar total carbon content of 85.3 wt% and 85.1 wt% respectively.
The focus of the study was not to investigate yields or metallization degrees, instead,
the mechanism of segregation was investigated. By comparing the results of trials using
petroleum coke and charcoal, it was stated, that the highly reactive nature, porous structure
and higher surface area of charcoal lead to an enhanced chloridization and metallization
accompanied by the formation of monocrystalline hexagonal M7C3-type whiskers, which
were not observed when petroleum coke was used. Figure 15 shows the morphology of
FeCr- and carbide particles produced by Yu et. al. [91] using charcoal (a–c) and petroleum
coke (d–f) as a reducing agent.

Figure 15. Morphologies of FeCr- and carbide particles produced by segregation using charcoal
(a–c) and petroleum coke (d–f) by Yu et. al. [91].

The presence of siliceous gangue was also listed as a promoting factor of the whisker
formation. Segregation of iron and chromium on carbon particles was also observed using
petroleum coke and since the metallization degree was not investigated [91], it cannot
be stated that the higher reactivity leads to higher yields. Especially, if the results of
Grimsey et al. [111] for the segregation of nickel laterite are considered, where the usage of
activated charcoal resulted in lower yields compared to metallurgical coke [111].

5.2. Smelting Processes Using Bio-Based Carbon to Produce Chromium Alloys

Balango et al. [65] smelted calcinated chromite ore and nickel laterite in a vertical
resistance heated furnace. The aim was to investigate the simultaneous smelting of nickel
and chromium-bearing ores to produce a crude Fe-Ni-Cr alloy in one furnace as proposed
previously by Yape et al. [138]. In the study of Balango et al. [65], ore mixtures with different
proportions of laterite and chromite from The Philippines were reduced by coconut charcoal
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with a fixed carbon content of 72.46 wt%, other reducing agents were not considered in the
study. Metal yields up to 99.62% were reported using a mixture containing 50% chromite
and 50% laterite resulting in a crude alloy containing 11.20 wt% of chromium and 1.78 wt%
of nickel. Using higher shares of laterite in the blend resulted in alloys with higher nickel
contents and lower chromium contents, but the yield decreased to 69.70% using higher
laterite shares in the raw material blend [65].

Furthermore, it is also possible to use wood chips in the production of FeSiCr.
Machulec et al. [36] reported that wood chips can be used to adjust the resistance of
the charge and to enhance gas permeability [36]. As the main reducing agent in this study,
hard coal was used [36], therefore, it can be assumed, that the wood chips were not added
to substitute fossil carbon, but to improve the mentioned physical properties of the charge.

6. Production of Ferrosilicon and Silicon Alloys Using Bio-Based Carbon

Charcoal and wood chips are already commonly used as additives for the production
of silicon alloys in submerged arc furnaces, as it leads to good ventilation of the charge [139].
Compared to the previously discussed metals, pre-reduction or solid-state reduction using
biocarbon has not been investigated to our knowledge and literature review. But smelting
processes using bio-based carbon and the production of pellets and composites containing
bio-based carbon are thoroughly reported recently. As an innovative approach, the produc-
tion of silicon using solar thermal energy and bio-based carbon under vacuum is presented
as well in this chapter. In addition, an LCA investigating the replacement of fossil coal
by bio-based carbon for the production of silicon is also shown, while an LCA about the
ferrosilicon process using bio-based carbon was not published to our knowledge.

6.1. Smelting Processes Using Bio-Based Carbon to Produce Silicon Alloys

The production of ferrosilicon using only bio-based carbon as a carbon carrier is
already state of art and in an industrial-scale, as Elkem is operating a furnace in Paraguay
with a capacity of 11,000 mt with bio-based carbon. In addition, hydroelectric power is
used, which leads to a near carbon-neutral operation [140,141]. The established facilities
of Elkem in Norway already used 20% bio-carbon in 2019 and Elkem aims for a further
increase in the reducing agent mixture up to 40% by 2030 for their Norwegian smelters.
However, the sourcing of the bio-carbon is named as a challenge and the replacement of
40% fossil fuel would lead to a demand for bio-carbon, which equals 7% of the annual
forest extraction in Norway [141].

One further problem to overcome is the increased amount of energy leaving the
furnace in the off-gas due to higher volatile contents in raw materials like wood chips
compared to coke or charcoal [142].

Liu et al. [37] conducted trials in an 8 MVA submerged arc furnace to produce silicon
while substituting a share of the fossil reducing agents with alternative carbon materials.
Vegetative plant waste from the Yunnan Province was heated in a low oxygen environment
to generate waste carbon material samples for the submerged arc furnace trials with a fixed
carbon content of 78.5 wt%. Three batches were investigated in the study, while in one batch
20% of the regular fossil reducing agents (coal and petroleum coke) were replaced by waste
carbon material. The specific CO2 emission decreased by 0.817–0.865 t per ton of silicon
(19.1–20.0%) for the batch with waste carbon material. The electric energy consumption
was 13.81 MWh/t of silicon in the batch with waste carbon material, which was similar
to the two reference batches. The highest silicon yield was also observable in the trial
with waste carbon material resulting in a yield of 94.5%, while the maximum yield of
the reference campaigns were 86% in both cases. Another presented indicator was the
carbon efficiency, which slightly increased from 0.447 and 0.446 in the reference trials up to
0.45 in the campaign using waste carbon material. This was explained by the enhanced
fluidity of the burden promoted by CaO present in the ash of the waste carbon material.
As a consequence, the contact area of the material increased and the reactions were more
intense [37]. Those results show in conclusion, that treated vegetative waste can be included
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in an industrial process without impairing main technical performance indicators and
some performance indicators can even be slightly increased.

Monsen et al. [26] used Brazilian charcoal to produce ferrosilicon in a 150 kW pilot-
scale submerged arc furnace. A stable furnace operation was achieved and a metal yield of
89.3% was reported, close to industrial figures, while a reference trial with English gas coke
only achieved a yield 7% lower. The higher yield using charcoal was especially attributed
to the better SiO-reactivity of charcoal compared to coke. The electric power consumption
for charcoal was 10 kWh/kg FeSi, which was 2 kWh/kg lower compared to the English
gas coke, but 2 kWh/kg higher compared to industrial trials. The production of silicon
was also assayed in this work, showing that a purer silicon product could be produced by
using Brazilian or European charcoal with silicon contents of 99.0% and 98.7% respectively,
which was significantly higher than the used reference coke. The silicon content in the
metal obtained from the reference trial was only 95.9%. This was explained by the lower
ash content in the charcoal samples compared to coke [26], which can be considered a
general advantage of bio-based carbon as shown by the general comparison from Figure 3
and Table 4.

Li et al. [69] investigated the carbothermal reduction of pellets containing quartz
and different carbon sources at temperatures between 1625 ◦C and 1675 ◦C to study the
reactions occurring in the low-temperature zone of submerged arc furnaces. The reactivity
of the carbon-containing material to SiO and quartz was the focus in this study, showing
that the reactivities match well for charcoal and coal, while carbon black, coke and pre-
heated coal showed an inferior matching of the reactivities. As a lower matching leads
to SiO-losses through the off-gas, a high matching of reactivities is preferred. Charcoal
showed a good SiO-reactivity and quartz/carbon reactivity, therefore it was recommended
to use charcoal as the main carbon source for the production of silicon [69].

Hasannezhad et al. [143] compared the usage of coal and wood charcoal to produce
FeSi in an SAF with a power rating of 17 MVA in 2020. Figure 16 shows the average specific
energy consumption and silicon yield of the trials using coal and charcoal.

Figure 16. Electrical energy consumption (a) and silicon yield (b) for the production of FeSi using
coal and charcoal (based on data from [143]).

For both indicators, charcoal yielded significantly better results compared to the usage
of coal. The increased yield using charcoal was explained by the higher apparent porosity
of charcoal (30.62%) compared to coal (1.51%). The higher porosity enhances the reaction
of silicon monoxide gas with carbon to form silicon carbide in the process. Furthermore,
the increased furnace efficiency was explained by a higher specific electrical resistance of
charcoal (~17,900–87,000 Ω·cm) compared to coal (~0–40,000 Ω·cm) in the investigated
temperature range of 350–650 ◦C for resistivity measurements. This leads to a reaction
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cavity with a higher thermal concentration compared to the usage of coal and a colder top
layer of the charge allowing silicon monoxide gas to condense [143].

6.2. Production of Agglomerates Containing Biomass for the Application in Silicon Furnaces

As already described in the introduction, the replacement of coke by biomass-based
reducing agents in submerged arc furnaces is accompanied by many challenges, especially
the diffuse composition and the inferior mechanical properties. To overcome those obsta-
cles, a considerable amount of research was carried out to design biochar composites or
pellets with properties suitable for direct use in submerged arc furnaces. Most of those
studies focused on the silicon or ferrosilicon production process, but those results may also
be transferable to other submerged arc furnace processes as well.

Riva et al. [38] investigated the production of densified biochar made from Norwegian
spruce suitable for the production of silicon and ferrosilicon alloys. Spruce samples were
pyrolyzed at different temperatures in this work and pelletized in a compact hot pellet press
adding different amounts of pyrolysis oil from a fast pyrolysis process, lignosulphonate
as a binder and water. The compacted pellets were then heat treated and analyzed. The
usage of pyrolysis oil showed to be an efficient way to use this by-product from pyrolysis
and further enhance the mechanical properties like density, mechanical durability and
tensile strength of the pellets [38]. The usage of non-condensable gas components was
not assayed in the study by Riva et al. [38], but commonly heating values of biomass
gases are comparable to coal gas and could be used for energy conversion [144] or as
a reducing agent in metallurgical applications [145]. Furthermore, CO2 reactivity tests
showed that the mass loss curve of the pellets was smoother compared to untreated biochar
samples originated from the same feedstock. However, it was stated that the reactivity of
the biomass pellets was still higher compared to fossil carbon sources [38]. Based on this
work, Riva et al. [146] conducted a life cycle assessment to investigate the potential CO2
emission savings replacing coke with the produced biocarbon pellets from the previous
study [38]. As a reference scenario, the production process of Elkem Solar Silicon was
used [147]. The CO2 equivalent generated during the production of biocarbon pellets was
stated as 0.672 kg CO2eq per kg of biocarbon pellets considering the feedstock, pyrolysis
and pelletizing process. This was slightly higher than the CO2eq for the production of coke.
Yet, substituting coke with bio-based carbon leads to a reduction in the emission of 10 kg
CO2eq per kg compared to the reference of Elkem Solar Silicon. Furthermore, optimization
of the pyrolysis plant and operation conditions could additionally decrease the CO2eq
of the biocarbon pellet production process [146]. Figure 17 shows the comparison of the
GHG-emissions of solar silicon as presented by [146,147] for four scenarios. Usage of fossil
reductants and biocarbon is considered in combination with the GHG-emissions using a
European electricity mix (UCTE mix) and a Norwegian energy mix with a significant lower
CO2 footprint.

Figure 17. GHG emissions of Solar Silicon for varying electricity mixes and biocarbon usage. Modi-
fied from [146,147].
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As shown by Figure 17, besides the avoidance of direct emissions, the usage of electricity
with a lower CO2 footprint is vital to decrease the GHG emissions of the production process.

Riva et al. [40] published a further study to improve the proposed process [39] and to
investigate the self-heating risk of the produced pellets, which could be kept low, if suitable
temperatures are used for the pyrolysis process or the second heat treatment operation [40].

Surup et al. investigated [41] the production of charcoal during high-temperature
pyrolysis to substitute metallurgical coke. In this work, spruce and oak chips were py-
rolyzed at temperatures between 800 ◦C and 1600 ◦C in a slow pyrolysis reactor. The
assayed CO2 reactivity by thermogravimetric analysis showed that the CO2 reactivity of
both kinds of wood was similar and independent of the heat treatment temperature or
wood origin. Compared to metallurgical coke, the CO2 reactivity of charcoal was higher.
Further investigation of the samples by transmission electron microscopy showed, that
higher heat treatment temperatures enhanced the graphitization of the char structure and
that oak char was more graphitic than spruce char, while lower temperatures resulted in
structures similar to amorphous carbon. An increase in the heat treatment temperature
can lead to a graphitized structure similar to coke which could yield a lower reactivity of
char [41]. It can be assumed, that those results lead to further investigations using higher
temperatures, which were also published by Surup et al. [32]. Different woody biomasses
and straws were treated in a slow pyrolysis reactor at temperatures between 1300 ◦C
and 2800 ◦C in this work. CO2- and O2 reactivity were assayed by thermogravimetric
analysis and the results showed, that the main influence was the heat treatment conditions
and that the feedstock conditions were less relevant. The nanostructure of biochar was
investigated by Raman spectroscopy and transmission electron microscopy, showing that
higher treatment temperatures lead to graphite structures. Temperatures above 2400 ◦C
lead to reactivities similar to metallurgical coke. Furthermore, trials were carried out with
the addition of bio-oil to investigate a co-pyrolysis process, showing promising results
to produce biocarbon with similar CO2 reactivities compared to metallurgical coke [32].
In another study by Surup et al. [148], the co-pyrolysis of softwood and hardwood with
recirculated tar was investigated at temperatures up to 1600 ◦C. By co-pyrolysis it was
possible to obtain biocarbon pellets with increased hardness and electrical resistivity at
room temperature similar to metallurgical coke, but the reactivity of biocarbon pellets
was higher compared to metallurgical coke [148]. Incorporation of raw materials into
composite pellets containing pyrolyzed biomass and tar as a binder can also be an option.
Surup et al. [149] investigated properties like electrical conductivity and CO2 reactivity of
composite pellets containing either quartz or manganese ore as feedstock for the produc-
tion of silicon or manganese alloys, but the higher CO2 reactivity of the composite pellets
compared to metallurgical coke [149] are still a disadvantage, as a high CO2 reactivity will
increase the power- and coke consumption due to an enhanced Boudouard reaction in the
top of the reaction shaft [150]. To investigate the electrical resistivity at high temperatures
similar to the conditions in a submerged arc furnace, Surup et al. [68] presented a set-up to
measure the electrical resistivity of a carbonaceous bed at temperatures up to 1700 ◦C [68].
Charcoal, coal, semi-coke used for the production of silicon and ferrosilicon as well as
metallurgical coke used for the production of silicomanganese were investigated in the
study. While increasing the temperature, the electrical resistivity of charcoal decreased
several magnitudes and approached the electrical resistivity of semi-coke and coal, but
the electrical resistivity of charcoal remained higher compared to the metallurgical coke
sample. Examining the bulk density and particle size of the samples showed, that the
impact of the bulk density was higher than the impact of the particle size. Before and after
the electrical resistivity tests, the compression strength and durability in a tumbling test
of the samples were investigated. The durability of coke, coal and semi-coke decreased
after the heat treatment, whereas the durability of the charcoal samples increased, however,
the highest durability was still shown by metallurgical coke. The compression strength of
metallurgical coke stayed the same after heat treatment, whereas all other samples showed
an increasing compression strength after heat treatment. The observed thermal shrinkage
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for charcoal was the highest in this study and the thermal shrinkage of metallurgical coke
was the lowest. Applying those results to a submerged arc furnace process, it is assumed
that the charcoal will inhibit electrical conductivity in the upper zone of the furnace and
after a descent of the burden and an increase in temperature, the electrical properties
approach that of metallurgical coke, while the charcoal still has slightly better electrical
properties. The mechanical properties are inferior to metallurgical coke, but during the
descent of the burden, the charcoal can withstand compression strengths between 400 and
1600 kPa. The maximum compression pressure on the carbon bed in a submerged arc
furnace for manganese production was estimated by the authors with 150 kPa and therefore
the charcoal samples could be a suitable alternative reducing agent [68].

An innovative method to obtain charcoal for metallurgical applications and feedstock
for value-added chemicals is the integration of supercritical CO2 (scCO2-)extraction fol-
lowed by pyrolysis as investigated by Surup et al. [42]. With scCO2 extraction of low-value
forestry residues like pinewood needles, bark and branches it was possible to extract more
than half of value-added compounds of the raw material. Furthermore, the influence of
the scCO2 extraction on the physical properties and charcoal yield was insignificant, how-
ever, the production of tar during pyrolysis was reduced. The CO2 reactivity of bark and
branches was similar for raw samples and samples treated by scCO2 extraction. The char-
coal of non-treated needles was slightly less reactive compared to the charcoal produced
with needles after scCO2 extraction [42].

Compared to the presented results obtained by pyrolysis of biomass, hydrothermal
carbonization can be a suitable technic for biomass upgrading for metallurgical purposes.
Surup et al. [45] investigated the hydrothermal carbonization and torrefaction of olive pulp
and characterized the properties of the samples relevant for the metallurgical industry. The
CO2 reactivity of hydrothermal carbonized olive pulp was similar to the CO2 reactivity of
biochar made of olive pulp at 900 ◦C, while for hydrothermal carbonization temperatures
around 200–250 ◦C were already sufficient. Therefore, hydrothermal carbonization could
be a viable option using only modest temperatures to produce biochar. The mechanical
stability of the hydrothermal carbonized samples however was insufficient, a second heat
treatment at 400 ◦C was necessary to obtain mechanical stability suitable for ferroalloy
applications. The torrefaction trials in this work only yielded biochar with inferior CO2
reactivity and inferior mechanical stability compared to hydrothermal carbonization [45].

6.3. Solar Thermal Production of Silicon Using Bio-Based Carbon

An even more sustainable and innovative method to reach CO2 neutrality is the
usage of biocarbon as a reducing agent in a reactor powered by solar energy. Loutzen-
hiser et al. [151] investigated the reduction of alumina and silica in a vacuum distillation
set-up powered by a high-flux solar simulator using beech charcoal to produce aluminum
and silicon respectively. Due to the pressure of 10−3 bar, it was possible to reduce alumina
and silica and evaporate the metallic elements. By the evaporation, contamination of
the product by carbides or oxycarbides can be avoided. After the trials, a considerable
amount of evaporated and condensed metallic aluminum or silicon was found on the
crucible walls while the residue in the crucible contained aluminum carbides, aluminum
oxycarbides or silicon carbide. An optimization of the setup or process was not carried out
in this research [151], but the usage of a solar reactor can be an interesting option to reduce
greenhouse gas emissions for the production of metals. It has to be mentioned that this
research took place in a gram-scale.

7. Production of Manganese Alloys Using Bio-Based Carbon

Research carried out to substitute fossil carbon in the production of manganese alloys
by bio-based carbon addressing solid-state processes, agglomeration and smelting pro-
cesses are presented in this chapter. An LCA about manganese production using bio-based
carbon was not published to our knowledge.
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7.1. Solid-State Processes Using Bio-Based Carbon for the Production of Manganese Alloys

A considerable amount of research was carried out investigating pre-reduction pro-
cesses. A special role in regards to the pre-reduction is the reduction-roasting process, in
which pyrolusite from low-grade manganese ore is pre-reduced and afterward subjected to
leaching, a whole subchapter is dedicated to this process step. Another possibility is the
usage of pre-reduced manganese-containing kiln for the production of ferromanganese
ore silicomanganese in a submerged arc furnace. Both processing routes are shown in
Figure 18. Sintering studies are also included in this chapter.

Figure 18. Possible processes to treat pre-reduced manganese kiln.

7.1.1. Pre-Reduction and Agglomeration of Manganese Resources Using Bio-Based Carbon

Pre-reduction in an external furnace is not a common practice for producing ferroman-
ganese in a submerged arc furnace, because the reduction of higher manganese oxides in
the submerged arc furnace by ascending gases containing carbon monoxide is an exother-
mic reaction [152,153]. However, mass and energy calculations showed that by increasing
the raw material temperature the electric energy consumption in a submerged arc furnace
could still be significantly reduced. The specific electrical energy consumption can be
decreased by 80 kWh/ton if the raw material is heated by 100 ◦C additionally. The larger
share of the electrical energy saving is attributed to the increased temperature of the raw
material, while the enhanced pre-reduction only contributes slightly to the electrical energy
savings. Charging raw material heated to 600 ◦C into a submerged arc furnace reduces
the electrical energy consumption by 20%. The total CO2 emission can be reduced as well
using a pre-heating operation. However, this highly depends on the electricity and the
fuel used in the pre-treatment unit. Commonly, rotary kilns are used in the metallurgical
industry for pre-reduction [154,155]. It is possible to use exhaust gases from submerged arc
furnaces for pre-treatment, but often additional fuel is necessary. If the fuel in the rotary
kiln is fossil carbon and the electric energy is sourced from renewable sources or nuclear
energy, the CO2 emissions are higher if a pre-treatment is carried out. If the electrical
energy is sourced by burning fossil coal and fossil coal is used in a rotary kiln as well,
smelting the hot calcine in a submerged arc furnace would be more energy efficient. Using
coke in the pre-treatment unit would lead to the highest CO2 emissions, whereas coal and



Minerals 2021, 11, 1286 26 of 39

natural gas would result in lower CO2 emissions, biocarbon would show the lowest CO2
emission [153]. However, those are theoretical considerations and experimental studies
using biocarbon in a rotary kiln to produce pre-treated manganese feed for submerged arc
furnace applications were not carried out to our best knowledge.

During beneficiation of manganese ores, finely dispersed particles are generated which
are then transferred to the off-gas if used in an electric furnace. Therefore, agglomeration
of those fines is necessary. One possible way is to sinter the fines [43]. The main function of
sintering machines is to agglomerate fines, in addition, it is possible to reduce the oxides,
even if this secondary effect is limited [155]. Kieush et. al. [43] carried out a laboratory
study using coke breeze and mixtures of coke breeze with 25% woody biomass or pre-
pyrolyzed wood as fuel for sintering manganese ore, manganese concentrate, fluxes and
returns. It was observed that the yield of sinter with a size over 10 mm and the specific
sintering capacity decreased by substituting coke breeze with biomass. However, replacing
25% of coke breeze with biomass pyrolyzed at 1000 ◦C lead to a higher sintering velocity
and using 25% of biomass pyrolyzed over 600 ◦C yielded a higher sinter strength compared
to using only coke breeze. As improvements, it was suggested to use biomass with a
lower reactivity compared to the used biomass or larger particles of biofuel to increase the
share of bio-based carbon usable in the mixture, without decreasing the effectiveness of
the process [43].

Zhang et. al. [156] carried out a study in a laboratory-scale to sinter low-grade
manganese ore. One part of the study was the replacement of coke with biomass fuel. It
was stated that the tumbling index decreased while replacing coke with biomass charcoal.
Using only coke resulted in a tumbling index of 61%, while using 40% biomass in the fuel
mixture yielded a tumbling index of 56%. The highest sinter yield of 84% was observed
when 20% of biomass was used in the fuel mixture while the trial carried out with coke
resulted in a yield of 80%. The highest productivity of 1.6 t·(m−2h−1) was observed when
30% of biomass was used compared to 1.5 t·(m−2h−1) when only coke is used. Using a
higher share of biomass lead to a significant decrease in productivity. An observed benefit
was the decrease in SO2 emission and NOx emission using biomass charcoal as a substitute
for coke [156].

7.1.2. Reduction-Roasting Processes of Low-Grade Manganese Ore Using Bio-Based Carbon

A considerable amount of research was published investigating the usage of biomass
to reduce low-grade manganese ores in the reduction-roasting process, which differs
from the pre-reduction process, since the pre-reduced feed is used for hydrometallurgical
processing afterward in the reduction-roasting process as shown in Figure 18. By reducing
MnO2 to MnO in a roasting step, the manganese oxide becomes soluble in sulfuric acid and
the leach liquor can further be processed to produce electrolytic manganese. Compared
to conventional reducing agents like lignite [33] or anthracite [157] biomass or biomass
charcoal showed a higher reduction degree and the possibility to use lower temperatures
in the roasting process. Table 6 shows the studies carried out investigating the reduction
roasting processing of manganese ore and highlights the special emphasis of each study.

Furthermore, one study was carried out with a reduction roasting step using palm
kernel shell charcoal, however in this case the reaction temperature exceeded 1000 ◦C and
it was not directly aimed to generate a concentrate for leaching [66].
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Table 6. Studies carried out investigating the reduction roasting process.

Study Reducing Agent Furnace and Reduction Temperature Special Emphasis

[158] Dry moso bamboo Tubular Furnace, 500 ◦C Investigation of reoxidation during cooling

[33] Rice straw, sawdust, wheat stalk, maize
straw, bamboo, lignite

Tubular furnace, 200–900 ◦C and
nonisothermal TGA Kinetics and XRD-analysis *

[159] Dry bamboo scrap, hemicellulose,
cellulose, lignin Tubular furnace, 200–500 ◦C Reaction mechanism, kinetics, XRD-, SEM-,

EDS-analysis *
[160] Wheat stalk Tubular furnace, 300–550 ◦C Kinetics, XRD-, SEM-, EDS-analysis *

[157] Black charcoal, anthracite Muffle furnace, 600–850 ◦C Comparison of charcoal and anthracite,
XRD-analysis *

[161] Pine charcoal Muffle furnace, 500–850 ◦C XRD-analysis *
[162] Sawdust Muffle furnace, 350–600 ◦C XRD-analysis, leaching parameters *
[49] Straw Muffle furnace, 200–600 ◦C Reaction mechanism, kinetics, XRD-analysis *
[163] Cornstalk Muffle furnace Leaching parameters

[50] Walnut shell Microwave heating reactor, STA * TG-DTG-DSC of biomass and ore mixtures,
XRD- and SEM-analysis, reaction mechanism *

[164] Raw biomass: poplar, pine, ageratina
adenophora, rapeseed shell, walnut shell Dielectric test system, STA, 25–800 ◦C * Dielectric properties, reaction mechanism

[165] Walnut shell Dielectric test system, STA, 25–800 ◦C * Dielectric properties, thermochemical
characteristics

[166] Hemicellulose, cellulose, lignin STA, 25–800 ◦C * FT-IR analysis, kinetics, XRD-analysis *
[167] Hemicellulose, lignin STA, 25–800 ◦C * Kinetics, XRD-analysis *

* XRD: X-ray diffraction; SEM: Scanning electron microscopy; EDS: Energy dispersive X-ray spectroscopy; TGA: Thermogravimetric
analyzer; TG: Thermogravimetry; DTG: Differential thermogravimetry; DSC: Differential scanning calorimetry; STA: Simultaneous thermal
analysis; FT-IR: Fourier-transform infrared spectroscopy.

7.2. Smelting Processes Using Bio-Based Carbon to Produce Manganese Alloys

Replacing fossil fuels with bio-based carbon has been already elaborated as a promis-
ing option to reduce greenhouse gas emissions for the production of manganese alloys.
Eramet Norway stated in their sustainability report from 2016, that “it will probably be pos-
sible to use biocarbon to replace current reductants without requiring any major changes to
current processes” [168]. They also stated that there are still a few challenges to overcome,
without specifying those in detail. A research project was announced, which used residues
from paper production to produce biofuel and solid biochar. The biochar should then
be able to replace fossil reductants for the production of manganese alloys [168]. In the
sustainability reports from 2017 and 2018, biocarbon was mentioned again. According to
Eramet Norway, they “identified the replacement of fossil carbon material with biocar-
bon as one of the most promising technologies for a major reduction of CO2 emissions
from the smelting process” [169,170]. Pilot-scale tests for the introduction of bio-based
carbon into the process were already planned for 2020/2021, however, as a challenge, the
structural weakness of biocarbon was mentioned, since manganese smelters are normally
not designed to handle bio-based carbon [171]. At the beginning of the century, the silico-
manganese industry in Norway had no experience using charcoal and as charcoal needed
to be imported from other countries, the cost was higher and no process improvements
were expected in the manganese industry, so it seemed unfeasible to use charcoal [150].
Back in 2004, Monsen et al. [150] investigated the use of charcoal, industrial coke and
reactive coke during the production of silicomanganese. It was stated that charcoal and
coke have a similar slag-reactivity, if both are pre-calcined at 1600 ◦C, the CO2 reactivity
of charcoal however was significantly higher compared to coke, which is undesirable as
this will lead to an increase in carbon and power consumption. In addition to those tests,
pilot-scale tests were carried out as well. One outcome was that charcoal resulted in higher
resistance in the coke-bed compared to coke. The comparison of power consumption
showed, that industrial coke resulted in the highest power consumption compared to
reactive coke and charcoal, but those differences were mostly attributed to the lower silicon
contents in the alloys obtained in the trials with reactive coke and charcoal. The metal
production using charcoal was the highest in this set of experiments, which was explained
by the high reactivity of charcoal and the low silicon content in the alloy. If a reductant is
not used to reduce silicon, it is available for the reduction of manganese in this specific
case [150]. In an additional experiment by the authors, they were also able to produce
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a silicomanganese with a silicon content of 18 wt% by using a mixture containing 50%
charcoal and 50% coke, adjusted by the total carbon content. This was achieved by a higher
moisture content of the charge, which leads to less burning carbon in the colder top layers
of the furnace burden [30]. In the first publication, only a silicon content of 12.9 wt% was
obtained when charcoal and coke mixtures were used as a reducing agent [150]. In addition
to the pilot-scale experiments, a considerable amount of laboratory-scale investigations
were carried out by the researchers from Trondheim, Norway to cover topics like reaction
mechanism and reduction kinetics while using charcoal as an alternative reductant to treat
ferromanganese slag [67,70,172–174].

Braga et al. [175] investigated the reduction behavior of Brazilian manganese ore
and concentrate with wood charcoal. The aim was to study the performance of self-
reducing composites. It was expected, that inside the composites manganese is reduced
by gas-solid reactions, and therefore slow metal-slag reactions can be avoided. Pellets of
manganese-containing raw materials with wood charcoal and Portland cement as a binder
were produced. They were tested in a thermogravimetric system. Temperatures between
800 ◦C and 1350 ◦C were used. It was observed that increasing the temperature from
800 ◦C to 950 ◦C significantly increased the reduction behavior, whereas a further tempera-
ture increase only changed the behavior slightly. In the study, ferromanganese particles
were even observed at 950 ◦C, at 1200 ◦C also some slag particles were identified. An addi-
tional trial at 1400 ◦C showed that the pellets do not disintegrate. The metallization degree
from those small-scale trials with pellets at 1250 ◦C and a reaction time of 15 min was
assayed by SEM and metallization of 90% and 40% was observed for iron and manganese
respectively. Due to the metallization and thermal stability of the pellets, it was expected,
that a high metallization can be obtained when the pellets are charged into a submerged
arc furnace, before the raw materials are molten and dissolved into the slag and metal. As a
verification, a smelting test was carried out with one kilogram of composite pellets. Pellets
were charged into a liquid iron bath at 1500 ◦C in an induction furnace. This trial yielded a
manganese reduction above 95% based on a chemical analysis and mass balance. A scale-
up was carried out in a 7.5 MVA electric smelting furnace to produce commercial-grade
Fe-Si-Mn. Seventy-five percent of the charge were manganese ore lumps and charcoal,
whereas the rest of the feed were self-reducing briquettes. A 10% increase in production
capacity and electric energy savings of 380 kWh/t Fe-Si-Mn, due to smoother operation,
enhanced gas distribution, improved electrical yield and an increased reduction rate were
observed compared to the usage of manganese lump ore [175]. A comparison with coke
or coal was not carried out, therefore, it was not investigated if those improvements were
possible due to the usage of charcoal or because the self-reducing composites were superior
compared to lump ore.

A completely different approach to produce ferromanganese not from virgin raw
materials but waste materials was investigated by Yeşiltepe et al. [176]. They smelted
battery paste from alkaline batteries with mill scale and waste coffee grounds in a laboratory
tube furnace. Those residues were blended, pelletized and reduced in a laboratory-scale
furnace. In those studies, ferromanganese with roughly 35% manganese was produced.
Zinc oxide could be recovered from the flue dust to produce another valuable product.
According to the authors, there were still losses of manganese in the slag, due to the low
reaction temperature [176]. By combining three residues, this study showed how mixed
end-of-life residues and industrial residues can be treated to produce valuable products.

Supriyatna et al. [51] investigated the reduction of Indonesian low-grade manganese
ore with charcoal and palm kernel shell biomass in a mini electric arc furnace. In those
studies, it was possible to produce ferromanganese with manganese contents between
70.9 wt% and 77.0 wt%. The highest manganese extraction was obtained using palm kernel
shell biomass and was around 50 wt%. Comparing the same ratios of reductants, the
manganese extraction using palm kernel shell biomass was higher compared to charcoal in
all trials [51].
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8. Upgrading of Ilmenite Ore Using Bio-Based Carbon

One common resource to produce TiO2 is ilmenite, a mineral with the formula
FeO·TiO2. To remove iron and to increase the titanium content in a slag precursor, two com-
mon processes exist. Metallic iron is either produced via solid-state reduction of ilmenite
with carbon. The metallic iron can be removed by leaching to increase the TiO2-content.
The second option is the reduction of iron with carbon in a liquid state, TiO2 is enriched
in a slag phase for further processing and the metallic iron is a product, while in the first
process it is a waste product [177]. The smelting of ilmenite is commonly carried out in
electric arc furnaces running in open arc mode [178]. Equation (7) is the reaction occurring
during the solid-state reduction while Equation (8) is the reaction occurring during the
smelting process.

FeO·TiO2(s) + C(s) 
 Fe(s) + TiO2(s) + CO(g) (7)

FeO·TiO2(l) + C(s) 
 Fe(l) + TiO2(l) + CO(g) (8)

To our knowledge, no studies were carried out investigating the smelting of ilmenite
ore to obtain an iron alloy and titanium-rich slag utilizing bio-based carbon. Instead,
solid-state processes were investigated using ilmenite ore and bio-based carbon. An LCA
about ilmenite upgrading using bio-based carbon was not published to our knowledge.

Other applications of biomass associated with titanium are possible as well, for exam-
ple, the carburizing of titanium with pyrolyzed plant biomass [179]. However, upgrading
of titanium is outside the scope of this review and not further evaluated.

Setiawan et al. [67] investigated the reduction of ilmenite ore using charred palm kernel
shells in a solar simulator furnace and a tube resistance furnace. Indonesian ilmenite ore
and locally sourced palm kernel shells were used as raw materials in the study. A reaction
temperature of 1200 ◦C was applied in the solar simulator furnace and temperatures of
1000 ◦C, 1100 ◦C and 1200 ◦C were used in the tube resistance furnace as a comparison.
In the tube resistance furnace trials, it was observed that metallic iron and rutile already
formed at 1000 ◦C. However, intense peaks of ilmenite were still observable in an x-ray
diffraction analysis. Furthermore, chromite spinels were observed at 1000 ◦C. Increasing the
reduction temperature leads to a decrease of the ilmenite content and vanishing chromite
spinels, instead, pseudobrookite was present in the samples reduced at higher temperatures.
At 1200 ◦C, no remaining ilmenite was identified by x-ray diffraction. Compared to the trial
in the tube resistance furnace at 1200 ◦C, the solar simulator trial at 1200 ◦C resulted in a
slightly higher pseudobrookite content, also chromite spinels were still observed in the solar
simulator trial. EDX-analysis revealed that the tube resistance furnace leads to a globular
iron morphology, whereas the solar simulator furnace leads to a streak morphology of iron.
This was explained by the local overheat caused by the solar heat flux [67]. By combining
the natural energy source of solar energy with a bio-based reducing agent with a low
carbon impact, this approach could be a valuable option to reduce the carbon footprint of
ilmenite treatment.

In a separate study, Setiawan et al. [180] investigated the use of palm kernel shell
charcoal for the reduction of Indonesian ilmenite while using sulfur and sodium sulfate as
an additive. Samples were reduced in a tube resistance furnace at 1200 ◦C. Palm kernel
shell charcoal was able to crack the spinel and reduce iron oxides to produce metallic iron.
With the usage of sulfur and sodium sulfate, it was possible to increase the particle size
of iron compared to a trial without additives. This was explained by the formation of
liquid FeS, which will dissolve metal particles. In addition, sodium reacted with silica
minerals forming sodium silicate phases with a low melting point. The largest particle
size was obtained when sodium sulfate was used which eases the separation of iron and
titanium-containing oxides by a magnetic separator [180].

Guo et al. [181] examined the microwave absorbing characteristics of oxidized ilmenite
ore from China with coconut-based activated carbon, coke and graphite. By comparing
the attenuation and frequency of different ratios of ore to carbonaceous material it was
stated that the addition of carbonaceous material improved the microwave absorbing char-
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acteristics of the samples, while the highest attenuation was observed for the mixtures with
coconut-based charcoal [181]. Therefore, if microwave heating is considered as an energy
source in a process, bio-based reductants are an option with good absorbing characteristics.

George et al. [52] investigated the usage of coconut pith to reduce Indian ilmenite
beach sand. Coconut pith was placed in a stainless-steel reaction tube, above the pith was
a layer of ilmenite sand followed by another layer of pith. The reaction tube was placed in
a furnace and temperatures between 800 ◦C and 1100 ◦C were applied, the reaction times
in the furnace varied between thirty minutes and five hours. After the trial, excess pith
was separated by putting the sample in water and removing floating carbon. The settled
ilmenite was dried and subjected to hydrochloric leaching to remove iron. A reaction time
of one hour was already sufficient to reduce 50% of iron into the metallic state and after
three hours no ferric iron was present in the ilmenite sample. The reduction efficiency
increased while increasing the temperature, however, above 1050 ◦C the metallization is
only slightly increasing if the temperature is raised. By treating a sample with coconut pith
at about 1050 ◦C for three hours and leaching with 20% hydrochloric acid for one hour at
80 ◦C, it was possible to produce rutile samples containing less than 3% iron [52].

Langberg et al. [44] explored the use of mallee charcoal in the metallurgical industry.
Mallee trees can be harvested with a short rotation and were planted in Western Australia
to offset the increasing soil salinity due to the increased stock of shallow-rooted crops in
that area. One tested process to use charcoal derived from mallee trees was the rotary kiln
process to reduce ilmenite. The charcoal in the study was produced by slow pyrolysis. A
comparison with coal was carried out in regards to CO2 reactivity and ash composition.
The produced mallee charcoal showed a significantly lower ash content than coal, but the
ash content of charcoal from bark or leaf and twig was in the same magnitude as coal.
The ash of the charcoal showed significantly higher levels of alkaline compounds like
Na2O and K2O, but the sulfur content was significantly lower compared to coal. The CO2
reactivity of the investigated coal sample was an order of magnitude lower compared to
the mallee charcoal, while the CO2 reactivity of charcoal from mallee bark or leaf and twig
charcoal was between two and three times higher compared to wood charcoal. Reduction
tests with ilmenite were carried out in a stainless-steel drum placed in a muffle furnace
at 1100 ◦C. By comparing the metallization rate of different carbon carriers, the mallee
charcoal showed a higher reduction rate in the test compared to coal and could therefore
increase the productivity of rotary kilns. Technical issues and obstacles to overcome were
mentioned in the publication as following. Due to the low density of charcoal negative
effects on productivity could be possible if the mixing with the ilmenite feed is insufficient.
Also, volatile alkaline oxides could react with SO2 and form sulfur accretions in the
off-gas lines [44].

Zhao et al. [55] investigated the reduction temperature and different reducing agents
to produce a metallic concentrate and titanium enriched oxides by in a solid-state direct
reduction and magnetic separation of low-grade titanomagnetite beach sand from Indone-
sia. The beach sand was pelletized with a binder and dried. The pellets were placed in
a bed of the reducing agent contained in a graphite crucible, due to the embedment of
ore in a reducing agent, the evolving gas from the reducing agent is reacting with the ore
and the direct reaction with the carbon-containing material is limited. The reduction was
carried out in a furnace at temperatures between 1200 ◦C and 1400 ◦C using devolatilized
bitumite. Furthermore, at 1200 ◦C wheat straw char and coke were used as a reducing
agent. Gasification tests of the reducing agents in a CO2 atmosphere showed that the
reactivity of wheat straw char and bitumite was similar, with a slightly higher reactivity
of bitumite. The lowest CO2 reactivity was again observed for coke. In the reduction
experiments, it was observed, that an increase in the reduction temperature decreased the
recovery of iron and the TiO2 content of the titanium concentrate. Roasted samples were
investigated by SEM and EDS, samples treated at 1200 ◦C showed a porous structure that
could increase the diffusion of reducing gases, while at higher temperatures larger iron
particles and connected iron crystals were observed, which could decrease the diffusion
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of reducing gas. Furthermore, unreduced titanomagnetite and wustite were observed in
the central area of pellets at higher reducing temperatures. Therefore, a reduction tem-
perature of 1200 ◦C was used for further experiments. The best result was obtained by
using bitumite with an iron recovery of 91.83% after magnetic separation. The total iron
content in the magnetic iron concentrate was 90.28% and the TiO2-content was 0.91%. The
TiO2-recovery in the titanium concentrate was 91.19% and the TiO2 content was 46.01%,
which was significantly higher than the TiO2-content in the raw beach sand containing
only 11.42%. Wheat straw char lead to similar results, even though wheat straw char was
slightly inferior compared to bitumite in regards to the iron recovery and iron content in
the magnetic concentrate and TiO2-recovery and TiO2-content in the non-magnetic fraction.
Coke yielded the worst results and again titanomagnetite and wustite were observed in the
samples due to insufficient reducing atmosphere. Therefore, for reduction using evolved
reducing gases from the reducing agent bitumite was presented as the best option. Wheat
straw char still yielded better results compared to coke [55].

9. Conclusion and Outlook

Bio-based carbon is a promising alternative to replace fossil carbon in the production
of metals. In particular for the production of ignoble metals like chromium, manganese
and silicon, it seems that the transition to a hydrogen-based industry is not feasible, since
the reduction of those metals only takes place if the partial pressure of water vapor are
very low.

Due to the faster carbon cycle compared to fossil carbon, bio-based carbon can be
considered CO2 neutral. However, there are still some issues to overcome if bio-based
carbon should replace fossil carbon in conventional production routes. In particular,
the higher CO2 reactivity, lower density and diffuse composition of bio-based carbon
sources seem to be a technical challenge. Research to use alternative reducing agents
reviewed in this paper dates back to the 1960s and even though the topic is still intensively
investigated, there are still unit operations not covered extensively. Table 7 shows relevant
unit operations for the investigated metals and ilmenite upgrading and a qualitative
estimate of the amount of research carried out and the scale of the trials.

Table 7. Scale and amount of research investigating relevant unit operations.

Unit Operation Category
Metal Product or Process

FeNi FeCr Si&FeSi FeMn&SiMn Ilmenite
Upgrading

Pelletizing &
Briquetting

Amount - + - - * -
Scale o Laboratory o o o

Sintering Amount - + - + -
Scale o Industrial o Laboratory o

Pre-Reduction
&

Solid-State
Reduction

Amount ++ + - ++ +

Scale Industrial Laboratory o Laboratory Laboratory

Smelting Amount + + ++ + -

Scale Enhanced
Laboratory

Enhanced
Laboratory Industrial Industrial o

LCA Amount ++ - + - -

* : One study investigated smelting of manganese ore and charcoal composites, as the focus was on the smelting process, it was not included
in the pelletizing and briquetting category. ++: significant amount of studies reviewed; +: little amount of studies reviewed; -: no studies
reviewed; o: not applicable, since no research was found.
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Most studies presented in this review investigated solid-state processes while smelting
processes were the minority. Even the focus regarding the solid-state processes differed
for the investigated metals. Studies investigating solid-state processes to produce nickel,
manganese and upgraded ilmenite mostly focused on pre-reduction and reduction pro-
cesses. For chromium, a similar amount of pre-reduction and agglomeration studies were
carried out, while the sintering process with bio-based carbon was even investigated on an
industrial-scale. The smelting process to produce ferronickel and ferrochromium has only
been investigated in an enhanced laboratory-scale until this point, and even the amount of
research available is rather low. Smelting of silicon using bio-based carbon is already an
industrial practice and a lot of research investigating an industrial-scale is also available.
Smelting of manganese alloys was also carried out on an industrial-scale and also in a
pilot-scale, but less research compared to the production of silicon is available. Smelting of
ilmenite ore with bio-based carbon was not published to our knowledge.

The potential reduction of CO2 emissions by using bio-based carbon was already
determined in life cycle assessments (LCA) for nickel [115,116] (Figure 13) and silicon [146]
(Figure 17), however, detailed life cycle assessments for ferrochromium, ferromanganese
and ilmenite upgrading were not found.

Besides the usage of bio-based carbon in established unit operation, research was
carried out to investigate novel processes. Table 8 summarizes novel processes or special
emphasis of research to produce the investigated metals and for ilmenite upgrading.

Table 8. Novel processes and special emphasis investigated for the production of metals and ilmenite upgrading.

Metal Product or Process

FeNi FeCr Si&FeSi FeMn&SiMn Ilmenite
Upgrading

Segregation Segregation Production of suitable bio-based carbon,
usage of solar energy Reduction-roasting Usage of solar energy,

usage of microwaves

The segregation process was investigated to produce nickel and chromium metal-
carbon particles, which can be recovered by flotation or magnetic separation. Solar energy
as a green energy source in combination with bio-based carbon was used to produce
silicon and to upgrade ilmenite, while for ilmenite microwaves were used as well in
combination with bio-based carbon. To overcome the previously mentioned mechanical
disadvantages of bio-based carbon, a lot of research investigated the production of bio-
based carbon agglomerates to substitute fossil carbon in submerged arc furnaces for silicon
and ferrosilicon processes. Those results may also be applicable to produce other alloys in
submerged arc furnaces. Besides pre-reduction and sintering studies, one characteristic for
manganese was a large number of articles about the reduction-roasting process to dress
low-grade manganese ores for further hydrometallurgical treatment.

To achieve the transition from fossil carbon carriers to bio-based carbon, it will be
necessary to further investigate the processes not extensively covered until now as shown
in Table 7. As a further motivation to quantify the potential benefits of bio-based carbon
compared to fossil carbon, detailed LCAs to produce ferrochromium, manganese alloys
and ilmenite upgrading are necessary. Especially since the presented LCAs for nickel
and silicon have already shown that bio-based carbon can significantly reduce the carbon
footprint of ferroalloys.

Besides the needed research to close knowledge gaps, it could already be a helpful first
step to partially substitute fossil carbon by bio-based carbon to promote the transition of
an industry heavily dependent on metallurgical coke to a more sustainable reducing agent.
Especially since a small amount of bio-based carbon in the fuel mix is not impairing the
well-known processes severely. According to studies about sintering and agglomeration
presented here in this review, a partial substitution of around 25% of fossil reducing agents
by bio-based carbon is often possible, without weakening the quality of agglomerates for
further treatment.
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Based on the review and besides the need to investigate the unit operations not covered
until now (Table 7), there are three additional points, which need further investigation and
are relevant for all unit operations presented in this article:

• Determination of metal qualities obtainable using biomass, since biomass can contain
more phosphorous, but less sulfur compared to fossil reducing agents

• Gas emissions, especially monitoring NOx-, SO2- and chlorine emissions
• Improvement of bio-based carbon in regards to density, mechanical strength and

CO2 reactivity

Even more challenging will be the up-scaling of novel technologies like solar thermal,
microwave heating or the segregation process using bio-based carbon from a laboratory-
scale to a demonstration-scale and then to an industrial-scale. Especially, as this research
is only in the early stage. However, those potential breakthrough technologies could
significantly contribute to a more sustainable ferroalloy industry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
min11111286/s1, Figure S1: Equilibrium partial pressure of CO and equilibrium H2O to H2 ratio for
the selected reduction reactions. (a) pre-reduction with carbon; (b) reduction with carbon; (c) pre-
reduction with hydrogen; (d) reduction with hydrogen.
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