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Abstract: Cimabanshuo deposit is a newly discovered porphyry copper (Cu) deposit with giant
metallogenic potential, found in the western segment of the Gangdese metallogenic belt, Tibet. The
average elevation of the deposit is greater than 5500 m and the terrain on which it is found is steep
and complex. Therefore, it is untraversed, and the existing exploration works on it are weak. We
used 59 AMT sites belonging to an array covering the main, proven mineralization zone and ore
bodies of this deposit for an analysis of its underground electrical structure. Dimensionality and
strike analysis revealed the apparent three-dimensional (3D) features near the Cu ore bodies. 3D
inversion with topography was conducted for the AMT array data. A large range of high-resistivity
anomaly (~500–2000 Ωm) appears beneath the proven Cu mineralization zone and ore bodies, which
is interpreted as intrusive rocks with potassic alteration. Although containing chalcopyrite, it
is characterized by middle–high resistivity due to a low sulfide content and poor connectivity.
Moreover, a series of scattered conductors (~10–300 Ωm) around the Cu ore bodies are distributed in
the shallow layer from near the surface to ~200 m, possibly indicating phyllic alteration containing
pyritization and connected metal sulfides. The proven ore bodies of Cimabanshuo are mainly located
at the junction regions between high-resistivity intrusive rocks and high-conductivity sericitization
alteration zones. According to this research, the 3D inversion with topography of AMT data can
visually display the 3D distribution of intrusive rocks and alteration zones beneath porphyry Cu
deposits in high-elevation regions, and provides a reference for further exploration works.

Keywords: audio-frequency magnetotelluric soundings; Gangdese metallogenic belt; hydrothermal
alteration; metallogenic mechanism; mineral exploration

1. Introduction

The formation of porphyry copper deposits is generally considered to be related to the
hydrothermal fluids released by magma generated within subduction zones [1,2]. The arc
magma, being rich in Cu and other metals (Mo ± Au) and saturated with volatiles and salt
water, intrude into the upper and middle crust [3]. Finally, the metallic elements precipitate
in the form of metal sulfides. Upon cooling down, they react with the wall rock to cause the
chalcopyrite and molybdenite precipitating within quartz veins and being disseminated in
potassic-altered rocks. As the fluids rise and cool down further, they become more acidic,
resulting in the alteration of foliaceous (quartz-sericite-pyrite), argillaceous and high-grade
argillaceous (such as clay, alunite, residual quartz) [4]. Therefore, the alteration and mineral
sulfides of the porphyry copper deposit system could show typical zoning characteristics
both in vertical and lateral directions centered on the shallow volcanic intrusive complex
(Figure 1) [5]. After the above mineralization processes, subsequent regional tectonic
movements, such as uplift, result in the gradual denudation of shallow hydrothermal
alteration zones and volcanic rocks, causing the outcrop of underlying secondary volcanic
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rocks, porphyry mineralization and batholith, which could also make the actual porphyry
Cu system more diverse and complicated [4].

These porphyry Cu deposits exposed to the surface have mostly been discovered and
mined in large porphyry Cu provinces around the world, such as the Canadian Cordillera,
Andean orogenic belt in Chile, and Gangdese belt in Tibet [4,6,7], but mineralogists still
believe that the concealed deposits have equally ideal ore-forming potentials [8]. This
makes it very important to image and explore the underground structure of these deposits.
In addition to the drilling works, which can directly obtain the underground lithological
distribution, geophysical surveys are also proved to be effective for exploring such deposits
due to the different physical properties between mineralization, alteration and surround-
ing rocks [9]. Based on the results of laboratory measurements and practical exploration
works [10,11], a generalized, idealized profile model for the alteration, mineralization and
resistivity distribution of typical porphyry Cu deposits was summarized [12]. It revealed
that electrical resistivity and polarizability features vary significantly with different levels
of mineralization and alteration, the essence of which is the difference in the content and
connectivity of metal sulfides [13]. This caused electrical (DC) and electromagnetic (EM)
soundings to become frequently used ways to image the underground structure of por-
phyry Cu deposits [14]. For instance, 3D joint inversion of magnetotelluric sounding (MT)
and Z-axis tipper electromagnetic data were used to image intrusive rocks and alteration
zones beneath the Morrison porphyry Cu-Au-Mo deposit in British Columbia, Canada [15].

Minerals 2021, 11, x FOR PEER REVIEW 2 of 15 

 

shallow hydrothermal alteration zones and volcanic rocks, causing the outcrop of under-
lying secondary volcanic rocks, porphyry mineralization and batholith, which could also 
make the actual porphyry Cu system more diverse and complicated [4]. 

These porphyry Cu deposits exposed to the surface have mostly been discovered and 
mined in large porphyry Cu provinces around the world, such as the Canadian Cordillera, 
Andean orogenic belt in Chile, and Gangdese belt in Tibet [4,6,7], but mineralogists still 
believe that the concealed deposits have equally ideal ore-forming potentials [8]. This 
makes it very important to image and explore the underground structure of these depos-
its. In addition to the drilling works, which can directly obtain the underground litholog-
ical distribution, geophysical surveys are also proved to be effective for exploring such 
deposits due to the different physical properties between mineralization, alteration and 
surrounding rocks [9]. Based on the results of laboratory measurements and practical ex-
ploration works [10,11], a generalized, idealized profile model for the alteration, mineral-
ization and resistivity distribution of typical porphyry Cu deposits was summarized [12]. 
It revealed that electrical resistivity and polarizability features vary significantly with dif-
ferent levels of mineralization and alteration, the essence of which is the difference in the 
content and connectivity of metal sulfides [13]. This caused electrical (DC) and electro-
magnetic (EM) soundings to become frequently used ways to image the underground 
structure of porphyry Cu deposits [14]. For instance, 3D joint inversion of magnetotelluric 
sounding (MT) and Z-axis tipper electromagnetic data were used to image intrusive rocks 
and alteration zones beneath the Morrison porphyry Cu-Au-Mo deposit in British Colum-
bia, Canada [15]. 

 
Figure 1. (a) Typical porphyry system alteration pattern; (b) Expected sulfide mineralization; (c) Expected electrical resis-
tivity responses for uneroded and eroded porphyry deposits. Py = pyrite, Cp = chalcopyrite. Modified from [12] and [15]. 

Among these EM methods, audio-frequency magnetotelluric soundings (AMT) are 
commonly used to study the structure of metallic deposits [16]. AMT uses natural EM 
signals as the source and, therefore, has an exploration depth of greater than 1 km and a 
higher exploration accuracy than broad-band MT works. In addition, AMT is very suita-
ble for exploration in high-elevation mining areas such as the study area in this research. 
The Cimabanshuo porphyry Cu deposit in southern Tibet has an average elevation of over 
5800 m; therefore, there is no need to deploy long wires and transport a large number of 
cables, as is the case with DC soundings and the controlled-source audio-frequency mag-
netotelluric method (CSAMT) [17]. However, the application of the AMT method to such 
high-elevation areas as Cimabanshuo still has some limitations. Specifically, the AMT 
method can detect a maximum depth of ~1–3 km. However, the elevation difference be-
tween the highest and lowest points is more than 900 m within a horizontal distance of 
less than 1 km in Cimabanshuo area. The influence of topography cannot be ignored [18]. 
According to the forward modelling studies of Dong et al. [19], such clear topographic 
relief in Cimabanshuo cannot be ignored, otherwise, the reliable underground electrical 
structure cannot be obtained by inversion [20]. Furthermore, as mentioned above, the 
porphyry metallogenic system is a complex three-dimensional (3D) system; therefore, a 

Figure 1. (a) Typical porphyry system alteration pattern; (b) Expected sulfide mineralization; (c) Expected electrical
resistivity responses for uneroded and eroded porphyry deposits. Py = pyrite, Cp = chalcopyrite. Modified from [12,15].

Among these EM methods, audio-frequency magnetotelluric soundings (AMT) are
commonly used to study the structure of metallic deposits [16]. AMT uses natural EM
signals as the source and, therefore, has an exploration depth of greater than 1 km and a
higher exploration accuracy than broad-band MT works. In addition, AMT is very suitable
for exploration in high-elevation mining areas such as the study area in this research. The
Cimabanshuo porphyry Cu deposit in southern Tibet has an average elevation of over
5800 m; therefore, there is no need to deploy long wires and transport a large number
of cables, as is the case with DC soundings and the controlled-source audio-frequency
magnetotelluric method (CSAMT) [17]. However, the application of the AMT method
to such high-elevation areas as Cimabanshuo still has some limitations. Specifically, the
AMT method can detect a maximum depth of ~1–3 km. However, the elevation difference
between the highest and lowest points is more than 900 m within a horizontal distance of
less than 1 km in Cimabanshuo area. The influence of topography cannot be ignored [18].
According to the forward modelling studies of Dong et al. [19], such clear topographic relief
in Cimabanshuo cannot be ignored, otherwise, the reliable underground electrical structure
cannot be obtained by inversion [20]. Furthermore, as mentioned above, the porphyry
metallogenic system is a complex three-dimensional (3D) system; therefore, a reliable
underground structure cannot be obtained by one-dimensional (1D) or two-dimensional
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(2D) inversion algorithms. In summary, for the Cimabanshuo deposit, only 3D inversion
considering the effects of topography can reveal reliable underground structures. In this
research, we carried out a 3D inversion with topography for an AMT array that was made
up of 59 sites collected from the Cimabanshuo deposit, obtaining the underground electrical
structure. Combined with other geological information, new constrains on the potential
intrusive rocks and alteration zones were provided according to a detailed interpretation.

2. Geological Settings of the Cimabanshuo Porphyry Copper Deposit

There are many large-scale and super-large porphyry Cu ± Mo ± Au deposits in the
Gangdese metallogenic belt, such as the Tinggong, Qulong and Jiama deposits [21,22]. The
Cimabanshuo deposit is located in the western section of the Gangdese belt (Figure 2) [23].
Based on the study of Miocene adakites, these Gangdese deposits were suggested to be
formed in an extensional tectonic setting after the subduction–collision between the Indian
and Eurasian plates [24]. The ages of ore-bearing granodiorite porphyry were approxi-
mately 15.2 ± 0.8 Ma–15.2 ± 0.7 Ma (15.2 Ma) when the post-collision (25–13 Ma) extension
occurred. The break-up of slab was supposed to lead to the upwelling of mantle-derived
magma and its intrusion into the juvenile, thickened, mafic lower-crust, which provided
heat for its melting and released abundant Cu- and sulfide-rich ore-forming fluids [25].
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Figure 2. (a) Simplified geologic map of the Gangdese metallogenic belt, showing the dis-
tribution of Late Triassic to Miocene magmatic rocks and ore deposits in the belt (modified
from [7]); (b) Geological map of the Cimabanshuo porphyry copper deposit and the loca-
tions of AMT sites (modified from [23,25]). Abbreviations: CLS = central Lhasa subterrane,
IYZSZ = Indus-Yarlung–Tsangpo suture zone, LMF = Luobadui–Milashan fault, NLS = northern
Lhasa subterrane, SLS = southern Lhasa subterrane, WBF = Wenbu Fault, XDF = Xuru-Dangreyong
Fault, YGF = Yadong-Gulu Fault.

Due to its high elevation and remote location, very few exploration works have been
executed in Cimabanshuo, including low-degree geological mapping and geochemical
studies [23]. Miocene porphyry bodies, NE-trending and EW-trending faults, and well-
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nested geochemistry anomalies and remote sensing hydroxyl anomalies indicated good
metallogenic potentials and geological conditions for Cu and Pb mineralization. A certain
amount of massive and fine-grained pyritization along micro-fractures was found on the
ground [25]. Two relatively large-scale and almost EW-trending mineralized alteration
zones were delineated. They were ~2 km in E–W and ~350–1200 m in S–N direction
(Figure 3). The NW- and NE-trending structures are suggested to be closely related to min-
eralization. Regional structures control the intrusion of magma, hydrothermal alteration
and mineralization, which may play an important role in the activation of ore-forming
materials, the passage of ore-forming fluids and the space of ore-forming occurrence [26].
Miocene monzogranite porphyry, porphyritic monzogranite and granite porphyry were
suggested to closely correlate with porphyry mineralization. The main mineralization
types include pyrite, chalcopyrite, molybdenite and malachite [23]. Chalcopyrite is mainly
distributed within the rock fractures and K-feldspar phenocrysts of porphyritic granite.
Malachite is distributed in the fractured surface of rocks and kaolinized altered rocks in
the shape of filmy aggregate. Azurite is distributed in the fractured rock surface in the
form of film and dissemination, and it is associated with malachite petrochemistry. The
major alteration types contain vein-like, massive propylitic and white phyllic alterations.
There are many EW- and SN-trending fine fractures within porphyritic monzonitic granite,
especially in the rocks to the west of ore bodies. The Cu mineralization is closely related to
the degree of rock fracturing. In other words, the mineralization would be stronger where
more fractures occur [25].
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Figure 3. (a) The superposition of geological map and topographic map of the Cimabanshuo deposit
with the highest elevation being higher than 5900 m, the lowest elevation reaching nearly 5100 m
and an average value of ~5500 m. (b) Locations of AMT sites of this research. The geological map in
Figure 3a is same as Figure 2b and modified from [23,25].
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3. AMT Data Acquisition and Processing

The MTU-5A system (developed by Phoenix Geophysics Ltd., Toronto, Canada) was
used for AMT data collection and synchronous satellite observation was adopted. In July
2019, 59 sites were deployed to form an array covering the Cimabanshuo Cu deposit. The
array consists of one relatively long NW–SE-trending and three short, almost E–W-trending
profiles, which span the entire Cu mineralization area and pass through two nearly E–W
strike Cu ore bodies. The average intra-site distance was ~50 m. The average acquiring
time was 2–4 h for each site in order to obtain the frequency band covering ~10,000 Hz
to 1 s (Figure 4). The survey area was located in a high-elevation and remote region
within the hinterland of Tibet. Therefore, there is almost no sign of human activity and
EM noise interference due to the absence of large-scale exploration and mining activities.
The time series of AMT were processed by SSMT2000 software developed by the Phoenix
Geophysics Ltd., and the reliable impedance tensors were obtained by using a standard
Robust algorithm [27,28].
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Figure 4. Typical apparent resistivity and phase curves of the research area (scatter), response curves
of the 3D inversion model (solid line), and response curves of the 3D inversion model without
topography (dashed line). Site1 and Site9 are located in the northern and southern margins of the
research area, respectively. Site2−Site4 are located in copper-single-anomaly area. Site5–Site8 are
located near the proven copper mineralization zone (Figure 3b). Some data plots for the diagonal
components are also shown.
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4. The Dimensionality and Strike Direction Analysis of AMT Data

Before inversion and interpretation, a detailed dimensionality analysis should be
applied to evaluate the complexity of underground structures and the distortion of AMT
data [29]. This research applies two commonly used methods, i.e., the Groom-Bailey (GB)
impedance tensor decomposition [30] and phase tensor analysis [31]. According to the
theory of skin depth, plotting these indicators by time period can reveal information for
different depths (Figure 5) [29]. Generally speaking, the dimensionality and strike direction
in the survey area are relatively simple. Specifically, the AMT data of Cimabanshuo array
show consistency features only within some local areas, while these subregions differ from
each other, for example, Zone1 to the north and Zone2 to the south.
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Figure 5. Geoelectric strike direction and dimensionality analysis of the AMT sites by period. The
AMT sites are analyzed by two individual groups according to the location of the copper deposits.
The red–blue sectors shown on the rose diagrams illustrate the inherent 90◦ ambiguity of the results
of Groom-Baily decomposition [30]. The phase tensors [31] are represented by colored ellipses filled
according to skew (β angle) values.
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The phase tensors of Zone1 show overall small skew (β) values from high to low
frequencies (10,000–10 Hz), most of which are less than 2◦, indicating simply 1D/2D
structures. The electrical strike directions obtained from the GB decomposition are also
relatively simple. Their 90◦ inherent ambiguity could be eliminated according to geological
strikes. The direction of 10,000–1000 Hz is ~N60◦E, which may reflect the trends of some
shallow faults. By contrast, the direction of 100–10 Hz is mainly ~N120◦E, which is
similar to the boundary of the Cu mineralization belt and likely caused by underground
lithologic interfaces.

The phase tensors of Zone2 show totally different features. Especially, those of 100 Hz
show very large β angles (mostly greater than 3◦) and complex long-axis directions, com-
pared with their northern counterparts within Zone1. This can also be verified by the
relatively complicated strike directions derived from GB decomposition. Considering
that Zone2 covers the mineralization area and proven ore bodies. Additionally, as men-
tioned above, the porphyry metallogenic system is a complex 3D system. Therefore, it is
reasonable to determine a relatively 3D electrical structure beneath Zone2.

It is notable that the strike directions of the highest frequencies (10,000 Hz and 1000 Hz)
are also clearly aligned with the topographic ridge that the survey ran along. The interface
between the topographic ridge and air is the most significant electrical resistivity contrast,
which can make prominent 2D features. Additionally, the lithologic boundaries are mostly
parallel or perpendicular to the extensional direction of the ridge. Therefore, whether the
2D features and clear strike directions are caused by underground structures or topography
cannot be determined.

In conclusion, although the electrical dimensionality features in Cimabanshuo are
relatively simple and most of the sub-regions are dominated by 1D/2D characteristics,
the electrical strikes differ among different sub-regions and depths. In addition, relatively
complicated 3D characteristics occur beneath the southern part of AMT array, due to
the presence of ore-forming porphyry. In summary, it is necessary to carry out a 3D
inversion of AMT data with topography to obtain reliable underground electrical structures
beneath Cimabanshuo.

5. Three-Dimensional Inversion with Topography of AMT Data

The 3D inversion code of AMT data with topography we used is ModEM, which is
based on the Non-Linear Conjugate Gradient (NLCG) algorithm [32,33]. We used Dong
Hao’s code to generate the initial file and present the inversion results(The link of the
code can be found in Supplementary Materials). Then, we import the diagonal (Zxx and
Zyy) and non-diagonal (Zxy and Zyx) components of unrotated impedance tensor from
59 sites into the inversion code. After considering the mismatch of different values (5%
and 10%, etc.) and the weight between model roughness, an error margin of 7.5% is finally
selected. The initial model is a half space with a resistivity of 100 Ωm and a grid size
of 105(Nx) × 49(Ny) × 60(Nz) m. The horizontal width of the grid is 20 m. Six units are
filled in the periphery of the sites, and the width increases by 1.5 times. In the vertical
direction, there are 60 layers, including 45 layers of terrain (each layer is 10 m thick) and
the coefficient below the 45 layers increases exponentially by 1.45 times. Because the
topography was taken into account, the initial model was constructed with real terrain
data. The resistivity of 1010 Ωm was used to represent the air, while the resistivity of
100 Ωm was used below the surface to represent the earth. Additionally, “0” was set in
the model covariance file (*.cov file) to lock the air value in the model so that it did not
participate in the inversion calculation. In the data file (*.dat file), the z-coordinates of
each site were also modified for the relative height of reference points based on the actual
terrain data. We chose the data origin as the highest point in the model so that all data sites
had non-negative z-coordinates. This ensured the avoidance of sites that were actually
embedded inside the Earth, or in the air, which would cause an inaccuracy in the inversion.

We used a tower-type sever (Dell PowerEdge T440) with two processers containing
40 cores and 84 GB memories for the Parallel inversion calculation. The average time
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required for each iteration was about 1.75 h. After 66 iterations, the final overall Normalized-
Root-Mean-Square error (nRMSe) for all sites was 1.77. The fitting of observed data was
mostly acceptable, and those of several measured sites are shown in Figure 4.

The nRMSe values for every site are shown in Figure 6. Additionally, the frequency
histogram of the nRMSe for all sites demonstrates that most sites (~49) had low nRMSe
values between 0 and 2.5, indicating an acceptable fitting of the observed data.
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However, it is notable that the data of several sites in Figure 4 do not seem to be well
fitted, which could be due to the staircasing of the topography in the model, since the
ModEM code uses finite-difference algorithm when conducting the forward modelling.
The topography cannot be perfectly created by regular cube grids. Therefore, one option
was to test multiple inversions using different parameter settings and select the best-
fitted inversion for interpretation. In order to confirm the necessity of the inversion with
topography, we also removed the topography of the inversion model by replacing the air
(1010 Ωm) with 100 Ωm. The responses of the revised model are also shown in Figure 4 by
dash lines. Clearly, the fittings became worse, compared with the original inversion model
with topography, and the total R.M.S. misfit also increased to 3.0. Therefore, we suggested
that an inversion that included topography was necessary.

The final 3D inversion model, which included the topography, was demonstrated by
two different methods: horizontal slice (Figure 7), and vertical slice (Figure 8), on which
we carried out a detailed geological interpretation.
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respectively. CZ1 and CZ2 indicate major conductive zones.
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In Figure 8, C1 is a clear and significant anomaly; therefore, sensitivity tests were
performed on it. We replaced C1 by resistive material and carried out a forward modelling;
the result is shown in Figure 9. It was evident that the degree of fitting decreased, which
indicated the moderate presence of C1.
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6. Geological Interpretations of the Electrical Resistivity Models

The expected electrical resistivity responses of typical porphyry systems vary depend-
ing on alteration degrees and different types of deposits (Figure 1, modified from [12]). The
alteration zones are formed under specific temperature and salinity conditions; therefore,
the space and depth of each alteration zone differ significantly for different deposits. Ac-
cordingly, we made geological interpretations of the inversion model for the Cimabanshuo
deposit; the 3D resistivity model with topography is shown in Figure 10.
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6.1. High-Resistivity Potassic Intrusive Rocks

A wide range of the high-resistivity zone, R1, occurs beneath the research area, which
can be observed in both horizontal and vertical sections (Figures 7 and 8). This is not
unexpected. If a deposit is altered to porphyry level, according to the idealized electrical
resistivity profile of porphyry system shown in Figure 1 (modified from [12]), the high-
resistivity potassic zone dominates the resistivity profile. Potassic zones are composed of
crystalline intrusive rocks and usually show high-resistivity features due to the current flow
being limited by the absence of micropores within rocks [10]. The resistivity of the newly
formed intrusive rocks is generally 1000–5000 Ωm, which varies with the fracturing degree.
There is a large area of 15.2 ± 0.8 Ma–15.2 ± 0.7 Ma (~15.2 Ma)-aged Gangdese ore-bearing
granitic porphyry outcrop in Cimabanshuo area [23]. However, it can be observed that
the resistivity range of R1 is ~500–2000 Ωm, which is clearly lower than newly formed
intrusive rock.

In fact, the locations of Cu mineralization delineated by geological mapping are
also mainly located in the high-resistivity area (Figure 7). This abnormal observation is
actually similar to that of the Morrison porphyry Cu deposit at the Cordillera Mountains,
Canada [15]. The resistivity values beneath the 0.3% Cu belt predominantly range from
100 to 1000 Ωm, which was suggested to contain potassic intrusive rocks with low-content
or/and disconnected metal sulfides. The average grade of Cu ore in Cimabanshuo is
~0.2629–0.5726% [23], which is essentially the same as that of Morrison (~0.3%, [15]).
According to the idealized model in Figure 1, the most likely explanation for the high-
resistivity body nearest to the Cu ore body is the potassic intrusive rocks. At the final stage
of porphyry mineralization, the metallic elements precipitate in the form of metal sulfides,
and then cool down and react with the surrounding rocks. Consequently, chalcopyrite
and molybdenite precipitate, present in quartz veins and disseminated in potassic altered
rocks, generates Cu, Fe, and Mo sulfides with potentially economical values [4]. The
Cimabanshuo chalcopyrite is diffusedly distributed along the rock fractures and K-feldspar
phenocrysts of porphyry granites [25]. However, the abundance of sulfide in the potassic
rocks is not high (usually only ~1–2 vol%), the interconnection of which is usually poor [13].
Therefore, the resistivity values are usually higher than 1000 Ωm. In conclusion, it is
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plausible to interpret the medium–high resistivity blocks near the Cu ore body as potassic
intrusive rocks.

6.2. High-Conductivity or Sulfide-Rich Foliate Alteration Zone

In the upper part of inversion model (Figures 7 and 8), there are several significantly
conductors that are shallower than 200 m, such as C1, C2 and C3. Their resistivity values
are all less than 100 Ωm, even less than 5 Ωm, such as C1; its rational existence is verified in
Figure 9. According to the idealized resistivity profile in Figure 1, there are several possible
explanations for this kind of high conductors, which are discussed one-by-one according
to the geological information of the Cimabanshuo deposit as follows.

6.2.1. Argillic Alteration Zone

The porphyry deposits with a shallow argillation and late-stage argillation alteration
can show an extremely low resistivity at near-surface depths due to the clay minerals within
the argillaceous zone [3]. Clay minerals are usually loose and have a large porosity, resulting
in the enrichment of secondary high-conductivity materials, such as saline fluids, which
greatly reduce bulk resistivity [34]. However, we do not suggest that the above conductors
are caused by the argillaceous alterations. The reason is that most of argillaceous alteration
occurs under the condition of low-degree denudation. Under this condition, according
to the idealized porphyry metallogenic model (Figure 1a), the hydrothermal Ag-Pb-Zn
metallogenic system has not been entirely denuded, and thus the underlying porphyry
metallogenic system cannot be well exposed [35]. In this case, the above conclusion that the
high-resistivity blocks are porphyry would be invalid. In fact, according to the fission-track
dating and thermal simulation/modeling of the Zhunuo porphyry Cu deposit 10 km far
to northwest of Cimabanshuo deposit, the main deposits of the western Gangdese belt
experienced at least two rapid uplifts, i.e., 8–11 Ma and 4–6 Ma after the main metallogenic
period (~15.2 Ma, [36]). The denudation amount of Zhunuo deposit was suggested to be
2.25–2.63 km [37]. Cimabanshuo has a higher elevation than Zhunuo deposit (averagely
~4600 m). Thus, it might experience a larger degree of denudation. Under this condition,
the shallow hydrothermal Ag-Pb-Zn metallogenic system and the argillaceous alteration
zone are unlikely to be preserved [3], and thus the possibility of interpreting the shallow
conductors as argillaceous alteration zones for Cimabanshuo could be ruled out.

6.2.2. Massive Sulfide

Except the argillation excluded above, another possible mechanism for the conductors
surrounding the high-resistivity intrusive rocks might be rich in metal sulfides. Nelson [13]
collected 109 sets of resistivity measurements from four porphyry Cu deposits, and the
results showed that the resistivity was inversely proportional to the sulfide content, al-
though this study did not include massive sulfide samples. However, other studies showed
that the sulfides generally weighed more than 50 wt.% and interconnected easily, with an
extremely low resistivity (up to ~0.1–1 Ωm, [38]). In fact, most of the apparent conductors
in our resistivity model cannot reach such low resistivity values. Instead, most of them
range from 10 to 30 Ωm. Additionally, there is no evidence of massive Cu sulfide from
drilling work in Cimabanshuo, and the porphyry Cu content here is not very high, with a
maximum of 0.5726% [23]. Therefore, this possibility can also be essentially ruled out.

6.2.3. Foliate Alteration Zone

In a porphyry metallogenic system, except for the argillization and massive sulfide
excluded above, disseminated sulfides can also reduce whole-rock resistivity. However, this
mechanism cannot reduce as drastically as the former two, considering that the significant
conductors, C1, C2, and C3, are mainly distributed around the inferred Cu ore body.
According to the theory of porphyry mineralization [2], the ore-forming fluids become
increasingly acidic when they rise to the near-surface and cool down, which leads to leaf-
like (quartz–sericite–pyrite) alterations [4]. According to the idealized resistivity model
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of the porphyry deposit in Figure 1, the alteration closest to the ore body is dominated
by sericitization. The kind of alteration is characterized by a large amount of veinlet
disseminated Pyrite (up to 20 vol%), which can significantly lower the whole-rock resistivity.
This mainly depends on the number and connectivity of sulfide particles [13]. When the
sulfide content is 3–20 wt.%, it is distributed in veins. The corresponding whole-rock
resistivity can range between 100 and 1000 Ωm. When the sulfide content reaches 20 wt.%,
the connectivity is relatively improved, and the whole-rock resistivity can be reduced to
10 Ωm. The alteration found in the Cimabanshuo deposit is mainly a vein-type block
propylitization and white-color sericitization alteration [23]. The conductors around the ore
body are mostly ~10–300 Ωm, which are inferred to contain sulfide with a relatively high
content or good connectivity. Combined with the location of the high conductors and the
actual geological conditions, we suggest that they may represent sericitization alteration
containing pyritization. The medium–high conductor (~50–300 Ωm) around the inferred
intrusive rocks of Morrison porphyry Cu deposit in Canada [15], is also interpretated in
this way, which can be compared to that of Cimabanshuo. In fact, the proven ore bodies
of Cimabanshuo are mainly located at the junction zones of high-resistivity intrusive
rocks and relatively high-conductivity sericitization alteration zones, which could also be
favorable positions for mineralization.

7. Conclusions

We conducted a 3D inversion with topography for 59 AMT sites belonging to an
array covering the main mineralization zone and ore bodies of Cimabanshuo Cu porphyry
deposit in the western Gangdese metallogenic belt, Tibet. Combined with other geological
information, the main following conclusions can be drawn as follows:

(1) A large range of high-resistivity anomaly (~500–2000 Ωm) appears beneath the proven
Cu mineralization zone and ore bodies, and is interpreted as intrusive rock with
potassic alterations. Although containing chalcopyrite, it is characterized by middle–
high resistivity due to low sulfide content and poor connectivity.

(2) A series of scattered conductors (~10–300 Ωm) around the Cu ore bodies are dis-
tributed in the shallow layer from near-surface area to ~200 m, possibly indicating a
phyllic alteration containing pyritization and connected metal sulfides.

(3) The proven ore bodies of Cimabanshuo are mainly located at the junction regions of
high-resistivity intrusive rocks and relatively high-conductivity sericitization alter-
ation zones.

In summary, the 3D inversion with topography of AMT data can visually display the
3D distribution of intrusive rocks and alteration zones beneath porphyry Cu deposits in
high-elevation regions, and provide a reference for further exploration works.
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