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Abstract: As a result of the exploitation of ore deposits, in addition to the main elements, the
accompanying elements are also partially recovered. Some of them increase the profitability of
exploitation, while others reduce it because they hinder the recovery of the main elements and
thus increase the costs of the recovery process. A comprehensive economic calculation to assess the
profitability of ore mining depends on an appropriately accurate estimation of the resources of both
the main and associated elements. This issue was analyzed with the example of the Cu-Ag Rudna
ore deposit (LGCD, Poland). The subject of the assessment was the resources prediction accuracy of
the main element (Cu) and four (4) accompanying elements (Co, Ni, Pb, and V) using geostatistical
estimation method, in particular the ordinary kriging after the estimation of the relative variograms
for describing the spatial variability structures of elements abundance. It was found that the standard
kriging errors (deviations) in accompanying elements resources that are scheduled for exploitation
within a one-year period in some parts of deposits are drastically greater (2 to 5 times) than the
estimation errors of the main element resources. This is due to the sparse sampling pattern for their
determinations and/or the high variability (among others nugget effect) of their abundance. In this
situation, without additional sampling and a denser sampling pattern, the possibilities of a reliable
assessment of the influence of accompanying elements on the economic consequences of exploitation
are very limited.

Keywords: Cu-Ag Rudna deposit; Legnica-Głogów Copper District (LGCD); ore resources; accompa-
nying elements; accuracy; relative variogram; ordinary kriging

1. Introduction

The mining of Cu and Ag ores in the Legnica-Głogów Copper District (LGCD) (SW
Poland, Fore-Sudetic Monocline) is carried out by KGHM Polska Miedź S.A. in six deposits
(Figure 1). KGHM Polska Miedź S.A. is one of the world’s leading producers of silver
and copper. In terms of copper and silver production, it ranks eighth and second in the
world, respectively (data for 2020) [1]. In 2019, the extraction of ore containing 1.5% Cu and
48.7 g/t Ag amounted to 29.9 million tons. In total, 449 thousand tons of metallic copper
and 1455 tons of silver were mined in 2019 [2].

The Cu-Ag ore deposits of the LGCD are rich in accompanying (secondary) elements,
including Pb, Zn, Cd, Ni, Co, Fe, Au, Pt, Pd, V, Hg, Sn, Ge, U, Th, Mo, Re (heavy metals),
S, Se, Ba, and F (non-metallic elements), and As, Sb, and Bi (elements with intermediate
properties) [3]. Some of them increase the value of the deposit, while others are undesirable
components that negatively affect the environment and technological processes [4]. In 2019,
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in addition to the main metals (Cu and Ag), the following were recovered from the LGCD
deposits in the technological processing of ores or metallurgical processes: 674 kg of Au,
1.99 thousand tons of nickel sulphate, 28.5 thousand tons of Pb, 75.8 tons of Se, and 8.3 tons
of Re [2].
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Figure 1. Location of the Cu-Ag deposits of the Legnica-Głogów Copper District against the background of Poland (A). 
Location of the boundaries of the Rudna deposit against the background of developed copper ore deposits in the Fore-
Sudetic Monocline (B). 
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cobalt, nickel, lead, and vanadium resources were reported in the original geological doc-
umentations of the Cu-Ag deposits of the LGCD. Their resources in each of the deposits 
were estimated only on the basis of the results of the drilling exploration using the tradi-
tional method (Voronoi’s polygons), which does not give the accuracy of these estimates 
(i.e., the estimation error). The prediction of the resources of these elements in small parts 
of the deposits is subject to large errors due to the large distance between the boreholes 
(of the order of 1.5 km). During mining exploration of deposits, the data sets on some 
accompanying elements are successively enriched with the results of their determinations 
in samples collected in mining excavations. For the exact prediction of economic effects 
and profitability of deposit exploitation in short periods of time, it is necessary to accu-
rately estimate not only the resources of the main elements (Cu and Ag) but also the ac-
companying elements. 

The Cu-Ag ore deposits of the LGCD were the subject of numerous geostatistical 
studies aimed at describing the variability and assessing the accuracy of the estimates of 
the content and resources of the main element (Cu), less often Ag [5–13]. The subject of 
this article is to assess the accuracy of the estimation of Co, Ni, Pb, and V resources in 
parts of the deposit scheduled for exploitation within a settlement period of one year (a 
normal settlement period at the KGHM mines). The analysis uses only data from the sam-
pling of mining excavations, which is much more numerous than the data from the bore-
holes used in the original deposit documentation. In Cu-Ag deposits of the LGCD, the 
issue of the accuracy of the estimation of the resources of the accompanying elements has 
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(A). Location of the boundaries of the Rudna deposit against the background of developed copper ore deposits in the
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Among numerous co-occurring (accompanying) elements in the Cu-Ag ores, only
cobalt, nickel, lead, and vanadium resources were reported in the original geological
documentations of the Cu-Ag deposits of the LGCD. Their resources in each of the de-
posits were estimated only on the basis of the results of the drilling exploration using
the traditional method (Voronoi’s polygons), which does not give the accuracy of these
estimates (i.e., the estimation error). The prediction of the resources of these elements
in small parts of the deposits is subject to large errors due to the large distance between
the boreholes (of the order of 1.5 km). During mining exploration of deposits, the data
sets on some accompanying elements are successively enriched with the results of their
determinations in samples collected in mining excavations. For the exact prediction of
economic effects and profitability of deposit exploitation in short periods of time, it is
necessary to accurately estimate not only the resources of the main elements (Cu and Ag)
but also the accompanying elements.

The Cu-Ag ore deposits of the LGCD were the subject of numerous geostatistical
studies aimed at describing the variability and assessing the accuracy of the estimates of
the content and resources of the main element (Cu), less often Ag [5–13]. The subject of
this article is to assess the accuracy of the estimation of Co, Ni, Pb, and V resources in parts
of the deposit scheduled for exploitation within a settlement period of one year (a normal
settlement period at the KGHM mines). The analysis uses only data from the sampling of
mining excavations, which is much more numerous than the data from the boreholes used
in the original deposit documentation. In Cu-Ag deposits of the LGCD, the issue of the
accuracy of the estimation of the resources of the accompanying elements has not been the
subject of research so far. The previous studies were focused on the accuracy of estimating
the average content of a wider spectrum of accompanying elements in all mined Cu-Ag
deposits of the LGCD [14,15].
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In general, the accuracy of resource estimation depends on the number and distribu-
tion of samples in which the contents of the accompanying elements were determined and
their variability. To assess the accuracy of resource estimation, ordinary kriging methods
were used, based on the description of the variability structure in the content of elements
with the use of relative variograms. The choice of the geostatistical procedure resulted from
the occurrence in the variability structure of the abundance of accompanying elements,
the more or less marked non-random component of variability. The research was also
aimed at answering the question of whether the sampling method currently used in mining
excavations for the determination of the considered co-occurring elements is appropriate
from the point of view of achieving the assumed accuracy of estimation of their resources.

According to the literature review, the question of estimating the resources of accom-
panying elements in the world’s Cu-Ag deposits has not been of particular interest so far,
as evidenced by the lack of publications in this field. However, it cannot be ruled out that
it was the subject of internal unpublished mining reports. In this situation, it is impossible
to compare the research results presented in the following article with other studies.

2. Geology
2.1. Geological Setting

The Rudna deposit, like other Cu-Ag deposits in the LGCD (Figure 1), is a sedimentary
hosted stratiform copper deposit [16–18]. In terms of stratigraphy, the deposit covers the
upper part of the Rotliegend sediments and the lower part of the Zechstein sediments (PZ1
cyclothem) (Figure 2). The mineralization occurs in three basic lithological series defined
as the carbonate ore (11% of the ore resources), the Kupferschiefer ore (6%) and sandstone
ore (83%) [19]. Within all these types of ore, copper sulfides dominate among the following
minerals: chalcocite (Cu2S), digenite (Cu9S5), bornite (Cu5FeS4), chalcopyrite (CuFeS2),
and covelin (CuS). Most of these minerals occur as isolated grains; mineral intergrowths
are also found.

In the vertical profile, the deposit series are characterized by a highly diversified
thickness and a different intensity of mineralization. The deposit is up to 20 m thick with
an average of about 5 m, which is much higher than in the deposits adjacent to the Rudna
deposit. The deposit extends NW-SE and dips gently at an angle of about 3 to 6 degrees
in the NE direction. The depth of deposition of the Cu-Ag orebody in the Rudna deposit
ranges from 844 m up to 1250 m. In the Rudna deposit, the room-and-pillar mining method
is generally used, although the detailed procedure depends on deposit thickness and the
geotechnical parameters of the orebody and surrounding rocks [20].

2.2. Characteristics of the Studied Accompanying Elements

The conducted research was aimed at geostatistical description of the abundance vari-
ability and assessment of the accuracy of the estimation of the resources of 4 co-occurring
elements in the Cu-Ag (LGCD) deposits: cobalt (Co), nickel (Ni), lead (Pb) and vanadium
(V) against the accuracy of the estimation of resources of the main element (Cu). They
appear to be particularly interesting due to their local high content, their importance for
the effectiveness of Cu-Ag ore processing, and their impact on the natural environment.

A typical distribution of the highest concentrations of the considered accompanying
elements and the main elements (Cu and Ag) in the vertical profile of the deposit against
the background of the detailed lithological units is shown in Figure 2.

Cobalt (Co) is on the list of critical raw materials for the EU [21]. Currently, this
element is not recovered from the mined ore at KGHM Polska Miedź S.A.; however,
previous studies showed that it is possible to recover cobalt with the use of leaching
technology [22]. Nickel, despite its low content, close to its Clarke value, is recovered in
the form of nickel sulphate (NiSO4). Nickel demand is expected to continue to grow in
the coming years, and nickel resources from ore deposits may be depleted in the future
(around 2200) [23]. Lead (Pb) negatively affects both the production of copper concentrate
and the natural environment, but the Cu-Ag deposits (the LGCD) are currently the main
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source of lead in Poland due to the depletion of the developed zinc and lead ore deposits
in Triassic formations (MVT Cracow-Silesian Zn-Pb ore deposits) and the closure of the
last Zn-Pb ore mine.
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Figure 2. Distribution of the main metals (Cu and Ag) and accompanying elements (Co, Ni, Pb, and V) in the vertical profile
of the deposit (based on [3,24]).

Their resources are given as estimates, and for the Rudna deposit, they amount to:
Co—16.2 thousand t; Ni—14.2 thousand t; Pb—314.4 thousand t; and V—39.8 thousand t
(at 31 December 2019) [2].

The above-mentioned four metals accompanying Cu in ore in the LGCD deposits
occur as the form of ore minerals or as isomorphic substitutions in other minerals (Co, Ni,
and Pb) and in organometallic compounds (V) [3]. The mineral phases of these metals are
summarized in Table 1.

3. Materials and Methods
3.1. Sampling of the Deposit in Mine Workings

The subject of direct research was the abundance of copper and the abundance of four
accompanying metals (Co, Ni, Pb, and V) determined within the Cu-Ag Rudna deposit
intended for mining (Figure 1). The boundaries of the Cu-Ag deposit in the vertical plane
were determined at each sampling station based on the Cu and Ag content in samples
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taken from sections with an average length of 20 cm, along a vertical line from the roof
to the bottom of the mining excavation. The boundaries of the deposit are determined
by extreme samples in which the Cu content was not lower than 0.7%, provided that the
average equivalent Cu content (considering the Ag content according to the conversion
factor of 100 ppm Ag = 1% Cu) in the entire section was not less than 0.7%, while the
equivalent abundance of Cu was not less than 50 kg/m2 (Figure 3).
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Figure 3. An example of determining the deposit boundary in the vertical profile including three main
lithological types of ores: carbonate ore, the Kupferschiefer ore, and sandstone ore with information
on the Cu content in point samples.

Table 1. Metal bearing mineral phases in the Cu-Ag deposits (the LGCD).

Metal
Mineral Phases Recovered [25]

Main Mineral Phases [26] Occurrence in the Form of
Admixtures [26]

Cobalt (Co) [27]
cobaltite CoAsS

smaltite (Co, Ni)As3
safflorite CoAs2

pyrite FeS2
bornite Cu5FeS4

no

Nickel (Ni) [25]

nickelite NiAs
rammelsbergite NiAs2

gersdorffite NiAsS
chloantite NiAs3

pyrite FeS2
chalcocite Cu2S yes
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Table 1. Cont.

Metal
Mineral Phases Recovered [25]

Main Mineral Phases [26] Occurrence in the Form of
Admixtures [26]

Lead (Pb) [28,29]
galena PbS

clausthalite (PbSe)
cerussite PbCO3

pyrite FeS2 yes

Vanadium (V) [30] no occur in organic matter no

The abundance of copper and accompanying metals in the entire Cu-Ag deposit was
determined at the sampling sites as the sum of their abundance in three main lithological
units: sandstone, shale, and carbonates, using the formula:

a =
3

∑
i=1

ai =
3

∑
i=1

Mi·γ0i·pi[%]· 1
100%

(1)

where: a—abundance of elements, i—lithological units: 1—sandstone ore, 2—the Kupfer-
schiefer ore, 3—carbonate ore, Mi—thickness of the lithological ore units, γ0i —volumetric
density: 1—sandstone ore (2.3 t

m3 ), 2—the Kupferschiefer ore (2.5 t
m3 ), 3—carbonate ore

(2.6 t
m3 ), pi—content of elements in the lithological ore units in % (Cu, Pb) or ppm = g/Mg

(Co, Ni, V).
In the vertical profile, the increased content of the accompanying elements of the

Cu-Ag deposits of LGCD occurs very often outside their boundaries. However, the results
of the study on their abundance presented later in the article refer only to the deposit
determined on the basis of the content and the abundance of Cu and Ag.

In mining excavations, the determination of Cu content is made in samples taken with
a spacing of 20 to 50 m, determination of Pb content with a spacing of not more than 60 m,
and determination of Co, Ni, and V content with a spacing of up to 200 m.

In the Rudna deposit, the average distance between the sampling sites used to de-
termine the basic element (Cu) is approximately 40 m. The sampling pattern for the
accompanying elements is much less frequent, with an average sample spacing of approxi-
mately 180 m for Pb to approximately 400 m for Co, Ni, and V (Figure 4). For this reason,
the size of the data set for Cu was much considerably larger than for the accompanying
elements and was 10,243 versus 3255 for Pb, 732 for Co, 722 for Ni, and 676 for V (Table 2).

Table 2. Arithmetic means of the thickness of the deposit (M) and the abundance of elements (a) in the main lithologies and
the deposit (the number of data sets is presented in parentheses).

Main Lithologies M
[m]

aCu
[kg/m2]

aCo
[g/m2]

aNi
[g/m2]

aPb
[kg/m2]

aV
[g/m2]

Carbonate ore 1.12 56.0
(6948)

69.3
(718)

116.1
(707)

2.5
(3073)

282.1
(667)

Kupfershiefer 0.27 65.7
(8942)

172.0
(1036)

183.4
(1022)

6.8
(4778)

788.9
(960)

Sandstone ore 4.40 179.5
(10,104)

241.1
(798)

170.9
(787)

2.3
(3387)

203.9
(752)

Deposit 5.34 272.3
(10,243)

426.8
(732)

338.4
(722)

7.75
(3255)

1039.5
(676)

3.2. Methods

The geostatistical ordinary block kriging procedure was used to analyze the accuracy
of the estimates of element resources at different parts of the deposit, while the point
ordinary kriging and lognormal ordinary kriging methods were applied to verify the
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accuracy of estimates of the abundance of elements at different points of the deposit. The
procedures used were based on the results of describing the variability of the abundance of
elements by means of variograms and their theoretical models. All calculations and graphs
were made using ISATIS software (2020.12, Geovariances, Avon, France) [31].
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Geostatistical studies were preceded by a short statistical description covering the
calculation of the basic measures of variability and the preparation of histograms and their
approximation with the best theoretical models of probability distributions.

The spatial structure of the variability (2D) of copper and the accompanying elements
in the Cu-Ag Rudna deposit was described using classical general relative variograms
calculated from the formula [32]:

γR(
→
h ) =

1
2nh

nh

∑
i=1

(zi+h − zi)
2

(zh)
2 (2)

where: (γR(h))—general relative variogram; (nh)—number of pairs of samples distant

by the vector
→
h; (zi, z

i+
→
h

)—parameter values (abundance of elements) at sampling sites
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distant by the vector
→
h; (zh)—the average value of the parameter in all pairs of sampling

points distant by the vector
→
h.

The use of relative variograms filters away the proportional effect and makes it easier
to compare the structure of the variability of the abundance of elements with drastically
different levels of average values. Relative variograms were approximated with theoretical
models used in geostatistics. Directional variogram maps were constructed to investigate
the potential anisotropy of the abundance of elements. The quality of fitting theoretical
models to empirical relative variograms was verified in a simplified manner by means
of linear correlation coefficients between the abundance estimated by ordinary point
kriging at sampling sites and the observed abundance at these points (cross-validation
procedure) [33,34].

The reliability of the point prediction of the abundance of the selected elements
(Ni, Pb) based on variogram models was checked on randomly generated test sets using
geostatistical ordinary and ordinary lognormal kriging.

The abundance in points of the test set (z∗K) was estimated based on the weighted
average algorithm:

z∗K =
n

∑
i=1

wiK·zi (3)

where: wiK—weighting factor assigned to the “i” sample; zi—parameter value at the “i”
sampling point; n—number of sampling points used in the estimation (located in the
neighborhood).

The weighting factors determined from the kriging equation system [35] take into
account the mutual configuration of the sampling points that participate in the estimation,
the location of these points in relation to the point of the test set and the previously
established model of the relative empirical variogram. The determined weighting factors
should guarantee an unbiased estimation (i.e., no systematic error) and minimization of
the estimation error.

Lognormal kriging is used to estimate the values of variables characterized by log-
normal or close to lognormal distribution, large positive skewness of the distribution and
when there are outliers in the data set [36,37]. The variogram is computed and modeled on
log-transformed data. Ordinary kriging has been used to estimate log-transformed data
values in points, and then the estimates are converted back to original data units using
the appropriate back-transformation formula. In practice, the main problems of applying
lognormal kriging are related to back-transformation, which is sensitive to deviations from
lognormality and may in some cases lead to serious systematic errors [35,38].

The assumptions and mathematical foundations of lognormal kriging were given by
Journel and Huijbregts [35]. The difficulties of its practical application and proposals for
their solutions were described in many works, including: Journel, Dowd, David, Deutsch
and Journel, Sinclair and Blackwell, Cressie and Pavlicova, Webster and Oliver, Yamamoto,
Yamamoto, Furuie, and Rossi and Deutsch [37–46].

The last stage of the study was to assess the accuracy of the estimates of the average
abundance of elements in square blocks with areas of 0.25 and 1.0 km2 using ordinary
block kriging. As a measure of accuracy, the relative standard error of block kriging was
adopted, which depends on the mutual configuration of sampling points in relation to each
other and their location in the block, the structure of variability expressed with the use
of the empirical variogram model, and the size and shape of the block within which the
average abundance of the element is estimated.

4. Results
4.1. Statistical Features of the Abundance of Copper and Accompanying Elements

The abundances of Cu and accompanying elements in the main lithological units
are variable. The abundances of Cu and Co dominate in the sandstone ore, while the



Minerals 2021, 11, 1431 9 of 25

abundances of Ni, Pb, and V in the Kupfershefer ore (Table 2), despite the small share of
this ore in the resources (6%).

Many outliers are observed in the datasets, especially for the abundance of Pb and
Co. This results in large values of the coefficients of variation and skewness of empirical
distributions of abundance.

The relative variability of the abundance of elements expressed by the coefficient
of variation (CV) is highly variable and depends on the studied element (Table 3). The
abundance of Cu, Ni, and V (CV from 65–70%) is characterized by similar and high
variability. The abundance of cobalt (CV = 96%) is highly variable, while the variability
of the abundance of Pb (CV = 340%) is extremely high. The removal of outliers from the
basic data sets causes a significant reduction in the value of the coefficient of variation
only in the case of the abundance of Pb. Such a high variability of Pb abundance is caused
by the tendency to concentrate the minerals of this element in characteristic “islands” or
local zones with an irregular course, often exceeding the boundaries of the Cu-Ag deposit.
The coefficients of variation of the abundance of elements are positively correlated with
the skewness coefficients of the empirical distributions. In all cases, these distributions
have positive skewness and the strongest skewness is observed in the case of Pb and Co
(Figure 5). An obvious consequence of this is that the arithmetic means are much greater
than the median values of the abundance of these elements (Table 3). The coefficients of
quartile variation [47,48] are definitely smaller than the classical coefficients of variation, as
they are insensitive to outliers. However, they reflect, identical to the classical coefficient
of variation, the relations of the degree of variation in the abundance of the studied
accompanying elements.

Table 3. Statistics for thickness and Cu abundance (aCu) and abundance of accompanying elements (aCo, aNi, aPb, and aV)
in the Cu-Ag Rudna deposit.

Summary Statistics aCu
[kg/m2]

aCo
[g/m2]

aCo *
[g/m2]

aNi
[g/m2]

aNi *
[g/m2]

aPb
[kg/m2]

aPb *
[kg/m2]

aV
[g/m2]

aV *
[g/m2]

Count 10,243 733 732 723 722 3267 3255 680 676
Arithmetic mean 272 431 427 395 391 8.7 7.7 1066 1039

Median 229 332 332 338 338 2.3 2.3 931 930
Standard deviation 185 429 409 276 253 29.5 12.9 803 724

Coeff. of variation (CV) 68% 99% 96% 70% 65% 340% 166% 75% 70%
Coeff. of quartile
variation (CQV) † 39% 49% 49% 40% 40% 77% 77% 49% 49%

Minimum 50 10 10 12 12 0.01 0.01 25 25
Maximum 2066 3949 3143 3312 1764 1417 92 6464 4837

Range 2016 3939 3133 3301 1752 1417 92 6464 4812
Lower quartile (Q1) 149 180 180 216 216 1.0 1.0 490 490
Upper quartile (Q3) 337 522 522 505 505 7.7 7.7 1447 1447
Interquartile range 188 345 342 290 290 6.9 6.7 962 958

Skewness 2.27 3.22 2.88 2.82 1.56 34.47 2.81 1.87 1.12
Kurtosis 9.10 14.9 11.30 19.28 3.74 1596.15 8.72 6.99 2.08

Summary Statistics
Thickness

Ore Deposit Carbonate Ore The Kupferschiefer Ore Sandstone Ore
Count 10,243 10,243 10,243 10,243

Arithmetic mean 5.34 0.76 0.24 4.34
Median 4.00 0.50 0.20 3.00

Standard deviation 3.54 0.90 0.19 3.55
Coeff. of variation (CV) 66% 118% 79% 82%

Minimum 0.20 0.00 0.00 0.00
Maximum 31.25 11.07 2.17 30.30

Range 31.05 11.07 2.17 30.30
Interquartile range 4.1 1.2 0.30 4.0

Skewness 1.52 1.87 0.78 1.56
Kurtosis 2.64 6.08 1.17 2.73

Explanations: * for data filtered out from outliers and used to estimate the variograms; † coefficient of quartile variation calculated as
CQV = (Q3−Q1)

(Q3+Q1)
·100% [48].
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of ore deposit, (g): (T-c)—the carbonate ore, (h): (T-K)—the Kupferschiefer ore, (i): (T-s)—sandstone ore); K-S Test—Kol-
mogorov-Smirnov test of the consistency of the empirical distribution with the assumed theoretical distribution, p-value 
≤ 0.05—rejection of the hypothesis on the consistency of the empirical distribution with the assumed theoretical distribu-
tion for significance level 0.05, p-value > 0.05—there are no grounds to reject the hypothesis that the empirical distribution 
is compatible with the assumed theoretical distribution. 

Figure 5. Histograms and optimal theoretical distributions of metal abundance (aCu, aCo, aNi, aPb, and aV (a–e)) and
thickness for fitted to empirical distributions according to the log-likelihood statistic (Explanations: (f): (T-o)—thickness
of ore deposit, (g): (T-c)—the carbonate ore, (h): (T-K)—the Kupferschiefer ore, (i): (T-s)—sandstone ore); K-S Test—
Kolmogorov-Smirnov test of the consistency of the empirical distribution with the assumed theoretical distribution, p-value
≤ 0.05—rejection of the hypothesis on the consistency of the empirical distribution with the assumed theoretical distribution
for significance level 0.05, p-value > 0.05—there are no grounds to reject the hypothesis that the empirical distribution is
compatible with the assumed theoretical distribution.
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Graphs of theoretical distributions best fitted to empirical distributions according
to the log-likelihood statistic are presented in Figure 5. According to this criterion, the
best models of empirical distributions of the abundance of each element are different.
However, it should be noted that the Kolmogorov-Smirnov test rejects the hypothesis that
the empirical distribution is consistent with the assumed theoretical probability distribution
for the abundance of Cu and Pb (Figure 5).

The Pearson correlation coefficients and Spearman’s rank correlation coefficients be-
tween the abundances of the primary variable (Cu) and the secondary variables (Pb, Ni,
V, Ag, Co) are shown in Figure 6. In general, the abundance of correlations between the
Cu abundance and the abundance of accompanying elements are weak (with correlation
coefficients <0.5) and for some pairs of variables, statistically insignificant (for significance
level 0.05). Therefore, it can be assumed that the use of more advanced geostatistical
methods taking into account auxiliary variables (e.g., collocated cokriging [49], regres-
sion kriging [50]) will only contribute to increasing the accuracy of the estimates of the
accompanying elements resources to a limited extent.
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Figure 6. Pearson correlations and Spearman rank correlations between Cu abundance (aCu) and
abundance of accompanying elements (aCo, aNi, aPb, and aV) in the Cu-Ag Rudna deposit.

4.2. Variography

Calculations of relative variograms were preceded by the elimination of outliers from
data sets, strongly distorting the form of empirical variograms and masking the non-
random component of variability. Elimination of outliers was performed on the basis of
the variogram cloud in ISATIS software [31]. The significance and purposefulness of using
such a procedure was illustrated on the example of the set of Pb abundances distinguished
by numerous anomalously high values (Figure 7). Removal of only one outlier of Pb
abundance diametrically changes the form of the variogram, which is manifested by a
drastic reduction of its amplitude (the maximum level of differentiation) by about 85% and
reveals the occurrence of a non-random component, expressed by an increase in the model
value over a certain distance range.

The equations of the theoretical models (exponential and spherical) fitted to the relative
variograms of the deposit parameters (the thickness and the abundance of elements) are
presented in Table 4 and their graphs in Figure 8. In the case of Co, Pb, and V abundance,
simple models were fitted, while for Cu and Ni abundance, nested models were applied.
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Figure 7. Variogram of Pb abundance before removing the outlier (a). Variogram cloud (b). Location
of sampling points (c). Variogram of the Pb abundance after removing the outlier (d). Explanations:
the values of the variogram related to the outlier value of Pb abundance (b) and the pairs of sampling
points included in their calculation (c) are marked in blue; other values of the variogram (b) and the
sampling points included in their calculation (c) are marked in green; red color—outlier of the Pb
abundance (c).

Table 4. Equations of geostatistical relative models (omnidirectional) of deposit parameters (copper abundance, abundance
of accompanying elements, thickness) in the Cu-Ag Rudna deposit.

Deposit Parameter
Parameters of Geostatistical Models

r f [%]
Model C0 Ci ai [m]

A
bu

nd
an

ce

Cu exponential
exponential 0.142 0.180

0.308
765

14,141 0.76 22.5

Co spherical 0.36 0.75 6419 0.46 32.4

Ni spherical
spherical 0.21 0.13

0.07
518
2882 0.38 51.2

Pb spherical 1.49 1.19 1002 0.52 55.6

V exponential 0.18 0.30 960 0.49 37.5

T
hi

ck
ne

ss

ore deposit exponential 0.15 0.29 1600 0.76 34.1

carbonate ore spherical 0.42
0.16
0.57
0.13

533
4860
1255

0.80 32.8

the Kupferschiefer ore spherical 0.20 0.39 1157 0.78 33.9

sandstone ore exponential 0.18 0.48 1600 0.78 27.3

Explanations: C0—nugget variance, Ci—partial sill, ai—range of variogram model, r—Pearson’s correlation coefficient between estimated
and raw data at sampling sites, (f) percentage ratio of nugget variance (C0) in total sill (C0 + C) calculated using formula f = C0

C0+C ·100%.
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Figure 8. (a–e) Relative variograms (points) and their theoretical models (solid lines) of the Cu abundance and the abundance
of accompanying elements in the Cu-Ag deposit; (f) Comparison of relative variograms and their theoretical models in one
scale; (g) Comparison of relative variograms and their theoretical models of the thickness of ore deposit (T-o) and three
basic lithological series (T-c—the carbonate ore, T-K—the Kupferschiefer ore, T-s—sandstone ore).

The percentage ratio of nugget variance (C0) in total sill (C0 + C) of the models,
calculated on the basis of the theoretical variogram equations (Table 4), is varied for
the abundance of the studied elements and increase in the order of Cu, V, Co, Ni, and
Pb consistent with the decreasing continuity of changes in the abundance of elements.
The linear correlation coefficient calculated in the cross-validation procedure between
the estimated and actual abundances at the sampling points is the highest for the Cu
abundance (0.76), moderate for the Co, Pb, and V abundance (0.46–0.52), and the lowest
for the Ni abundance (0.38). In the case of the deposit thickness and lithological series, the
percentage ratio of nugget variance is relatively small (27–34%) while the linear correlation
coefficients are as high (0.76–0.8) as in the case of the Cu abundance.

The research on the anisotropy of thickness and abundance was carried out using
relative directional variograms and their contour maps (Figures 9 and 10).
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Figure 9. Maps of relative directional variograms of elements abundance and variograms for the directions of minimum
(green lines) and maximum (red lines) variability approximated by theoretical models (the anisotropy direction were
measured in degrees clock-wise from the North).
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test set. The reason for choosing Ni and Pb abundance was the extreme difference in their 
variability as shown by the coefficient of variation (CV): the highest in the case of Pb 

Figure 10. Maps of relative directional variograms of deposit thickness and variograms for the
directions of minimum (green lines) and maximum (red lines) variability approximated by theoretical
models (the anisotropy direction were measured in degrees clock-wise from the North; T-o—thickness
of ore deposit, T-c— the carbonate ore, T-K—the Kupferschiefer ore, T-s—sandstone ore).

In the case of Ni abundance, the practically isotropic nature of the variability is
observed, as in the case of Co, for a distance of about 2.5 km. Variability of the abundance
of the remaining elements and deposit thickness is usually characterized by moderate or
weak anisotropy. It is practically insignificant due to the high local variability represented
by the high nugget variance ratio [51]. The cross-validation procedure performed again for
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the anisotropic models showed only an insignificant increase in the correlation coefficients
between the estimated and actual abundances in the sampling sites. For this reason, only
isotropic variogram models (omnidirectional) were used in further procedures to estimate
the values of the parameters and errors using ordinary kriging. The anisotropy directions
of the abundance of elements and deposit thickness can generally be described as NW-SE
and NE-SW.

4.3. Accuracy of the Point Prediction of Ni and Pb Abundance

The prediction of Ni and Pb abundance at the test sampling points was performed
using ordinary kriging (OK) and lognormal ordinary kriging (LOK). Accuracy assessment
was based on a comparison of the predicted abundance with the real abundance in the
test set. The reason for choosing Ni and Pb abundance was the extreme difference in
their variability as shown by the coefficient of variation (CV): the highest in the case
of Pb abundance (CV = 166%) and the lowest in the case of Ni abundance (CV = 65%)
(Table 3). The basis of the test procedure consisted of 182 measurements of Ni abundance
and 321 measurements of Pb abundance (in separate parts of the deposit, respectively, with
an area of 9.4 km2 and 8 km2) (Figure 11). The average distance between neighboring test
points was about 240 m for Ni and 170 m for Pb.
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Figure 11. Location of sampling sites selected for the point test of the reliability of Ni and Pb
abundance prediction in parts of the Rudna deposit.

From the original data sets, test sets of 30 samples for Ni and 41 samples for Pb were
randomly generated for each metal separately. The remaining samples were training sets,
which were used to estimate the abundance of elements in the samples of the test sets.
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To assess the accuracy of the prediction of the abundance of metals in the test sets,
two types of errors were calculated: mean error (ME) and mean absolute error (MAE):

ME =
1
n

n

∑
i=1

(z∗i − zi) (4)

MAE =
1
n

n

∑
i=1
|z∗i − zi| (5)

where: z∗i i zi—respectively: estimated and actual (measured) metal abundance at the “i”
sampling point of the test set, n—number of data in the test set.

The mean error (ME) can be treated as a measure of the systematic prediction er-
ror, while the mean absolute error (MAE) can be treated as a measure of the random
prediction error.

The Kolmogorov-Smirnov test used to assess the compliance of empirical distributions
with theoretical lognormal (Ln) and lognormal three-parameter (Ln-3P) distributions
(Figure 12) gave the following P-value: for Ni abundance 0.10 and 0.45, respectively, and
for Pb abundance, respectively, 0.38 and 0.21. At the significance level of ∝ = 0.05, the
calculated P-value greater than 0.05 does not provide grounds for rejecting the hypothesis of
a lognormal or lognormal three-parameter distribution of the abundance of both elements
in the general population.
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Figure 12. Histograms and theoretical distributions (lognormal (Ln) and lognormal three-parameter (Ln 3-P)) of the
abundances of Ni ((a): aNi) and Pb ((b): aPb) for sets used to validate the prediction quality (combined training and testing
datasets) (Figure 11).

The results of the assessment of the accuracy of the prediction of metal abundance,
presented in Table 5, indicate that the random error of the prediction of Ni abundance
(MAE: 43–51%) is clearly lower than the analogous error of the prediction of Pb abundance
(MAE: 66–69%).

Table 5. The results of the assessment of the accuracy of the Ni and Pb abundance estimates in the test sets based on 2
geostatistical methods (the errors related to the average abundance in the test set, expressed as a percentage, are shown
in brackets).

Method Ni [g/m2]
The Size of the Test Set: 30

Pb [kg/m2]
The Size of the Test Set: 41

Mean error
(ME) [g/m2]

Mean absolute error
(MAE) [g/m2]

Mean error
(ME) [kg/m2]

Mean absolute error
(MAE) [kg/m2]

Ordinary kriging (OK) 37.2 (8.6%) 218.5 (50.5%) −0.41 (−4.3%) 6.43 (67.3%)
Lognormal kriging (LOK) −2.4 (−0.6%) 189.7 (43.9%) 2.22 (23.3%) 6.35 (66.5%)

However, for the abundance of both metals, the error is very high. The use of log-
normal kriging (LOK) gives, compared to ordinary kriging (OK), a slight (several percent)
reduction in the magnitude of the random error of the prediction of Ni abundance, but
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from a practical point of view, it is of little importance. The sizes of the random errors
in the prediction of the abundance of Pb are practically identical for both methods. It
can be assumed that the random errors of prediction for the remaining elements (Co and
V) will be within the limits of random errors for the prediction of Ni and Pb abundance,
i.e., roughly in the range of 45–65%. Systematic errors (ME) in the prediction of abun-
dance are generally relatively small (from −4.3% to 8.6% of the mean abundance in the
test set), except for the abundance of Pb predicted using lognormal kriging (LOK) for
which it is significant and amounts to 23% of the mean abundance of this metal in the
test set (Table 5). This unfavorable result may be caused by a too large disagreement of
the empirical distribution of Pb abundance from the ideal lognormal distribution, despite
the fact that the Kolmogorov-Smirnov test does not provide grounds for rejecting such
a hypothesis. According to Sinclaire and Blackwell [42], in general, lognormal kriging
should be avoided and an equivalent alternative procedure, such as ordinary kriging with
a relative variogram, should be used.

Generally, the low accuracy of the prediction of the abundance of both metals is related
to the large spacing of the samples and additionally, in the case of Pb abundance, to its
extremely high variability and the presence of numerous outliers. For this reason, the
estimation of the abundance of elements accompanying the Cu-Ag deposits of the LGCD
may be rationally justified only within larger parts of the deposit corresponding to the area
of, for example, the annual exploitation of the deposit.

4.4. Accuracy of Estimation of Accompanying Elements in Deposit Blocks

For the initial assessment and comparison of the accuracy of the estimates of the
average abundance and thus the Cu resources and resources of the four accompanying
elements in the deposit blocks, ordinary block kriging, based on the models of relative
variograms, was used. The procedure was carried out for two types of square blocks with
highly differentiated areas: 0.25 km2 (0.5 km × 0.5 km) and 1 km2 (1 km × 1 km), covering
the area of the Rudna deposit recognized by mining excavations. The total area of annual
exploitation of deposits in LGCD mines is within the given limits. The theoretical relative
standard kriging error was adopted as a measure of the accuracy of the estimates. The
average abundance was estimated based on all data contained in the block, provided that
their number was at least 2 (otherwise, the estimation was abandoned).

The calculation results for all elementary blocks, including the medians of the kriging
errors and their lower and upper quartiles, are summarized in Figure 13 and Table 6.
Relative errors were ranked in ascending order, which allowed us to present the ranking of
the accuracy of the estimated abundance of the analyzed elements (Figure 13).

Table 6. Quartiles of relative standard kriging errors of estimates (σKR [%]) of the average Cu abundance and resources and
the accompanying elements in blocks with areas 0.25 and 1.0 km2.

Statistics

Blocks 1000 m × 1000 m Blocks 500 m × 500 m

aCu
[kg/m2]

aNi
[g/m2]

aV
[g/m2]

aCo
[g/m2]

aPb
[kg/m2]

aCu
[kg/m2]

aNi
[g/m2]

aV
[g/m2]

aCo
[g/m2]

aPb
[kg/m2]

σKR [%]

Number of blocks 72 70 69 70 77 279 173 162 173 254
Lower quartile 10 19 21 24 32 11 29 30 35 42

Median 10 22 24 27 39 12 33 35 41 51
Upper quartile 12.5 27 30 33 47 15 39 42 48 71
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Figure 13. The ranking of the accuracy of the estimation of the average abundance of Cu and
accompanying elements in blocks with an area of 0.25 and 1.0 km2 in the Rudna deposit, expressed
with the use of quartiles of standard block kriging relative error (σKR).

The average abundance of the accompanying elements is estimated, in comparison to
the abundance of the basic Cu element, with much less accuracy. The medians of errors
of the Ni, V, and Co abundance estimation are roughly 2–3 times and in the case of ×the
abundance of Pb 4–5 times greater than the medians of the estimates of the abundance of
Cu, which are of the order of 10–12% (Table 6). It is also seen in Figure 13 that the estimation
kriging error (σKR) decreases as the estimation surface area increases, a well-known result
established by Krige [52,53] and demonstrated by Matheron [54,55] using the dispersion
variance expressed in function of the variogram.

The effect of the number of samples within square blocks with a side of 1 km on the
value of the kriging error of the estimation of the average abundance of accompanying
elements is shown in Figure 14. In the case of the abundance of all accompanying elements,
except for lead, a significant decrease in the estimation error was observed when consid-
ering at least 5 samples in the calculations (Figure 15). Assuming the maximum relative
kriging error of the estimation of the average abundance of accompanying elements of 25%,
the approximate minimum number of samples located within the 1 km2 calculation block
should be: 13 for Co, 7 for Ni, 8 for V, and as much as 417 for Pb.
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(aCo, aNi, aV, and aPb) (b) and relative standard kriging errors (σKR) (c).
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5. Summary and Discussion

A common feature of the empirical distributions of the abundance of the studied
elements (Co, Ni, Pb, and V) of the Cu-Ag Rudna ore deposit is their positive skewness
and the presence of outliers, exceptionally numerous in the case of Pb abundance. The
theoretical models that best approximate the empirical distributions are different for each
element. The statistical and geostatistical features of the abundance of Ni and V are
similar to the features of the abundance of copper (main metal). This is expressed by a
similar intensity of variability with variability coefficients in a narrow range of 65–70%
and a similar geostatistical structure of variability represented by the values of relative
variograms. Extremely different statistical and geostatistical properties are revealed by
the abundance of Pb, which is distinguished by a large variability (with a coefficient
of variation of 340%) and high values of the relative variograms despite the removal
of anomalous values from the data set, completely masking the nonrandom structure of
variability. This can be explained by the specificity of the distribution of Pb minerals (mainly
galena) in the deposit zone, occurring as small “island-like” patches, often exceeding the
boundaries of the Cu-Ag deposit in the vertical profile. The abundance of cobalt, due to
high relative variability (with a coefficient of variation of 96%) and the high values of the
relative variograms, occupies an intermediate position between the abundance of Pb and
the abundance of Cu, Ni, and V.

Copper abundance is characterized by the highest horizontal continuity with the
lowest percentage ratio of nugget variance amounting to 23%. In the case of the abundance
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of other elements, it is much lower, as evidenced by a higher percentage ratio of nugget
variances, ranging from 32% (Co) to 56% (Pb).

The mentioned unfavorable statistical characteristics related to the abundance of
accompanying elements, combined with increased intervals of sample collection, resulted
in significantly lower accuracy of estimation of the average abundance and, at the same
time due to the established block boundaries, lower accuracy of estimation of the resources
of these elements.

The ordinary kriging procedure used for blocks with an area of 0.25 km2 and 1 km2

showed that the medians of the relative standard kriging errors of the copper resources
estimates of 12% and 10%, respectively, can be considered suitable for geological and
mining applications. In comparison, the median errors of the Ni, V, and Co resource
estimates are about 2–3 times greater and about 4–5 times greater for the Pb resource
estimates. The drastically low accuracy of the estimation of the Pb resource is mainly due
to the extremely high variability of the abundance of Pb because the average sampling
interval for determinations of this element (~180 m) is more than two times smaller than
for Co, Ni, and V (~400 m). Assuming square blocks with an area equal to 1 km2 and the
permissible (maximum) standard error of 25% for resource calculations, it is theoretically
necessary to collect at least 7–13 samples of Ni, V, and Co and as many as 417 samples of Pb.
Despite the adoption of lower requirements with regard to the accuracy of the estimates of
the abundance of accompanying metals, the achievement of the assumed accuracy of the
Pb resource estimates requires a significant increase in the number of collected samples (in
relation to the currently collected ones) by appropriately reducing the sampling interval.

6. Conclusions

So far, the accuracy of the estimates of the resources of accompanying elements in Cu-
Ag ore deposits has not been thoroughly studied. This is probably due to the structure of
the sales value of recovered metals, where the share of accompanying elements is generally
low. This also explains the lower interest of users or deposit owners in obtaining high
accuracy of the estimates of their resources and the use of larger sampling intervals for
determining their content than in the case of the main metals. For this reason, it seems
understandable to apply lower requirements regarding the accuracy of the estimates of
the accompanying elements compared to the corresponding requirements for the main
elements. Under the conditions of the Cu-Ag Rudna deposit, the assumption of the
maximum size of the standard kriging error equal to 25% when estimating the resources
of accompanying elements in the parts of the deposit to be exploited within 1 year can be
considered rational. This criterion is easily obtained for the estimation of Co, Ni, and V
resources when there are roughly a dozen samples available. Additionally, considering that
Co and V are not currently recovered from the mined ore, even an approximate estimate of
their resources seems to be fully sufficient.

In the case of Pb, the accuracy of estimating the resources of this metal is insufficient
given the current sampling pattern of the deposit in mine workings. Considering that
the Cu-Ag deposits of LGCD will soon become the only source of Pb production from
Polish deposits, it seems advisable to consider actions aimed at increasing the accuracy of
the prediction of the size of this metal resource. The use of more advanced geostatistical
methods for this purpose would not bring the expected result due to the extremely uneven
distribution of the minerals of this element in the Cu-Ag deposit. The simplest solution
resulting in an increase in the accuracy of the estimates would be to reduce the horizontal
sampling interval for Pb and match it with the Cu sampling interval. To limit the number
of additional Pb samples, it is sufficient to take a single sample from each lithological unit
through its entire thickness within the boundaries of the deposit, rather than collecting
samples from vertical 20 cm long sections as is the case with samples collected to determine
the Cu content.
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Undoubtedly, the proposed procedure will contribute to a certain increase in sampling
costs, but it can be considered justified and does not impose an excessive financial and
organizational burden.

Obligatory control sampling may be recommended to verify the correctness of primary
determinations in places where outlier contents of accompanying elements were found.
When the outliers form compact zones, it is advisable to contour them, e.g., by means of
indicator kriging with the assumed probability level, and to estimate the resources of the
accompanying elements in these zones separately in relation to other parts of the deposit
with no anomalous values. If outliers occur locally throughout the study area and do not
form clusters, contouring them is unnecessary. In this case, consideration should be given
to excluding outliers from the data set, e.g., based on a variogram cloud, in order to avoid
overestimating resources and the magnitude of predicted errors.

Increasing the accuracy of estimating the resources of accompanying elements in parts
of the deposit scheduled for exploitation in the following years is necessary to achieve
a precise and reliable assessment of the profitability of exploitation, which is difficult to
achieve with the current sampling pattern.
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