### **Supplementary Information**

#### 1. Conditions of spectroscopic measurements

Institute of Geology, UB RAS (Syktavkar, Russia). The samples were analyzed with a highresolution Raman spectrometer LabRam HR800 (Horiba, Jobin Yvon) using external Ar + laser (514.5 nm; 1.2  $\mu$ W). The spectrometer is coupled with an Olympus BX41 optical microscope with a 50× object lens. Spectra were recorded in the 100–4000 cm<sup>-1</sup> range using a spectrometer grating of 600 lines/mm. A confocal hole size is 300  $\mu$ m and a slit is 100  $\mu$ m. The size of analyzed region was about 5  $\mu$ m. Each spectrum was the result of three accumulations with a 10 s exposure. The spectra were recorded at room temperature.

**CEMES laboratory (Toulouse, France).** Spectra were recorded with a Jobin Yvon Horiba Xplora spectrometer in a backscattering geometry and using a 532.1 nm (green) solid-state laser as the excitation source (~1–2 mm spot size on the sample). The acquisition was performed using an Olympus BX5 microscope equipped with a Linkam heating-freezing stage and a dark-field long-working distance (10.5 mm) ×50 objective, in the 35–5042 cm<sup>-1</sup> spectral window with a grating of 1800 lines/ mm, an entrance slit of 100 or 200  $\mu$ m, and a confocal hole of 100  $\mu$ m; spectral resolution was ~5–10 cm<sup>-1</sup> and acquisition times varied from 40 to 100 s (depending on the signal intensity). The laser power at the sample is ~1.32  $\mu$ W.

#### Institute of Experimental Mineralogy, IEM RAS (Chernogolovka, Russia)

The first technique: Ram II module for Fourier spectrometer VERTAX 70 (Bruker) was used to record Fourier-Raman spectra with excited line 1064 nm line of infrared laser with an output power of 500 mW. The spectrometer was equipped with semi-conductive Ge detector.

Second technique: The Raman spectra were acquired using the Renishaw RM1000 microscope/spectrometer equipped with a corner attachment and the diode-pumped modular laser 532 nm. The parameters of the experiment were — laser output power 22 mW, slit 50 mm, accumulation time 100 sec. The alignment of the spectrometer was checked before run by taking spectra of high-purity monocrystalline Si.

2. Results of micro-Raman investigations of the fluid traps.





x50 ab108-3

**Figure S1**. Optic images of the bubbles in the albite traps from experiment ab108, the composition of the fluid was measured by Micro-Raman method in the bubbles in the center of images; images widths are 357 and 72 mkm.









x50 ab107-3

**Figure S3**. Optic images of the bubbles in the albite traps from experiment ab107, the composition of the fluid was measured by Micro-Raman method in bubbles in the center of images; images widths are 357 and 72 mkm.



Figure S4. Raman spectra of fluid from albite traps from experiment ab107.

| 107     | /Ab  | 108/    | Ab   |  |
|---------|------|---------|------|--|
| ab107-1 | 0.54 | ab108-1 | 0.37 |  |
| ab107-2 | 0.51 | ab108-2 | 0.36 |  |
| ab107-3 | 0.56 | ab108-3 | 0.42 |  |
|         |      | ab108-4 | 0.41 |  |
| Average | 0.54 |         | 0.39 |  |
| SD      | 0.03 |         | 0.03 |  |

Table S1. Measurements of the ratio  $X_{CO}/(X_{CO}+X_{CO2})$  in the fluid with .Micro-Raman method

## 3. Results of LA-ICP-MS analyses.





**Figure S5.** Examples of representative LA-ICP-MS transient signals of <sup>29</sup>Si, <sup>57</sup>Fe and <sup>195</sup>Pt for the standard GOR-132 and selected fluid traps indicated in the figure. Platinum total concentration, calculated by integration of the ablation signal normalized on <sup>29</sup>Si used as an internal standard is indicated.

| Sample  | qz98  |       | qz97  |       | ab86   | ab107 | ab108 |
|---------|-------|-------|-------|-------|--------|-------|-------|
| C, ppm  | 17.49 | 11.47 | 34.15 | 17.07 | 0.74   | 0.42  | 2.69  |
|         | 55.83 | 19.12 | 3.84  | 1.26  | 314.01 | 0.40  | 4.17  |
|         | 27.13 | 29.82 | 12.11 |       | 28.34  | 0.08  | 0.92  |
|         | 12.46 | 9.63  | 23.09 |       | 118.41 | 0.14  | 0.13  |
|         | 8.56  |       | 12.11 |       | 65.33  | 0.38  | 4.50  |
| Average | 21.28 |       | 14.80 |       | 105.36 | 0.28  | 2.48  |
| SD      | 14.97 |       | 11.30 |       | 124.68 | 0.16  | 1.93  |

Table S2. Measurements of Pt concentration by LA-ICP-MS method in the traps by points

# 4. Some experiments not included in the text

| # | Sample | T/P<br>°C, Kbar | Time,<br>hour | xCO <sub>ini</sub> /x                                                   | CO <sub>eq</sub> * | trap | Pt ET-AAS,<br>ppm | Water content in MgC2O4 |
|---|--------|-----------------|---------------|-------------------------------------------------------------------------|--------------------|------|-------------------|-------------------------|
| 1 | ab84   | 1000/2          | 4             | MgC <sub>2</sub> O <sub>4</sub>                                         | 0.5/0.19           | Ab   | -                 | <0.3 wt.%               |
| 2 | qz109  | 950/1           | 1             | MgC <sub>2</sub> O <sub>4</sub> 2H <sub>2</sub> O                       | 0.5/0.21           | Qz   | 18.6              | 24.3 wt.% H2O           |
| 3 | qz110  | 950/2           | 2             | MgC <sub>2</sub> O <sub>4</sub> 2H <sub>2</sub> O<br>+MgCO <sub>3</sub> | 0.165/ 0.14        | Qz   | 440               | 24.3 wt.% H2O           |
| 4 | qz111  | 950/1           | 2             | MgC <sub>2</sub> O <sub>4</sub> 2H <sub>2</sub> O                       | 0.5/0.21           | Qz   | 357               | 24.3 wt.% H2O           |
| 5 | qz112  | 950 /0.5        | 2             | MgC <sub>2</sub> O <sub>4</sub> 2H <sub>2</sub> O                       | 0.5/0.30           | Qz   | 87.7              | 24.3 wt.% H2O           |
| 6 | qz113  | 950/2           | 2             | MgC <sub>2</sub> O <sub>4</sub> 2H <sub>2</sub> O                       | 0.5/0.14           | Qz   | 1174              | 24.3 wt.% H2O           |
| 7 | qz114  | 950/2           | 2             | MgC <sub>2</sub> O <sub>4</sub>                                         | 0.5/0.14           | Qz   | 255.3             | 10.4% H2O               |
| 8 | qz115  | 950/1           | 2             | MgC <sub>2</sub> O <sub>4</sub>                                         | 0.5/0.21           | Qz   | 37.6              | 10.4% H2O               |
| 9 | qz116  | 950/0.5         | 2             | MgC <sub>2</sub> O <sub>4</sub>                                         | 0.5/0.30           | Qz   | 1.7               | 10.4% H2O               |

Table S3. Additional runs conditions and results

\* fluid composition on the water free basis