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Abstract: Low grade sulfide ores are difficult to process due to their composite mineralogy and their
fine grained dissemination with gangue minerals. Therefore, fine grinding of such ores becomes
essential to liberate valuable minerals. In this research, selective flotation was carried out using two
pitched blade turbine impellers with diameters of 6 cm and 7 cm to float copper and nickel. The main
focus of this research was to generate optimum hydrodynamic conditions that can effectively separate
nickel and copper from gangue minerals. In addition, we investigated the effects of superficial gas
velocity, impeller speed, bubble size distribution, and bubble surface area flux on the flotation
recovery and rate constant. The results demonstrated that a 7 cm impeller comparatively produced
optimum hydrodynamic conditions that improved Cu-Ni recovery and the rate constant. The
maximum copper and nickel recoveries in the 7 cm impeller tests were observed at 93.1% and 72.5%,
respectively. However, a significant decrease in the flotation rate of nickel was observed, due to
entrainment of nickel in copper concentrate and the slime coating of gangue minerals on the nickel
particle surfaces.

Keywords: mineralogy; selective flotation; sensors and measurements; hydrodynamics; data processing

1. Introduction

Complex and low grade sulfide ores are difficult to process due to their fine-grained
and disseminated nature. In order to process such ores, a high degree of liberation is
required prior to the flotation process. Furthermore, processing low grade sulfide ores is
seldom/rarely done using selective separation due to its processing difficulty and higher
cost [1]. The flotation behavior of complex sulfide ore tends to vary due to differences
in mineralogy [2]. The presence of varying amounts of gangue minerals such as talc,
serpentine, and amphibole poses a challenge to maintain the targeted concentrate grade [3].
Typically, serpentine tends to increase viscosity in the pulp, particularly in low grade ore
with finely disseminated sulfide. The high slurry viscosity increases when air bubbles
coalesce, which reduces the flotation rate and increases the mechanical recovery of the
gangue minerals [1]. Furthermore, serpentine milling results in a high amount of slime, due
to its low hardness in nature and increased opposite electrostatic attraction between sulfide
and slimes. The coating of serpentine slime on pentlandite and chalcopyrite significantly
reduces the copper-nickel/magnesium oxide (Cu-Ni/MgO) separation efficiency, resulting
in high magnesium oxide (MgO) content in the concentrate.

A study by [4] demonstrated that the presence of serpentine in a small amount can
be enough to cause almost complete depression of pentlandite. According to [5], the
composite of valuable and gangue minerals causes problem in flotation since the surface
of the hydrophobic particle is partially made up by gangue minerals, which decreases
the floatability of the valuable minerals. However, pentlandite flotation can be improved
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by removing hydrophilic species by surface cleaning [6]. The separation selectivity and
efficiency of the flotation depends not only on differences in the physico-chemical surface
properties of different minerals within an ore, but also on the hydrodynamics of flotation.
The hydrodynamics influences many sub-processes of the flotation, such as the suspension
of particles in the pulp, the dispersion of the air into bubbles, and the probability of particle–
bubble collision. Mechanical entrainment plays a major role in the quality of the flotation
concentrate and the separation selectivity [7]. In addition, turbulence tends to increase the
particle detachment in flotation cells.

Previous studies by [8,9] suggested that bubble size strongly affects the flotation
rate constant, whereas the bubble surface area flux (Sb) is considered as the key variable
to characterize gas dispersion properties in the flotation cell by integrating the effect
of the bubble size and superficial gas velocity [10,11]. Extensive research carried out
by [12–14] demonstrated the effect of different gas dispersion conditions on the bubble
size, the superficial gas velocity, the bubble surface area flux, the and rate constant. It was
concluded that the flotation performance is not only dependent on the bubble size and the
superficial gas velocity, but it is linearly related to the bubble surface area flux. However,
the bubble surface area flux better correlates with the rate constant of fine particles. In
order to understand the relationship between the rate constant and the bubble surface area
flux, more research is needed with different types of ores [15].

Flotation kinetics usually depends on the gas dispersion characteristics and the turbu-
lence created by the impeller-stator assembly. The turbulence in the flotation cell can be
changed by the impeller speed, impeller size, and airflow rate. Therefore, it is necessary
to investigate the gas dispersion parameters along with the effect of impeller size on the
flotation performance of low grade sulfide ore. The superficial gas velocity is the volumetric
gas flow rate (cm3/s) divided by the cross-sectional area of the cell.

Jg = Q/A (1)

where Q is the gas volumetric flow rate and A is the cell cross-sectional area. Bubble surface
area flux Sb is defined by the following equation:

Sb = (6Jg)/d32 (2)

where Jg is the superficial gas velocity and d32 is the Sauter mean diameter of the bubbles,
and it is defined as:

d32 =
n

∑
i

nid3
i /

n

∑
i

nid2
i (3)

where ni and di are the number and diameter of the bubbles, respectively [16].
The flotation rate constant is calculated using the first order rate equation.

R = R∞(1 − e−kt) (4)

where R∞ is the recovery at the maximum time of flotation.
In the previous studies, a single mineral is used to correlate hydrodynamic parameters.

However, in this research, we carried out selective flotation tests with a complex sulfide ore,
which might contradict the relationship between hydrodynamic and flotation performance.

2. Materials and Methods

The experiments in this research were conducted using low grade Cu-Ni ore samples
from the Kevitsa mine provided by Boliden AB. Samples were subject to initial crushing
by a Metso Minerals Marcy jaw crusher, and a further size reduction to 2 mm was con-
ducted by a Metso Minerals Marcy cone crusher at the Oulu Mining School. Ore samples
were representatively prepared using a riffle divider followed by a rotary sample splitter,
which were further sealed separately into one kg samples each to avoid oxidation. The
mineralogical and chemical characterization of the ore was conducted by FE-SEM and
XRF, respectively. The average copper and nickel grades in the Kevitsa ore were 0.40% Cu
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and 0.32% Ni, respectively. A one kilogram ore sample was ground to P80 of −32 µm for
each test in a stainless steel rod mill. The collector used in the flotation tests was sodium
isobutyl xanthate with a dose of 70 g/t, carboxymethyl cellulose (CMC) with a dose of
200 g/t, and Dow froth 250 with a dose of 50 g/t. These reagents were prepared daily prior
to the flotation tests using tap water. The slurry pH was regulated with lime and sulfuric
acid in copper and nickel flotation, respectively.

In order to examine the liberation of chalcopyrite and pentlandite, a reference test was
carried out using a 60 mm impeller size. Flotation was initiated by adding the chemical
reagent and conditioned for 5 min, and pulp level was adjusted by adding make up
water. Flotation was started by opening the air valve, and the air flow was adjusted to
4 L/min, while the copper concentrate was collected for five minutes followed by the
nickel concentrate. The concentrates were weighed and dried in an oven overnight. Small
samples of copper and nickel concentrates along with feed sample were cast into epoxy in
a thin section mold.

The analysis of the samples was conducted using a mineral liberation analyzer FEI
quanta 650F , an FE-SEM scanning electron microscope with an acceleration voltage of
25 kV and an emission current of 207 µA at Gtk Mintec (Outokumpu, Finland). The bubble
size distribution was measured by a prototype camera (Gige camera; Model# Mars 5000
S-20 gc) developed by the Technical Research Center of Finland (VTT, Espoo, Finland). The
camera was fixed inside a 15 cm wide waterproof cylinder Figure 1a. The lens was protected
by a sapphire in order to avoid an abrasion effect of ore particles. LED lights were installed
in the camera to capture bright images of the bubbles (Figure 1b). Flotation experiments
were conducted in an Outotec flotation machine equipped with a time controlled automatic
scraper. Two pitched blade turbine impellers Figure 2, with a diameter of 6 cm and 7 cm,
were used for pulp agitation and a 4 L cell with square section in which the length and
height were 25 cm and 20 cm, respectively.

(a) Image of the bubble size camera (b) Front view of the camera with LEDs

Figure 1. Setup of the bubble size measurements where, (a) shows the image of the bubble size
camera and (b) shows the front view of the camera containing LEDs.
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Figure 2. 3D model of the impeller used in this research.

Image Processing

The images of bubbles were captured for each test using different impeller speeds
and aeration rates (Table 1), and the average count of image for each test was 100. Later,
the images were further preprocessed using a custom script developed using standard
Python libraries [17]. First, the color (RGB) images were converted to grayscale and
Gaussian smoothed to reduce noise [18]. Then, a Canny edge detector found the bubble
outlines/edges, which were processed by a circular Hough transform to find the circle
candidates. Finally, non-maxima-suppression (NMS) was used to remove low confidence
duplicate detections [19].

Table 1. Test conditions and calculated hydrodynamics, where M1-M10 depict the measurement parameters.

Aeration Rate Parameter with Units M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Air flow rate (2 L/min) Impeller diameter (cm) 6 6 6 6 6 7 7 7 7 7
Impeller speed (rpm) 800 900 1000 1100 1200 685 769 870 944 1027

db (µm) 341 279 236 203 191 274 257 234 231 220
Jg (cm/s) 0.08 0.08 0.08 0.08 0.08 0.11 0.11 0.11 0.11 0.11
Sb (s−1) 14.07 15.42 20.34 23.64 25.09 24.08 25.68 28.20 28.58 30

Air flow rate (2 L/min) Impeller diameter (cm) 6 6 6 6 6 7 7 7 7 7
Impeller speed (rpm) 800 900 1000 1100 1200 685 769 870 944 1027

db (µm) 258 217 198 190 175 223 214 200 196 189
Jg (cm/s) 0.17 0.17 0.17 0.17 0.17 0.21 0.21 0.21 0.21 0.21
Sb (s−1) 39.54 46.98 51.48 53.7 58.20 54.46 58.86 63.00 64.20 66.66

Air flow rate (2 L/min) Impeller diameter (cm) 6 6 6 6 6 7 7 7 7 7
Impeller speed (rpm) 800 900 1000 1100 1200 685 769 870 944 1027

db (µm) 255 228 205 204 196 377 260 207 203 189
Jg (cm/s) 0.26 0.26 0.26 0.26 0.26 0.32 0.32 0.32 0.32 0.32
Sb (s−1) 61.14 68.40 76.09 76.20 79.56 51.88 73.86 92.70 94.56 101.58

3. Results and Discussion

In this section, we analyze and discuss the results retrieved from the experimentation
in this study. The information on the methods and materials used is detailed in Section 2.

3.1. Mineralogical Analysis of the Kevitsa Cu-Ni Sulfide Ore
3.1.1. Feed Analysis

The quantitative modal mineralogy was determined for all five sieve fractions (+90 µm,
63–90 µm, 45–63 µm, 32–45 µm, and −32 µm). A combination of the results was used as an
approximation of the bulk mineralogical composition for the Kevitsa feed, which can be
seen in Figure 3. To determine the bulk modal mineralogy, the mass fraction of each sieve
size was used as a weighing coefficient in the calculation. Given that the mass fraction of
the finest particle size −32 µm represented 80% of the total sample mass, the calculated
bulk mineralogy largely mimicked that of the feed of −32 µm.
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Figure 3. Modal mineralogy of the feed.

Figure 4 illustrates the mineral liberation curves for pentlandite and chalcopyrite
in the studied particle size fractions, expressed as mineral liberation by the free surface.
Mineral liberation classes range from 0–100%, and cumulative proportions of each class
are plotted against mass recovery percentage. Class 95–100% represents fully liberated
mineral grains.

Figure 4. Liberation class of chalcopyrite (Cpy), pentlandite (Pn), and pyrrhotite (Po) in the feed.
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The mineral liberation curves for pentlandite and chalcopyrite in the studied particle
size fractions are expressed as mineral liberation by the free surface. Mineral liberation
classes range from 0–100%, and cumulative proportions of each class are plotted against
the mass recovery percentage. Class 95–100% represents fully liberated mineral grains. The
results of the liberation analysis show that in the grain size fraction −32 µm, both chalcopy-
rite and pentlandite were liberated. Ninety-three-point-nine percent of chalcopyrite grains
was comprised of 95–100 wt.% and ninety-four-point-three percent of pentlandite grains
of 95–100 wt.% of pentlandite. In size fractions 32–45 µm and 45–63 µm, chalcopyrite
and pentlandite were 87.2% and 76.3% and 81.5% and 68.1% liberated, respectively. For
a comparison, the liberation of pyrrhotite is also shown. Pyrrhotite was 92.4% liberated
in size fraction <32 µm and was almost 90% liberated in particle sizes of 32–45 µm and
45–63 µm.

Mineral association data for chalcopyrite, pentlandite, and pyrrhotite are broadly in
line with the results of modal mineralogy. The sulfide phases are commonly associated with
amphibole and clinopyroxene, which are the dominant mineral phases in the Kevitsa ore
samples. Furthermore, it is evident that pentlandite and pyrrhotite tend to occur together,
as shown in Figure 5.

Figure 5. Mineral association in the feed.

3.1.2. Concentrate Analysis

The mineralogical compositions of Cu and Ni concentrates are shown in Figure 6.
The Cu concentrate was comprised of 45% of chalcopyrite, with a minor amount of the
other sulfide phases (9% pentlandite and 4% pyrrhotite). The pentlandite content in the Ni
concentrate was only 20%, and pyrrhotite was substantially enriched in the Ni concentrate
(23%). On average, zero-point-five percent Ni content was reported in the pyrrhotite. Only
2% of chalcopyrite was found from the Ni concentrate, notably being much finer grained
than pentlandite and pyrrhotite.

Although the analysis of mineral associations in the feed of −32 µm suggests that
pentlandite and pyrrhotite tend to form composite grains, pyrrhotite in the Ni concentrate
was largely found as liberated grains with 97%, and only a small amount of pentlandite
occurred in association with pyrrhotite, as shown in Figure 7. When comparing the relative
abundance of gangue minerals in the feed of −32 µm and in the concentrates, it can be
stated that orthopyroxene was substantially enriched in both the Ni and Cu concentrate. In
addition, amphibole and carbonates were mildly enriched in the Ni concentrate. Otherwise,
the proportions of gangue minerals were broadly on the same level or lower in the feed of
−32 µm and in the concentrates.
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Figure 6. Modal mineralogy of concentrates.

Figure 7. Mineral association in the concentrates.

3.1.3. Tailings Analysis

The modal mineralogy of the tailings and the mineral association of tailings are shown
in Figures 8 and 9. Notably, the tailings contained 0.75% pentlandite, which was only
slightly lower than that in the feed of −32 µm (1.1%). On the contrary, only a small amount
of chalcopyrite was reported in the tailings (0.17%), of which 80% was liberated and very
fine grained (<16 µm), with pentlandite in the tailings being fully liberated of 92%.

Figure 8. Modal mineralogy of the tailings.
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Figure 9. Mineral association in the tailings.

3.2. Effect of the Bubble Surface Area Flux on the Bubble Size Distribution

The measurement of the bubble size against the bubble surface area flux at different
Jg values using 6 and 7 cm diameter impellers is shown in Figure 10a,b. The curves
clearly depict that the bubble size continuously decreases as the bubble surface area
flux value increases, as demonstrated by [20,21]. At lower Jg 0.08 cm/s with a rotation
speed of 800 rpm, the bubble size increased to 341 µm compared to the other conditions.
However, the bubble size significantly decreased as the impeller speed increased, which
was attributed to higher turbulence exerted by the impeller. Contrary to the 6 cm impeller
measurements, the highest bubble diameter in 7 cm impeller was observed of 371 µm at
higher Jg, 0.32 cm/s, and Sb, 50.88 s−11.

(a) Variation with the 6 cm impeller (b) Variation with the 7 cm impeller

Figure 10. Variation of the bubble size distribution against the bubble surface area flux where (a)
shows the variation with 6 cm impeller and (b) shows variation with 7 cm impeller.

3.3. Effect of Superficial Gas Velocity and Impeller Speed on Copper Recovery with 6 and
7 cm Impellers

Since we carried out selective flotation tests, the copper results are first presented
for both impellers. The effect of hydrodynamics conditions (e.g., impeller speed and
superficial gas velocity) on the copper recovery using both 6 cm and 7 cm impellers is
shown in Figures 11 and 12, respectively. The results in Figure 11 show that the copper
recovery increased steeply, when Jg was set to 0.08 cm/s (aeration rate of 2 L/min), and
the maximum flotation recovery of copper of 91.2% was obtained at the lowest rotation
speed of 800 rpm. Conversely, at higher Jg, 0.26 cm/s, copper recovery increased to 93.11%
at the rotation speed of 1200 rpm. However, at the same aeration rate and 800 rpm speed,
copper recovery decreased to 50%.

The results suggest that a higher rotation speed reduces the bubble size, which en-
hances the bubble particle collisions, which result in the maximum recovery of copper.
It was also observed that the maximum recovery of copper, 91.13%, was noticed at an
impeller speed of 1000 rpm at Jg of 0.17 cm/s (aeration rate of 4 L/min), whilst the lowest
copper recovery, 48.7%, was also obtained at an impeller speed of 1200 rpm.
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(a) 0.08 cm/s (b) 0.17 cm/s (c) 0.26 cm/s

Figure 11. Copper recovery vs. time at different Jg values (a) 0.08 cm/s, (b) 0.17 cm/s and (c)
0.26 cm/s) using an impeller of a diameter of 6 cm.

The copper recovery response to different Jg values, 0.11, 0.21, 0.32 cm/s, at different
rotation speeds of 685, 769, 870 944, and 1027 rpm using the 7 cm diameter impeller are
illustrated in Figure 12. When Jg changed from 0.11 to 0.17 cm/s and at a more turbulent
rotation speed of 1025 rpm, copper recovery reached its highest level of 95.85% and 86.72%,
respectively. However, under similar conditions, a poor recovery of copper was observed,
64.72% and 56.41% at 769 rpm and 685 rpm, respectively. The lower rotational speed
decreased the bubble-particle collisions, resulting in particles settling at the bottom of the
cell [22]. At the highest Jg value of 0.32 cm/s, the recovery response was almost similar,
but the maximum copper recovery of 94.7% was achieved at a rotation speed of 870 rpm.
Correspondingly, at the lowest turbulence speed of 680 rpm, copper recovery decreased to
72.21%.

(a) 0.11 cm/s (b) 0.21 cm/s (c) 0.32 cm/s

Figure 12. Copper recovery vs. time at different Jg values (a) 0.11 cm/s, (b) 0.21 cm/s and (c)
0.32 cm/s) using the 7 cm diameter impeller.

3.4. Effect of Superficial Gas Velocity and Impeller Speed on Nickel Recovery

In this section, the recovery of nickel vs. time with the superficial velocity rate ranging
from 0.08, 0.17, to 0.26 cm/s at different impeller rotation speeds is discussed with a 6 cm
impeller. The curves in Figure 13a indicate that the nickel recovery was significantly higher
in the quiescent condition, i.e., 800 rpm and at low Jg (0.08 cm/s) and high Jg (0.26 cm/s),
and it reached to maximum of 69.13% and 60.21%, respectively. It was observed that nickel
recovery was not a function of the aeration rate; however, the maximum recovery rate was
observed at a rotation speed of 800 rpm in the 6 cm impeller test.

A poor nickel recovery was observed at a superficial gas velocity of g 0.17 cm/s at
all rotation speeds. It is clearly shown that at a cumulative flotation time of 1 min, the
nickel response was significantly low, and nickel recovery increased after a cumulative
time of 7 min. It was observed that pentlandite was a slow floating and sensitive mineral
to turbulence, and it weakly reacted with the collector ions. Furthermore, the limited
rejection of pyrrhotite in the Ni concentration was the main cause of concentrate dilution.
Another factor for the poor flotation of nickel was the entrainment of nickel particles in
copper flotation.
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(a) 0.08 cm/s (b) 0.17 cm/s (c) 0.21 cm/s

Figure 13. Recovery of nickel vs. time with different Jg values (a) 0.08 cm/s, (b) 0.17 cm/s and (c)
0.26 cm/s) using a 6 cm impeller diameter.

According to Figure 14, when a 7 cm diameter impeller was used, the highest nickel
recovery of 72.57% was observed at higher Jg of 0.32 cm/s and an impeller speed of 875 rpm.
However, at a Jg value of 0.11 cm/s and 0.21 cm/s, the maximum recovery was observed of
55.04% and 60.32% at a rotation speed of 685 rpm and 875 rpm, respectively. Comparatively,
it is obvious that with both impellers, nickel floated slowly in the initial stage; however, the
flotation increased over time at different rotation speeds and superficial gas velocity rates.
In addition, the MLAresults showed that the gangue particles, i.e., Mg-silicate minerals and
minor oxide and carbonates, were fully liberated. It is reasonable to assume that gangue
recovery was concentrated by entrainment, resulting in lower recovery of nickel.

Kevitsa is a low-grade Cu-Ni ore, and the presence of a higher amount of hydrophilic
serpentine gangue can easily coat the pentlandite surface and act as a hydrophilic barrier
between air bubbles and pentlandite particles. Furthermore, it is also expected that,
under ordinary conditions of complex ore processing, the sufficient presence of xanthate
pentlandite can still be floated at a relatively higher pH [23]. Thus, it can be concluded that
some of the pentlandite floated with chalcopyrite in the early stages, which can be also
observed in the elemental analysis of the copper concentrate.

(a) 0.11 cm/s (b) 0.21 cm/s (c) 0.32 cm/s

Figure 14. Recovery of nickel vs. time using different Jg values (a) 0.11 cm/s, (b) 0.21 cm/s and (c)
0.32 cm/s) with a 7 cm diameter impeller.

3.5. Effect of the Bubble Surface Area Flux on the Copper Rate Constant

The flotation rate constant (k) of copper using both impellers are depicted against
the bubble surface area flux (Sb) in Figure 15a. The maximum rate constant reached
1.5245 min−1 at a Sb value of 51.48 s−1 and an airflow rate of 4 L/min, and the minimum k
is obtained at 0.69 min−1 at an Sb value of 61.14 s−1 and an airflow rate of 6 L/min. The
reason is that due to the lower impeller speed of 800 rpm, the bubble particle collisions
decreased, and higher flow rate increased the entrainment, which resulted in a smaller
flotation rate constant [24]. At 6 L/min aeration, the flotation rate constant increased slowly
with the increasing Sb value from 61.44–79.56 s−1, but the rate constant increased twice the
Sb value to reach the of maximum 101.58 s−1. However, there was a clear difference in the
rate constant using the 7 cm impeller.

Figure 15b shows that at a low Sb value of 24.08 s−1, the flotation rate constant
obtained was 1.6 min−1, and it decreased significantly with the increase in the value of
Sb. Even though the lowest flotation rate constant was observed for a 4 L/min aeration
rate, it steeply increased with the increase in the Sb value, as suggested by [14,25,26]. In
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addition, it is clearly shown that the maximum rate constant of 2.17 min−1 was observed
at a maximum Sb value 101.58 s−1 for a higher aeration rate.

(a) Variation with the 6 cm impeller (b) Variation with the 7 cm impeller

Figure 15. Copper flotation rate constant vs. bubble surface area flux with different diameter
impellers where (a) shows variation with 6 cm impeller and (b) shows variation with 7 cm impeller.

3.6. Effect of the Bubble the Surface Area Flux on the Nickel Rate Constant

Figure 16a,b shows the plots of the nickel flotation rate constant against the bubble
surface area flux for both impellers at different airflow rates. The plots clearly show that
the nickel rate constant was smaller at all Sb values and aeration rates when compared
to the copper flotation rate constant. As we discussed above, pentlandite floated slowly
in comparison to chalcopyrite, and some amount of nickel was reported in the copper
concentrate. Figure 16a shows that in the 6 cm impeller test, the maximum observed value
was 0.88 min−1 at a Sb value of 20.34 s−1, but it decreased as the Sb value increased. There
was a linear relationship between Sb and k at a 6 L aeration rate, but when the Sb reached
its maximum value, a small decrease in the rate constant was noticed.

A similar pattern is observed in Figure 16b for a 4 L/min aeration rate. However,
a smaller rate constant of Ni was achieved at a smaller Sb value of 25.68 s−1. Therefore,
it was assumed that at a lower aeration rate and impeller speed, particles were not fully
suspended in the pulp, and it took time to reach the concentrate. Furthermore, due to the
lower turbulence, particles settled faster at the bottom of the cell and resulted in a low
rate constant.

(a) Variation with the 6 cm impeller (b) Variation with the 7 cm impeller

Figure 16. Nickel flotation rate constant vs. the bubble surface area flux with different diameter
impellers where (a) shows variation with 6 cm impeller and (b) shows variation with 7 cm impeller.

4. Conclusions

Our aim was to evaluate the effect of the impeller size, impeller speed, and aeration
rate on the hydrodynamic parameters and how these parameters can affect the flotation
performance of copper and nickel. The overall results suggested that the bubble size
decreased as the rotation speed of both impellers increased. The maximum copper recovery
of 93.1% was achieved at a superficial gas velocity of 0.17 cm/s and a rotation speed of
1000 rpm for the 6 cm impeller. However, in the 7 cm diameter tests, copper recovery
increased to 95.85% at a 0.11 cm/s superficial gas velocity and at an impeller speed
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of 1027 rpm. Therefore, it can be said that the large size impeller generated a better
hydrodynamic condition in copper flotation. The maximum Ni recovery of 72.5% was also
achieved using the 7 cm diameter impeller at a superficial gas velocity of 0.32 cm/s and
an impeller speed of 870 rpm. In general, the poor response of Ni was observed in both
impeller tests. There were several reasons that might have affected the nickel recovery, such
as the entrainment of nickel particles in the copper flotation and the hydrophilic coating
of gangue minerals on the surface of nickel particles. In the industrial processing units,
copper tailings are re-grounded to produce fresh surfaces of the pentlandite, which was
not carried out in this research.

The flotation rate constant of Cu and Ni was not linearly related to the bubble surface
area flux in both impeller tests. In order to investigate the relationship between k and Sb,
cleaner flotation tests need to be carried out in the future.
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