
minerals

Article

Industrial Vertical Stirred Mills Screw Liner Wear Profile
Compared to Discrete Element Method Simulations

Priscila M. Esteves 1,*, Douglas B. Mazzinghy 1 , Roberto Galéry 1 and Luís C. R. Machado 2

����������
�������

Citation: Esteves, P.M.; Mazzinghy,

D.B.; Galéry, R.; Machado, L.C.R.

Industrial Vertical Stirred Mills Screw

Liner Wear Profile Compared to

Discrete Element Method Simulations.

Minerals 2021, 11, 397. https://

doi.org/10.3390/min11040397

Academic Editor: Luís Marcelo

M. Tavares

Received: 5 August 2020

Accepted: 21 September 2020

Published: 10 April 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Programa de Pós-Graduação em Engenharia Metalúrgica, Materiais e de Minas (PPGEM), Universidade
Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; dmazzinghy@demin.ufmg.br (D.B.M.);
rgalery@demin.ufmg.br (R.G.)

2 Anglo American-Minas-Rio Project, Minas Gerais 35860-000, Brazil; luis.machado@angloamerican.com
* Correspondence: pmxesteves@gmail.com

Abstract: Vertical stirred mills have been widely applied in the minerals industry, due to its greater
efficiency in comparison with conventional tumbling mills. In this context, the agitator liner wear
plays an important role in maintenance planning and operational costs. In this paper, we use the
discrete element method (DEM) wear simulation to evaluate the screw liner wear. Three different
mill rotational velocities are evaluated in the simulation, according to different scale-up procedures.
The wear profile, wear measurement, power consumption, and particle contact information are used
for obtaining a better understanding of the wear behavior and its effects on grinding mechanisms.
Data from a vertical stirred mill screw liner wear measurement obtained in a full-scale mill are
used to correlate with simulation results. The results indicate a relative agreement with industrial
measurement in most of the liner lifecycle, when using a proper mill velocity scale-up.

Keywords: Vertimill; Tower Mill; liner wear; fine grinding; discrete element method

1. Introduction

The reduction of mineral deposits created the necessity for extracting more complex
minerals with reduced ore grades and grindability [1]. Consequently, there is an arising
need for processing reduced particle size that can propitiate the liberation of valuable
minerals for post concentration stages. In this context, additional power is required to
achieve a finer grain size. Therefore, grinding and regrinding applications are increasing in
importance.

At the same time, grinding is energy inefficient, and this is the main reason why
it is pointed as responsible for around 34% to 44% of the energy required in a mineral
processing plant [2,3]. The numbers are even more alarming if we consider the situation in
a global context. In the 1980s, grinding was responsible for around 3% to 4% of total world
electrical energy consumption [2], and more recently, this number was indicated as close
to 1.8% [4]. In fact, Napier-Munn went beyond and argued that real energy consumption
in grinding is even greater than those numbers, once consumption of liners and grinding
media represents a large amount of extra energy. Regardless of which is the correct number,
it is conclusive that the grinding process is responsible for a significant portion of the
world’s power consumption.

Given the rising importance of the representative energy consumption of grinding
equipment, it is very important to develop the process of improved energy efficiency.
In relation to this issue, Shi (2009) [5] demonstrated that the application of vertical stirred
mills presents the energy saving around 30% when compared to tumbling ball mills used
for coarse grinding. By applying various methodologies, other researches confirmed the
obtained results and reinforced this better energy efficiency behavior for fine-grinding and
ultra-fine grinding applications. This behavior is the main reason why vertical stirred mills
are pointing as trend equipment for fine-grinding and ultra-fine-grinding applications.
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Several approaches for vertical stirred mills modeling can be found in literature,
among which stand out the mechanistic approach, Discrete Element Method (DEM),
empirical models, and finally, the Population Balance Model (PBM). However, the un-
derstanding of the screw liner wear is not well developed yet.

As indicated by Esteves et al. [6], operational costs of vertical stirred mills are di-
vided into electrical energy (50%), balls (40%), and liners (10%). Liner wear intensifies
grinding media consumption, increases mill filling, and consequently, affects electrical
power consumption. Consequently, liner wear affects all operational costs components,
such as maintenance practices and equipment reliability. As highlighted by Allen and
Noriega [7], the understanding of liner wear life can also provide information that allows
best practices for maintenance schedules that can minimize spare parts and labor costs.
Consequently, a better understanding of wear behavior, such as monitoring methods can
precisely provide its measurement and/or prediction is a topic of great need in the mineral
processing industry. In this paper, DEM simulations are used to predict the screw liner
wear behavior of a vertical stirred mill.

Computational simulations based on DEM made many contributions to the science
of comminution since its first application by Mishra and Rajamani [8], for the simulation
and modeling of tumbling ball mills. According to Weerasekara et al. [9], since the last two
decades, the DEM became an essential tool to help design, optimization, and modeling of
comminution devices. More recently, there is also an increasing interest in applying the
method for the prediction of liners and lifters wear, such as its effects on load behavior.

As there is no available information about how to determine and quantify wear
for vertical stirred mills, the approach is based on what is presented for other grinding
equipment. The understanding of liner and lifters wear, especially in tumbling mills, is not
a new subject in the area, and several papers are found addressing this issue.

In the specific case of wear evaluation, Cleary [10] proposed a method that used
DEM to predict liner wear rates and distribution in a 5.0 m diameter ball mill. With
a similar approach, Cleary and Owen [11] evaluated wear in a 3D slice of a SAG mill,
and finally, Cleary, Sinnott, and Morrison [12] performed an evaluation and comparison
between wear in tower and pin mills. Kalala and Moys [13] used DEM to estimate adhesion,
abrasion, and impact wear in dry ball mills with further validation with industrial wear
measurement. Later, Kalala, Bwalya, and Moys [14] validated the use of DEM for wear
prediction in mill liners by comparing normal and tangential forces between experimental
data and DEM simulations. More recently, Cleary and Owen [15] simulated liner wear
evolution in a Hicom Mill and was able to convert DEM abrasion measurements in a wear
rate measurement that was calibrated with experimental data. Boemer and Ponthot [16]
established a generic wear prediction procedure applying DEM to a 3D ball mill and
validated the results with experimental data obtained in a 5.8 m diameter industrial cement
ball. Finally, Xu et al. [17] obtained a numerical prediction of wear in SAG mills using
DEM simulations that were quantitatively validated by experiment data available in other
researches. In fact, the use of DEM for wear prediction in SAG mills reached such a high
level that has recently been used to evaluate operational strategies to account for liner wear.

For the specific case of vertical stirred mills, DEM was first applied by Cleary, Sinnott,
and Morrison [12] to investigate the relative performance of stirred mills with two different
agitator designs. The paper analysis media flow, energy absorption, flow structures,
wear, mixing, and transport efficiency, and allows a good and wide understanding of the
performance of vertical stirred mills. For the case of the screw agitator, it can be seen that
media motion is a simultaneously lifting and circulating movement inside the equipment.
The simulations indicate that the collisional energy associated with media motion is mostly
dominated by shear. In relation to media-media and media-liner interactions, shear energy
represents more than three times the impact energy. Based on shear energy absorptions, the
author infers that the equipment wear is dominated by abrasion and is more intensive on
the outer radial edge of the screw. In a slightly different approach, Morrison, Cleary, and
Sinnott [18] used DEM to compare the energy efficiency between the ball and vertical stirred
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mills in pilot-scale and proposed that the higher efficiency associated with the stirred mill
can be explained by analyzing energy spectra associated with collisions frequencies inside
the mill. Therefore, the higher energy efficiency of the vertical mill can be explained by
the presence of a great number of contacts of low energy. Sinott, Cleary, and Morrison [19]
applied DEM to understand how flow and energy are affected by media shape in stirred
mills, concluding that grinding performance tends to significantly deteriorate when using
non-spherical media. By analyzing rates of shear power absorption, the author also
proposes that the increase in non-sphericity of the media can significantly intensify the
screws’ wear.

In a different approach, Sinott, Cleary, and Morrison [20] evaluated slurry transport
inside the mill using the SPH (Smoothed Particle Hydrodynamics) method and based
on DEM simulations. Allen and Noriega [7] applied DEM with SPH to understand the
screw liner wear. The results demonstrate that shear power is more intensive at the screw
outside edges and at the bottom of the mill. This explains why the screw wears from the
outside to inside and from the bottom to the top, such as have been seen in the industry.
In addition, results indicate that shear power is exponentially related to screw diameter,
and consequently, worn screws tend to wear slower as they present smaller diameters.
Based on this description, it is possible to note that although DEM is widely applied in the
understanding and evaluation of vertical stirred mills performance, the liner wear topic is
still superficially approached.

To summarize, the use of DEM to evaluate liner wear in tumbling mills came from
a quantitative evaluation and evolved another level. Nowadays, DEM can predict and
quantify the wear in SAG and Ball mills, being used in the optimization of materials and
operational parameters. Unfortunately, for the case of the vertical stirred mills, the studies
are still preliminary and qualitative. Solving this issue requires more in-depth studies and
validation with experimental data.

In this paper, the simulation results were compared with industrial measurements
performed in Minas Rio Project, an iron ore beneficiation plant of Anglo American, which
is in Minas Gerais State, in Brazil. An empirical evaluation of wear is an important
tool for validation and calibration of modeling techniques, such as performed by some
researches [13,15–17,21,22] for several types of grinding equipment. However, there are
few available information about how to determine and quantify wear for vertical stirred
mills. Based on that, the approach is based on what is presented for other mills.

The understanding of liner and lifters wear in tumbling mills is not a new subject in the
area, and several papers are found addressing this topic. In the case of tumbling mills, the
wear profile is commonly estimated in two-dimensional methods, taking the assumption
that wear has a uniform profile. More recently, with the advent of new technologies, it is
easier to perform three-dimensional measurements, and there are also highly sophisticated
devices available [16]. Three-dimensional measurements are being widely used to calculate
wear on the surface of liners in grinding equipment, and the technique was successfully
used for SAG mills [17,23], and also for a Hicom Mill [15].

2. Gravity Induced Stirred Mill

Vertical stirred mills are grinding equipment applied for comminution, especially for
fine grinding in regrinding applications where feed material is under 1mm. The main
parts of the equipment are the grinding chamber, internal liner, screw impeller, screw liner,
motor engine, ball feeder, slurry feeder, and the discharge, as shown in Figure 1.
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Figure 1. Vertical stirred mill components [24].

Figure 2 emphasizes the screw impeller, such as its liner parts. As the screw impeller
is responsible for media motion and is currently in contact with media and slurry, it suffers
intensive wear. Due to the wear, liner parts required periodic replacement. The liner is
divided into several parts, allowing the substitution to be performed differently, according
to the wear pattern. The number of parts depends on the equipment supplier and on the
equipment size. The liner parts are attached to the screw and protect it from wear.
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Figure 2. Vertical stirred mill screw liner parts [24].

Figure 3 shows the expected wear shape of the base liner part. From that, it is possible
to note that the liner does not suffer homogeneous wear. In this sense, it is expected that
the bottom part of the liner suffers more intensive wear at the edges.
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As the liner wears, the total surface area decreases, and consequently, both media
motion and power draw decrease. In the operational context, the liner wear compensation
is performed by adding additional grinding media to keep constant power draw. In this
sense, the liner wear measurement can be estimated and accomplished by measuring mill
filling. Although this provides an idea about wear conditions, visual inspections of the
liner are necessary. For this inspection, it is necessary to completely empty the mill, in a
very effort and time-consuming inspection.

Figure 4 shows the screw liner after completely emptying the mill. It can be seen the
difference between a new and an old liner of the VTM-1500. The figure on the left side
shows a liner with intensive wear, and the right side shows the replaced liner. From the
figure, it can be inferred that wear predominates at the bottom and edges of the screw,
causing a great decrease in the screw area.
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Based on what was presented, the aim of this paper is to gather what has already been
discussed on the subject and also to propose the use of DEM for evaluating the liner wear
during a complete liner lifecycle.

3. Methodology
3.1. Dem Model Setup

DEM simulations were performed using the Rocky 4.2.2 software (ESSS, Florianópolis,
Brazil). A 1:10 scale version of the Metso Vertimill VTM-1500 (Metso, Helsinki, Finland)
was simulated. Table 1 and Figure 5 shows geometry dimensions and screw design.

Table 1. Dimensions and operation parameters of VTM-1500 and its scaled-down version considered
in the discrete element method (DEM) simulations.

Mill VTM-1500 Scaled Down (Simulated)

Scale 1/1 1/10
Screw Diameter (mm) 3300 330

Ball load (kg) 80,000 80
Mill filling 80% 80%



Minerals 2021, 11, 397 6 of 20

Minerals 2020, 10, x FOR PEER REVIEW 6 of 21 

 

 
Figure 5. Vertimill 1:10 scale of the VTM-1500. 

The contact models used in the simulations were Linear Hysteresis for normal forces and Elastic 
Coulomb for tangential forces [26]. Table 2 summarizes the contact model parameters and materials 
properties setup used for the simulation. 

Table 2. Material and contact parameters used in the DEM simulations. 

Variable Value 
Young’s Modulus (Pa) 1 × 1011 

Density (kg/m3) 7850 
Poisson’s Ratio 0.3 

Coefficient of Static Friction (particle-particle) 0.7 
Coefficient of Dynamic Friction (particle-particle) 0.7 
Coefficient of Static Friction (particle-geometry) 0.3 

Coefficient of Dynamic Friction (particle-geometry) 0.3 
Restitution coefficient 0.3 

The simulation was performed only considering grinding media in the grinding environments, 
in the absence of slurry and ore particles. This can be acceptable for the process where the ore 
contributions for breakage are negligible, such as in the vertical stirred mills, where the breakage 
mechanisms are mainly created by the energy involved in grinding media collisions. However, it is 
also known that grinding media interaction is affected by ore and slurry properties. Consequently, 
both solids concentration and particle size distribution can affect power consumption and grinding 
performance. To approximate the slurry effect in the grinding environment, the shear modulus was 
reduced, thus making contact between balls softer, in comparison to steel-steel contact (Steel: 200 
Gpa). This approximates to the ore and slurry interactions behavior. 

In relation to the mill rotational speed, three different velocities were simulated: 87 rpm, 130 
rpm, and 190 rpm. The 87 rpm was obtained based on a model for velocity scale-up, as proposed by 
Mazzinghy et al. [27] and adapted by Esteves et al. [28]. The model is based on an equipment dataset 
and consists of a more recent approach for velocity scale-up. The 190 rpm is obtained considering a 
fixed tip speed of 3.5 m/s for the mill agitator. This is the usual method for velocity scale-up and was 
widely applied for reduced scale equipment test work and simulation. The 130 rpm was obtained as 
an intermediary velocity in between the two scale-up approaches. 

3.2. Dem Outputs 

During the simulation, the interaction between particles and geometry is individually described 
by first physical principles, according to the contact model defined. This information is saved during 
each simulation step and is further used to generate the simulation outputs, such as: particle energy 

Figure 5. Vertimill 1:10 scale of the VTM-1500.

The contact models used in the simulations were Linear Hysteresis for normal forces
and Elastic Coulomb for tangential forces [26]. Table 2 summarizes the contact model
parameters and materials properties setup used for the simulation.

Table 2. Material and contact parameters used in the DEM simulations.

Variable Value

Young’s Modulus (Pa) 1 × 1011

Density (kg/m3) 7850
Poisson’s Ratio 0.3

Coefficient of Static Friction (particle-particle) 0.7
Coefficient of Dynamic Friction

(particle-particle) 0.7

Coefficient of Static Friction
(particle-geometry) 0.3

Coefficient of Dynamic Friction
(particle-geometry) 0.3

Restitution coefficient 0.3

The simulation was performed only considering grinding media in the grinding
environments, in the absence of slurry and ore particles. This can be acceptable for the
process where the ore contributions for breakage are negligible, such as in the vertical
stirred mills, where the breakage mechanisms are mainly created by the energy involved in
grinding media collisions. However, it is also known that grinding media interaction is
affected by ore and slurry properties. Consequently, both solids concentration and particle
size distribution can affect power consumption and grinding performance. To approximate
the slurry effect in the grinding environment, the shear modulus was reduced, thus making
contact between balls softer, in comparison to steel-steel contact (Steel: 200 Gpa). This
approximates to the ore and slurry interactions behavior.

In relation to the mill rotational speed, three different velocities were simulated:
87 rpm, 130 rpm, and 190 rpm. The 87 rpm was obtained based on a model for velocity
scale-up, as proposed by Mazzinghy et al. [27] and adapted by Esteves et al. [28]. The
model is based on an equipment dataset and consists of a more recent approach for velocity
scale-up. The 190 rpm is obtained considering a fixed tip speed of 3.5 m/s for the mill
agitator. This is the usual method for velocity scale-up and was widely applied for reduced
scale equipment test work and simulation. The 130 rpm was obtained as an intermediary
velocity in between the two scale-up approaches.
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3.2. Dem Outputs

During the simulation, the interaction between particles and geometry is individually
described by first physical principles, according to the contact model defined. This infor-
mation is saved during each simulation step and is further used to generate the simulation
outputs, such as: particle energy spectra, particle trajectory, particle absolute translational
velocity, power consumption, and wear design.

3.3. Wear Model

The Archard’s wear law, together with the DEM outputs, were used to quantify liner
boundary wear. The wear quantification is realized step by step, and this information is
used to currently update the liner shape during the simulation. The Archard’s wear law is
presented by Equation (1) [26]:

A. dh = K. dw (1)

where A is the surface area of a boundary element (m2), h is the loss in depth (m), w is the
shear work (J), and K is the wear rate (m3/J).

The incremental loss in depth consists of the amount of wear generated in the liner
surface. This information is used to currently update the liner shape and volume. The
shear work consists of the DEM shear outputs. In this sense, the DEM shear stress results
for the interaction between the liner and grinding media are used to continuously quantify
the boundary wear. The wear factor is defined as the relationship between the contact
energy and the amount of lost surface. A wear factor of 1 × 10−6 m3/J was established for
the simulation. This indicated the amount of volume that is lost according to the energy
amount involved at each contact between grinding media and liner. The increase of these
parameters can extremely accelerate the wear ratio. Although the use of greater values
can accelerate the obtaining of a wear surface, it can also generate unwanted damages on
the surface that are not in accordance with reality. Whereas the use of very small factors
can bring the need for a very long simulation to obtain representatives wear information.
In the present case, several values were tested, until the obtaining of a feasible shape for
the wear. As a result, it is necessary to adapt to the simulation and real time.

3.4. Boundary Definition

The boundary definition of the geometrical mesh directly affects the computational
cost to run the wear simulation, such as the wear results. Figure 6 shows the effect of
triangle size in mesh refinement.
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The defining of greater triangle sizes decreases the total number of triangles and creates
a bad refinement for the mesh, decreasing the computational simulation cost. Contrastingly,
the existence of smaller triangle sizes highly increases the number of triangles, refining the
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geometrical mesh and causing a representative increase in the computational simulation
cost. Figure 7 shows the effect of mesh refinement in the wear simulation results.Minerals 2020, 10, x FOR PEER REVIEW 8 of 21 
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It is possible to note the final wear shape is affected by a refinement degree. In this
sense, the existence of a more refined mesh brings a better wear resolution in the final
geometry of the object. However, as finer meshes representatively increase computational
cost, it is very important to investigate the sensitivity of mesh refinement degree, to obtain
a reasonable balance between wear resolution and feasibility of computational cost [26].

3.5. Industrial Wear Measurement

The industrial measurements presented were obtained by Silva [30] from the regrind-
ing circuit of the Minas-Rio project, which is an iron ore plant from Anglo American located
in the southeast region of Brazil. The regrinding circuit is composed of two parallel lines,
each one with eight VTM-1500. The regrinding product is specified with a P80 of 36 µm,
mill capacity as 190 t/h per mill, and finally, specific energy is established as 5.9 kWh/t.

The process flowsheet is indicated in Figure 8 and shows that the regrinding circuit
is located downstream of the flotation plant [27]. Thus, the regrinding plant is fed with
concentrate material, which tends to present greater stability in relation to density and
solids concentrate. This creates the perfect space to use this data as input for simulation
validation.
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The wear measurements were performed for the base and intermediate liner parts at
three different liner lifetimes: 0 h, 1000 h, 2000 h and 3000 h. The measurement was per-
formed using a three-dimensional laser scanning technique. Performing the measurement
required to complete stop and unload the mill, as shown in Figure 9.
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Figure 9. Scanning procedure to obtain a three-dimensional measurement of liner parts [30].

After unloading the mill, a laser device and a reception sensor are used to capture data
that is used to generate a three-dimensional geometry of the worn parts. The generated
geometry is then compared with the new liner model, in a coordinate system.

The gaps associated with geometrical positions are used to generate a dimensional
report and a deviation map, which are later converted into wear quantification. The wear
measurements obtained on the VTM-1500 will be presented and used for the comparison
to DEM wear simulations.

3.6. Wear Model

The industrial wear measurements were compared with the DEM simulation results.
For that, three-dimensional geometries of the agitator screw were exported at different
simulation times. Each geometry was sliced in different liner parts, such as the indus-
trial VTM-1500 design. The Meshlab software was used to calculate the volume of base
and intermediate worn liners, thus generating a relationship between liner volume and
simulation time.

This result was then compared with industrial wear measurement of the full scale
VTM-1500. A liner fitting was established to correlate DEM simulation time (in seconds)
and operational time (in hours). This scale-up factor was obtained for each simulation,
at different agitator velocities. Finally, the scale-up factor and wear simulation are com-
bined, to predict base and intermediate liners wear. The prediction can then be compared
with industrial measurement. The explained process is shown in Figure 10.
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VTM-1500 equipment.

4. Results

Results are divided into four sections: Steady-state simulation results, wear simulation
results, VTM-1500 wear measurements, and finally, the DEM wear model prediction. The
steady-state simulation results are shown in the initial section, as well as the present results
that were obtained at the beginning of the simulation, after a minimum of three mill
revolutions and before the beginning of the wear simulation. This is defined as steady-state
simulation and aims to understand the mill behavior before wear. The second section
presents results obtained during the wear simulation, after wear parameters were settled.
This comprises of evaluating the simulation outputs, such as wear quantification. The
VTM-1500 wear measurement consists of the next stage and is focused on presenting and
adapting industrial wear measurements presented by Silva [30]. Finally, the last section
comprises the correlation between industrial and simulated wear patterns, such as the
presentation of the wear model prediction. This is performed for the three different mill
agitator velocities.

4.1. Steady-State Simulation
4.1.1. Particle Trajectory

Figure 11 shows the particle trajectory colored as a function of particle absolute
translational velocity, for the three agitator velocities. A red box was constructed in the
surrounding area of the particle trajectory, for the 190 rpm condition. By placing the same
box over the particle trajectory of the mills operating at 130 rpm and 87 rpm, it noticeable
that the top part of the box is not filled with trajectory streaming lines. This means that
the media motion height range is reduced when reducing mill velocity. In other words,
it indicates that by increasing mill velocity, the upper parts of the mill were activated.
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Figure 11. Particle trajectory at different mill rotational velocities.

A dashed red line is placed at the bottom part of the mill. It is visible that streaming
lines are also reduced in this bottom area. Because of the reduced motion, this area
is identified as “dead zone”. The velocity reduction, and thus, the dead zone effect is
intensified for reduced mill velocities. This is in accordance with the velocity behavior at
the mill top zone. Based on that, it was verified that agitator rotational velocity has a direct
effect on the particle trajectory distribution, over the complete height of the mill.

4.1.2. Particle Velocity and Power

Figure 12 shows the particle average translational velocity and simulation power as
a function of mill rotational speed. It is conclusive that both particle velocity and power
increases with mill speed. This demonstrates that the agitator rotational velocity influences
the overall mill power and grinding media kinetic energy, thus having a direct relation in
the energy that can be transferred into breakage mechanisms.
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Figure 12. Left: The relationship between agitator speed and particle average translational velocity (m/s). Right: The
relationship between agitator speed and simulation power (W).

4.1.3. Particle Spectrum

The collision frequency distribution of particle specific energy was plotted for normal
and tangential particle contact in Figure 13. This represents the collisions statistics for
specific energy that are applied to particles per time unit. The x axis indicates the specific
energy of contact, which means the amount of energy that is transferred per mass of
grinding media. The y axis indicates the number of contacts per unit of time, at each
specific energy level.
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Figure 13. Particle collision spectra for normal (left) and shear (right) contact at different operational velocities.

The wider specific energy distribution is observed for normal contact, in comparison
to the shear contact distribution. This means that normal contacts can have a higher specific
energy value than shear contacts. In relation to the agitator rotational velocity, higher
velocities are associated with a small increase in both collisions’ frequency and specific
energy range. This can be observed for both normal and tangential contacts.

By looking at the relationship between energy levels and collision frequency, it is also
possible to correlate with breakage behavior. In this sense, contacts with greater values of
specific energy have a higher tendency to overcome the minimum specific energy required
for a certain particle to break. This means that contacts of higher specific energy values
have a higher probability of causing breakage in a single or fewer contacts. However, this
can also lead to a non-energy efficient behavior once this increases the chance to apply more
energy than necessary to cause particle breakage. In contrast, smaller values of specific
energy might initially lead to particle weakness, instead of direct breakage. Because of that,
it can be necessary for a larger amount of low specific energy collisions cause breakage. At
the same time, by applying a greater amount of small specific energy contacts increases the
chance to apply the minimum amount of energy that is required for particle breakage.

4.2. Wear Simulation

The wear simulation started after at least three revolutions at steady-state conditions,
thus, allowing the wear simulation to be performed under stable conditions.

4.2.1. Particle Trajectory and Velocity

Figure 14 shows the streaming lines associated with particle absolute trans-
lational velocity.

A red box surrounds the grinding media trajectory for the new liner condition, shown
in the left side of the image. Comparing the left and right side of the picture, it can be noted
that red boxes on the right side miss the streaming lines both at the top and bottom parts
of the mill. This indicates that media motion is negligible in those regions. In the bottom
part of the mill, it is noted that the dead zone effect is emphasized by liner wear.
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Figure 15 shows the relationship between particle absolute translational velocity and
the base liner wear. It is possible to note that particle velocity reduces with wear, due
to the reduction in the liner surface area. This reduction is more aggressive for higher
agitator velocities. This means that a more representative decrease in particle velocity is
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obtained when operating at higher agitator velocity. Based on the extrapolated data, it can
be expected that particle velocity will be independent on agitator velocity when the base
liner is approximately 40% to 50% worn.Minerals 2020, 10, x FOR PEER REVIEW 14 of 21 
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Figure 15. The relationship between average particle velocity and the base liner wear intensity.

4.2.2. Power

Figure 16 shows the relationship between base liner volume and simulation power. It
is possible to note that power reduction is intensified at higher rotational velocities. In the
operational context, the power is kept constant during the liner lifecycle by increasing mill
filling.
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Figure 16. The relationship between simulation power and base liner volume.

4.2.3. Particle Spectrum

Figure 17 shows normal and shear energy spectrums for the three operational veloci-
ties, at different wear stages. By comparing shear (right) and normal (left) collision spectra,
it is possible to note that normal contacts are more affected by wear. In this sense, a greater
reduction in the collision frequency was observed for normal contacts, in comparison to
shear. This reduction is emphasized at greater specific energies, especially above 1 × 10−1

J/kg. Based on the idea that collisions of greater specific energies can lead to an inefficient
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use of energy, it can be suggested that wear scenarios can be related to a better energy use
behavior. This indicates that the agitator wear pattern affects mostly high energy contact,
while maintaining low energy contacts that present a better energy efficiency behavior.
However, it is important to emphasize that the collision frequency and energy reduction
will probably generate a coarser product, and thus, the better energy use behavior will be
mainly caused by the overall power consumption reduction. Recently, Oliveira [31] applied
a mechanistical model to predict product size distribution by using the particle contact
spectra obtained with DEM simulations. The simulation considered grinding media as
the mill charge, in the absence of ore and slurry. By taking into consideration different
proportions of shear power involved in inter particle collision, the model successfully
predicted product size distribution of laboratory-scale experiment, for different solids
concentration ratios. In this sense, this model can be applied to quantify the wear effect on
product size distribution.
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Figure 17. Particle collision spectra at different liner conditions and rotational velocities.
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In the operational context, it is important to evaluate the effect on the target product
size, such as mineral liberation, to prevent mineral losses in further beneficiation processes.
In this sense, a wider evaluation is necessary to guarantee the overall process efficiency,
which includes a proper understanding of the effect on the downstream process. As an
alternative, various operational conditions can be approached to guarantee the obtaining
of the target mineral product size, while maximizing energy efficiency. In the specific
case of the Mins-Rio project, the product requirement is in relation to fines generation, for
pipeline transport requirements. In this sense, it is necessary to evaluate the effect on fines
generation to guarantee the product adequacy.

Comparing the collision spectra behavior at different mill rotational velocities it can be
noted that higher rotational velocities intensified the overall collision frequency reduction,
such as reduced the maximum value of specific energy (J/kg). This explains the greater
power reduction observed for this rotational velocity.

4.2.4. Wear Volume

The relationship between the liner volume and simulation time is shown in Figure 18
for the base and intermediate liner parts. It can be noted that wear is more intensive in the
base liner, resulting in a more representative volume reduction. The increase in the agitator
velocity also intensifies wear. This effect is more representative of the intermediate liner
part. This is a consequence of a wider distribution of particle trajectory when operating at
higher rotational velocity, as shown in Figure 18.
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Figure 18. Base and intermediate liner volume during simulation time.

4.3. VTM-1500 Wear Measurement

Based on the three-dimensional scanning of VTM-1500 liner parts, [30] presented
the relationship between operational hours and liner mass, separately for the base and
intermediate liner parts.

The absolute mass value was converted as liner volume percentage, and are presented
in Figure 19, in relation to the operational time. The wear ratio is defined as the relationship
between wear percentage and operational time.

The liner volume comparison between the two liner parts reinforces that wear is
more aggressive in the base liner. In this sense, at the end of the lifecycle, or 3000 h, the
intermediate liner reached approximately 67% of the initial volume, while the base liner
reached 35.5% of its initial volume. Because of that, the base liner requires sooner and
more frequent replacement. Moreover, the base liner wear ratio significantly increases
after 2000 h.
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Figure 19. Base and intermediate liner volume reduction during liner operational time (in hours).

4.4. DEM Wear Modeling

Figure 20 compares the simulated geometry and industrial liner designs under several
wear conditions. The visual comparison between wear patterns shows that DEM provided
a remarkably similar wear design. The next stage would be to quantify the wear relation.
For that, a time relation was established in order to obtain a scale-up factor that correlates
simulation seconds and operational hours. The scale-up factors were calculated for the
base and intermediate liners, at each operational velocity. The final scale-up factor, per
velocity, was obtained as an average value in between the liner and intermediate factors.
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Figure 20. Comparison between 3D worn screw after DEM simulation and industrial
worn liner.

Figure 21 shows the predicted liner volume, based on the obtained DEM model. By
comparing the intermediate and base liner predictions, a better agreement was achieved
when using the 87 rpm as agitator velocity. In relation to the base liner, the results compared
favorably during most of the operational time, except for the last liner measurement, which
corresponds to approximately 3000 h. This is probably because the last liner measurement
presents an aggressive behavior, which representatively differs from the trend.
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Figure 21. Model predicted and measured values of base and intermediate liner volume
during operational time (h).

For the intermediate liner, the behavior was well predicted up to approximately 1500
h. This is probably due to the fact of filling increases during the liner lifetime. The filling
increasing is performed during the liner lifetime with the aim to keep constant power by
activating upper parts of the mill. Because of that, added grinding media gets in contact
with upper parts of the intermediate liner, thus resulting in additional wear. In contrast, the
liner volume predictions for 130 rpm and 190 rpm did not fit very well when evaluating
base and intermediate liner parts.

To summarize, it was noted that the wear prediction presented a relative agree-
ment with industrial measurements in the first half of the liner lifecycle. Differently, the
agreement was not very effective for the second half of the lifecycle, especially for the
intermediate liner part. In relation to the liner part, the disagreement can be explained
by the wear compensation in the industrial context. In order to keep constant power
consumption, additional grinding media is added to the mill, thus activating the upper
parts of the intermediate and generating extra wear. This filling compensation was not
taken into account by the DEM simulation, and then it can be expected a lower wear rate
and the end of the lifecycle for the intermediate liner part. In relation to the base liner, the
differences after 3000 h can be explained by a possible variation in the material properties
after several wears, which should be confirmed by liner material properties evaluation. In
this sense, the intensive wear could substantially affect liner material resistance properties,
thus reducing wear resistance for very worn conditions. This effect was not taken into
account by the DEM simulations, resulting in a large difference for the base liner prediction
after 3000 h.

5. Conclusions

Once the vertical stirred mill screw liner is responsible for media movement, and con-
sequently, grinding, it is very important to perform accurate monitoring of wear progress.
However, it is not possible to directly install a sensor for wear measurement. The paper
addressed this issue by performing DEM simulations, with the aim to provide a better
understanding of screw liner wear behavior and effects. The simulation was performed
for a 1:10 reduced scale geometry from the Metso Vertimill VTM-1500 model, to reduce
simulation effort.

The simulations applied different scale-up methodologies for agitator rotational veloc-
ity. In this sense, three different mill velocities were simulated. Firstly, a reduced velocity
was obtained based on a dataset model. This consists of a more recent approach for velocity
scale-up in laboratory-scale equipment. Moreover, a direct scale-up factor based on the
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geometry reduction was applied, thus resulting in a higher operational velocity of 190 rpm.
Finally, an intermediary velocity was tested to provide a better understanding of the effects
of operating in between the lower and maximum mill velocities.

The wear simulation results qualitatively showed that the wear profile obtained
using DEM presents a relative similarity to the wear design observed in the full-scale
equipment at the beginning of the liner lifecycle. The worn agitator geometries were
exported, at different simulation times, to provide a volume quantification of wear. By
comparing worn geometries obtained from DEM simulations and industrial measurement,
a time correlation was proposed. In this sense, a scale-up factor was obtained to correlate
simulation time, in seconds, and operational time, in hours. This scale-up factor was
then applied to simulation results to predict wear in the operational context, for the base
and intermediate liner parts. By comparing the obtained wear prediction and industrial
measurement, a better agreement was encountered for the 87 rpm mill velocity. Based
on that, the recommendation would be to apply the developed model under different
operational conditions, to evaluate different strategies for wear compensation, such as
changing mill speed and grinding media filling.

Additionally, DEM outputs were evaluated to provide a better understanding of wear
effects. From that, it was noted that wear introduced a significant decrease in simulation
power and particle average translational velocity. In relation to particle trajectory, the
particle velocity reduction was intensified in the top and bottom parts of the mill, thus
resulting in null particle motion in those areas. In the bottom part of the mill, this is known
as the dead zone effect. The particle collision spectra indicated that wear affects more
intensively normal contacts of greater specific energy. Although this might cause a decrease
in fines generation, this can lead to an improvement in energy usage. This is because the
predominance of low energy contacts is related to an increase in energy efficiency, once
this reduces the occurrence of high-intensity contacts, which apply greater energy than
required for particle breakage.

To summarize, the obtained results indicate that liner wear affects particle breakage
and energy consumption. A better understanding and proper quantification about its effects
can play a key role in the development of strategies for optimizing operational procedures
to keep grinding efficiency and to reduce wear rates. In this sense, the recommendations
would be to evaluate the relationship between operational conditions and liner wear, in
the industrial context.

The model did not consider particle breakage, as ore particles itself are not included
in the simulation. Grinding media wear also not considered. Finally, the current work
did not consider the slurry (fluid), so as there would be a recommendation to apply CFD
(computational fluid dynamics) or SPH (smoothed particle hydrodynamics) to describe the
mill charge with more details.
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