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Abstract: Cretaceous volcano-sedimentary basins and successions in the Korean Peninsula are located
along NE-SW- and NNE-SSW-trending sinistral strike–slip fault systems. Soft-sediment deformation
structures (SSDS) of lacustrine sedimentary strata occur in the Wido, Buan, and Haenam areas of
the southwestern Korean Peninsula. In this study, systematic geological, geochronological, and
geochemical investigations of the volcanic-sedimentary successions were conducted to constrain the
origin and timing of SSDS-bearing lacustrine strata. The SSDS-bearing strata is conformably underlain
and overlain by volcanic rocks, and it contains much volcaniclastic sediment and is interbedded with
tuffs. The studied SSDSs were interpreted to have formed by ground shaking during syndepositional
earthquakes. U-Pb zircon ages of volcanic and volcaniclastic rocks within the studied volcano-
sedimentary successions were ca. 87–84 Ma, indicating that active volcanism was concurrent with
lacustrine sedimentation. Geochemical characteristics indicate that these mostly rhyolitic rocks are
similar to subduction-related calc-alkaline volcanic rocks from an active continental margin. This
suggests that the SSDSs in the study area were formed by earthquakes related to proximal volcanic
activity due to the oblique subduction of the Paleo-Pacific Plate during the Late Cretaceous.

Keywords: late Cretaceous; soft sediment deformation; Korean Peninsula; basin; volcanic activity

1. Introduction

In continental arcs and adjacent areas, tectonomagmatic activities produce a variety
of sedimentary basins commonly filled with volcanic and volcaniclastic rocks that form
volcano-sedimentary successions [1–4]. Although the successions are unique rock records
that unravel syndepositional tectonism and volcanism and their genetic relationships, the
intrusion of magma along, or covering of volcanic rocks over, basin margins commonly
make reconstruction of the tectonic activities difficult. During sedimentation of the suc-
cessions, crustal deformation due to tectonic activity gives rise to moderate to strong
earthquakes (Mw; moment magnitude > 5.0) [5]. The passage of seismic waves through
near-surface, unconsolidated sediments can result in the development of soft-sediment
deformation structures (SSDS) over a wide area (>10 km from the epicenter) as a result
of liquefaction and/or fluidization due to elevated pore water pressure [6,7]. As a result
of their wide occurrence, SSDSs have a high potential for preservation [8]. Thus, analy-
sis of SSDSs is able to determine syndepositional tectonic activities, which can provide
clues to unravel the genetic relationships between tectonic and magmatic activities in the
continental arc and adjacent areas.

During the Cretaceous, volcano-sedimentary basins formed along sinistral strike–slip
fault systems in the central to southwestern part of the Korean Peninsula (Figure 1) due to
tectonomagmatic activities caused by oblique subduction of the Paleo-Pacific Plate [9–13].
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Sedimentary successions within the basins were deposited in alluvial fan, fluviolacustrine,
and lacustrine environments [14–16]. Vertical changes in the depositional environments
and sedimentary characteristics (such as grain size and stacking patterns) have been
interpreted as the result of syndepositional tectonic subsidence of the basins [14]. However,
bounding faults of the basins are commonly obscured by volcanic intrusions or covered by
volcanic rocks, preventing detailed analysis of the timing of tectonic activities. Recently,
SSDSs within lacustrine strata of these basins have been interpreted to be the result of
earthquakes, providing clues to unravel tectonic activities during sedimentation [12,17–19].
In this study, we present a systematic geological, geochronological, and geochemical
investigation of the origin and timing of SSDS-bearing strata to constrain the origin and
timing of tectonomagmatic activities in the Korean Peninsula and adjacent areas.
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Figure 1. Map of the southern Korean Peninsula showing the distribution of Cretaceous sedimentary
basins, and volcanic and igneous rocks along sinistral strike–slip fault systems (modified from [12]).

2. Geological Setting

During the Cretaceous, the Korean Peninsula was subjected to crustal deformation
due to the oblique subduction of the Izanagi Plate beneath the Eurasian Plate [9,20–22].
The crustal deformation caused the formation of NE-SW and NNE-SSW-trending, sinistral
strike–slip fault systems, such as the Gongju, Hamyeol, and Gwangju Fault systems, along
with the development of back-arc basins in the southeastern part of the Korean Peninsula
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(Figure 1). Along the fault systems, particularly in areas of step-over and releasing bends,
small-scale, non-marine sedimentary basins formed and filled with fluviolacustrine sedi-
mentary successions under arid to semi-arid climatic conditions [23]. Contemporaneously,
continental arc volcanism produced large amounts of volcaniclastic sediment and volcanic
rocks interbedded with sedimentary strata, forming volcano-sedimentary successions.
Detailed observations of the volcano-sedimentary successions showed that the stacking
patterns and spatial distribution of the volcanic-sedimentary lithofacies were the result of
spatiotemporal variations in sediment supply related to explosive volcanism and accommo-
dation space due to syndepositional tectonic activities, which has been interpreted to result
from contemporaneous tectonomagmatic activities during the Cretaceous [14,15,24,25].

3. SSDS Bearing Volcano-Sedimentary Successions

To unravel the genetic relationships between SSDS-bearing strata and the circum-
stances behind SSDS formation and Cretaceous tectonomagmatism in the Korean Penin-
sula, this study focused on three SSDS-bearing, lacustrine volcano-sedimentary successions
such as Beolgeumri, Gyeokpori, and Uhangri Formations [24,26,27]. These formations are
underlain and overlain by or interbedded with volcanic and volcaniclastic rocks.

3.1. Beolgeumri Formation

The Beolgeumri Formation is a lithostratigraphic unit of the Wido Volcanics composed
of conformably stacked volcanic, volcaniclastic, and sedimentary rocks. Koh et al. [28]
classified the succession into four lithostratigraphic units from bottom to top: the Daeri An-
desite, Mangryeongbong Tuff, Beolgeumri Formation, and Ttandallae Tuff (Figure 2A,B).

Minerals 2021, 11, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 2. (A) Geological map of the Wido Volcanics (modified after [28]), (B) Schematic log of the 

volcano-sedimentary succession in the Wido Volcanics (modified after [12]), (C) Outcrop photo-

graphs of tuff layer and soft sediment deformation structures (SSDS) in the Beolgeumri Formation. 

The Daeri Andesite is the lowermost lithostratigraphic unit of the volcanics and is 

composed of aphyric to porphyritic andesite underlain by dinosaur-egg bearing purple-

colored mudstones [29,30]. Gihm et al. [25] interpreted that the Daeri Andesite was em-

placed by subaerial lava flows in arid to semi-arid floodplain environments. The overlying 

Mangryeongbong Tuff is about 900 m thick and consists mainly of rhyolitic volcaniclastic 

sediments formed by pyroclastic density currents. The Beolgeumri Formation between 

the Mangryeongbong and topmost Ttandallae Tuffs is composed of lacustrine mudstones 

and sandstones, chert, and a bed of lapilli tuff that were deposited in a lacustrine environ-

ment at the terminal part of a regional strike–slip fault system on the southwestern Korean 

Peninsula [12,25]. Ko et al. [12] reported that the Beolgeumri Formation contains various 

types of SSDS that are characterized by their wide extent (>4 km), lateral continuity (>200 

m), and vertical repetition. The SSDSs are underlain and overlain by undeformed lami-

nated mudstones (Figure 2C). These indicate that the SSDSs were formed mainly by liq-

uefaction and/or fluidization triggered by ground shaking during earthquakes [12]. The 

topmost Ttandallae Tuff is estimated to be about 40 m thick and is composed of tuff brec-

cias and lapilli tuff deposited by pyroclastic density currents [12].  

The weighted mean of 206Pb/238U zircon ages from the Mangryeongbong and the 

Ttandallae tuffs yielded 86.63 ± 0.83 Ma (n = 14, 2σ, MSWD = 2.0) and 87.25 ± 0.36 Ma (n = 

13, 2 σ, MSWD = 1.09), respectively [12]. 

3.2. Gyeokpori Formation  

The Gyeokpori Formation belongs to the Buan Volcanics and is classified into nu-

merous stratigraphic units of volcaniclastic and volcanic rocks (Cheonmasan Tuff, 

Udongje Tuff, Seokpo Tuff, Gyeokpori Formation, Gomso Rhyolite, Yujeongge Tuff, 

Byeonsan Tuff, and Samyebong Rhyolite in ascending order [28] (Figure 3A,B). The 

Gyeokpori Formation between the Seokpo Tuff and Gomso rhyolite is composed of con-

glomerates, gravelly sandstones, mudstones, and beds of volcaniclastic deposits. The 

Gyeokpori Formation is interpreted to have been deposited in lacustrine environments 

Figure 2. (A) Geological map of the Wido Volcanics (modified after [28]), (B) Schematic log of the
volcano-sedimentary succession in the Wido Volcanics (modified after [12]), (C) Outcrop photographs
of tuff layer and soft sediment deformation structures (SSDS) in the Beolgeumri Formation.

The Daeri Andesite is the lowermost lithostratigraphic unit of the volcanics and is
composed of aphyric to porphyritic andesite underlain by dinosaur-egg bearing purple-
colored mudstones [29,30]. Gihm et al. [25] interpreted that the Daeri Andesite was
emplaced by subaerial lava flows in arid to semi-arid floodplain environments. The
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overlying Mangryeongbong Tuff is about 900 m thick and consists mainly of rhyolitic
volcaniclastic sediments formed by pyroclastic density currents. The Beolgeumri Formation
between the Mangryeongbong and topmost Ttandallae Tuffs is composed of lacustrine
mudstones and sandstones, chert, and a bed of lapilli tuff that were deposited in a lacustrine
environment at the terminal part of a regional strike–slip fault system on the southwestern
Korean Peninsula [12,25]. Ko et al. [12] reported that the Beolgeumri Formation contains
various types of SSDS that are characterized by their wide extent (>4 km), lateral continuity
(>200 m), and vertical repetition. The SSDSs are underlain and overlain by undeformed
laminated mudstones (Figure 2C). These indicate that the SSDSs were formed mainly by
liquefaction and/or fluidization triggered by ground shaking during earthquakes [12].
The topmost Ttandallae Tuff is estimated to be about 40 m thick and is composed of tuff
breccias and lapilli tuff deposited by pyroclastic density currents [12].

The weighted mean of 206Pb/238U zircon ages from the Mangryeongbong and the
Ttandallae tuffs yielded 86.63 ± 0.83 Ma (n = 14, 2σ, MSWD = 2.0) and 87.25 ± 0.36 Ma
(n = 13, 2 σ, MSWD = 1.09), respectively [12].

3.2. Gyeokpori Formation

The Gyeokpori Formation belongs to the Buan Volcanics and is classified into numer-
ous stratigraphic units of volcaniclastic and volcanic rocks (Cheonmasan Tuff, Udongje
Tuff, Seokpo Tuff, Gyeokpori Formation, Gomso Rhyolite, Yujeongge Tuff, Byeonsan Tuff,
and Samyebong Rhyolite in ascending order [28] (Figure 3A,B). The Gyeokpori Formation
between the Seokpo Tuff and Gomso rhyolite is composed of conglomerates, gravelly
sandstones, mudstones, and beds of volcaniclastic deposits. The Gyeokpori Formation is
interpreted to have been deposited in lacustrine environments with a small-scale, steeply
sloped delta system at the lake margin [24]. A number of SSDS are observed in sandstone
and mudstone lake floor deposits (not on the steeply inclined delta). Ko et al. [18] reported
that slump structures in the Gyeokpori Formation are about 2 m thick, laterally contin-
uous (>200 m), and repeated vertically. These structures are underlain and overlain by
undeformed laminated black mudstones consisting of folds and syn-depositional (thrust
and normal) faults (Figure 3C). In addition, Byun et al. [31] reported chaotically deformed
layers in the Gyeokpori Formation that were triggered by seismic shocks.
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The weighted mean of 206Pb/238U zircon ages from conformably underlying (Seokpo
Tuff) and unconformably overlying (Yujeongge Tuff) strata yielded 87.30 ± 0.99 Ma (n = 15,
2σ, MSWD = 2.0) and 86.66 ± 0.93 Ma (n = 20, 2 σ, MSWD = 2.8), respectively [13].

3.3. Haenam Basin

The Late Cretaceous Uhangri Formation is a volcano-sedimentary succession de-
posited in the Haenam Basin in the southwestern part of the Korean Peninsula (Figure 1).
The Uhangri Formation is underlain by andesitic tuff and overlain by the Hwangsan Tuff
and Jindo Rhyolite (Figure 4A,B). The Uhangri Formation mainly consists of conglomerate,
sandstone, laminated shale, and cherty mudstone with interlayered volcaniclastic deposits,
deposited in alluvial, lacustrine delta, and lacustrine environments [26,32,33]. A number
of fold structures and convolute laminations are found in specific layers of the lacustrine
sandstones and mudstones. These intervals are underlain and overlain by undeformed
laminated to homogeneous mudstones (Figure 4C). This indicates that these SSDSs were
formed by the deformation of unconsolidated sediments via liquefaction and associated
fluidization triggered by earthquakes. Chough and Chun [34] also reported intrastratal
flows and associated rip-down structures in deltaic sediments. They interpreted these
structures to have been formed by syndepositional earthquakes.
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Figure 4. (A) Geological map of the Haenam Basin (modified after [34]), (B) Schematic log of the volcano-sedimentary
succession in the Haenam Basin (modified after [35]), (C) Outcrop photographs of tuff layer and soft sediment deformation
structures (SSDS) in the Uhangri Formation.

4. Analytical Methods

Representative volcanic and sedimentary samples associated with soft-sediment defor-
mation structures were collected from the volcanic and volcaniclastic rocks situated within,
underlying, or overlying Cretaceous lacustrine sediments. Zircon grains were extracted
from crushed rocks by heavy liquid and magnetic separation, followed by handpicking
under a binocular microscope. Observation of the internal structure of the zircon grains
before analysis was carried out using back-scattered electron and cathodoluminescence
(CL) imaging, which were performed using the JEOL6610LV scanning electron microscope
at the Korea Basic Science Institute.

For SHRIMP U-Pb dating, zircon grains were mounted in epoxy resin disks, along
with chips of the FC1 (Duluth gabbro of 1099 Ma [36]) and SL13 (Sri Lankan gem zircon,
U = 238 ppm [37]) reference zircons. U-Th-Pb isotopic composition analysis followed the
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protocols of Williams [38] and Kim et al. [11]. The wavelength and current of the primary
ion beam used in the analysis were ≈30 µm and ≈3 nA, respectively. For the calculation
of U and Th contents in zircon, SL13 was used as the reference, while the 206Pb/238U
ratio was calibrated using the FC1 zircon standard (206Pb/238U = 0.1859 [36]). Common
Pb contributions were corrected using the measured 204Pb and the model common Pb
composition suggested by Stacey and Kramers [39]. The isotopic ratio of Pb-Th-U in the
analyzed zircon and the weighted mean age were calculated using SQUID 2.50 and Isoplot
3.71 [40,41]. Each of the analysis points marked on the Tera–Wasserburg diagram used
values that were not corrected for 204Pbc and had an error range of 2σ. The suggested mean
zircon ages were 207Pb corrected 206Pb/238U ages, and uncertainties were calculated at a
confidence level of 95 %. The zircon U-Pb age data are summarized in Table S1.

Fourteen volcanic rocks were analyzed for whole-rock major and trace element abun-
dances, and rare earth element (REE) abundances using inductively coupled plasma atomic
emission spectrometry (Thermo Jarrel-Ash ENVIRO II) and ICP mass spectrometry (Perkin–
Elmer Optima 3000) at Activation Laboratories, Ltd.(Ancaster, ON, Canada). Analytical
uncertainties ranged from 1% to 3%.

5. Results
5.1. Zircon U-Pb Dating
5.1.1. Tuff Bed in the Beolgeumri Formation

Zircon grains from a tuff (BT-1) in the Beolgeumri Formation were fine- to medium-
grained (20–200 µm diameter) euhedral prismatic grains (Figure 5A). The aspect ratios
ranged from 1 to 3. CL imaging showed that the grains had oscillatory zoning, showing
well-developed sector zoned areas. The 15 analyses by SHRIMP U-Pb dating gave a
weighted mean 206Pb/238U age of 87.1 ± 1.0 Ma (n = 15, 2σ, MSWD = 1.8) (Figure 6A).
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5.1.2. Gomso Rhyolite in the Buan Volcano-Sedimentary Succession

Zircon grains from the Gomso Rhyolite (GR-1) in the Buan volcano-sedimentary
succession of the Buan area were fine- to coarse-grained (25–250 µm diameter) and had
aspect ratios ranging from 1 to 4. The CL images showed that about 40% of zircon grains
were euhedral to subhedral and have clear oscillatory zoning of the whole grain. Some
zircon grains are composites, consisting of inherited cores surrounded by very thin, bright
CL, and magmatic overgrowths. The cores are characterized by sector and oscillatory
zoning (Figure 5B). The combined 206Pb/238U and 207Pb/206Pb apparent ages of many of
the inherited zircons by SHRIMP U-Pb dating have high discordance due to Pb loss or
contamination, and they range from Middle Paleoproterozoic to early Late Cretaceous, as
follows: 1912 Ma, 1875–1860 Ma (n = 4), 226 Ma, 168–165 Ma, 110 Ma, and 97 Ma. Analyses
of the youngest euhedrally zoned grains show variable 206Pb/238U ages from 89.6 Ma to
81.7 Ma (n = 14; Figure 6B). The Seokpo Tuff in the Buan Volcanics is older than the Gomso
Rhyolite; it extruded at 88.7 ± 2.0 Ma (n = 10, MSWD = 2.2) [28].
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5.1.3. Volcanic Rocks in the Haenam Basin

Zircon grains from a tuff (UH-1) in the Uhangri Formation were fine- to coarse-grained
(20–300 µm diameter) and had euhedral to subhedral shapes. The aspect ratios ranged
from 1 to 3. CL images showed that most zircon grains contained prismatic oscillatory and
sector zoning of the whole grain (Figure 5C). SHRIMP U-Pb dating of euhedrally-zoned
grains showed slightly variable ages from 89.0 Ma to 79.4 Ma (Figure 6C).

Zircon grains from an andesitic tuff (UH-2) that underlies the Uhangri Formation
were predominantly small to large (20–200 µm diameter) euhedral prismatic grains with
aspect ratios ranging from 1 to 5 (Figure 5D). However, some grains had rounded crystal
terminations. CL imaging showed that the grains had well-developed euhedral oscil-
latory zoning with sector-zoned areas. For SHRIMP U-Pb dating, the analyzed grains
showed two age clusters: Early Jurassic (192–177 Ma) and Late Cretaceous (91–79 Ma).
The younger 206Pb/238U apparent ages of the euhedral zoned grains show a relatively
tight cluster at about 87.1–82.2 Ma, excluding statistical outliers (90.8 Ma and 78.8 Ma).
The age results yielded a weighted mean 206Pb/238U age of 85.08 ± 0.79 Ma (n = 14 of 16,
MSWD = 2.2; Figure 6D).

Zircon grains (15–350 µm diameter) from the Hwangsan Tuff (UH-3) were subhedral
to euhedral and preserved euhedral oscillatory zoning (Figure 5E). SHRIMP U-Pb analyses
(n = 21) yielded an age range between 86.2 and 81.3 Ma, with one exception (93.3 Ma).
Although they gave a weighted mean 206Pb/238U age of 83.81 ± 0.82 Ma (n = 20 of 21,
MSWD = 2.7), the age 206Pb/238U apparent ages were slightly variable (Figure 6E).

5.2. Geochemistry

Volcanic samples from the Wido, Buan, and Haenam volcano-sedimentary successions
were analyzed to determine the geochemical signatures (Table S2).

On the SiO2 versus Na2O + K2O diagram (Figure 7), the Wido, Buan, and Haenam
volcanic and volcanoclastic rock samples mostly plot in the rhyolite field. The samples
display the following variations in major element contents: SiO2 (67.25–75.60 wt %), Al2O3
(12.90–16.52 wt %), TiO2 (0.10–0.36 wt %), Fe2O3* (1.33–2.91 wt %), MgO (0.17–1.01 wt %),
CaO (0.17–2.12 wt %), Na2O (1.43–5.95 wt %), K2O (2.11–6.08 wt %), and P2O5
(0.01–0.11 wt %) (Figure 8).
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The Wido, Buan, and Haenam volcanic and volcaniclastic rock samples display LREE
depletion with strongly to weakly negative Eu anomalies (Eu/Eu* = 0.33−0.96) in the
chondrite-normalized REE diagrams (Figure 9A,C,E). On the primitive mantle normalized
diagrams (Figure 9B,D,F), the samples display large ion lithophile element enrichment
with Ta–Nb troughs and depletion in P and Ti, indicating arc-related volcanism.
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6. Discussion

The SSDS-bearing strata of the Beolgeumri, Gyeokpori, and Uhangri Formations were
deposited in lacustrine environments during 87–84 Ma. These formations are underlain
and overlain by tuffs formed by explosive volcanic eruptions, suggesting the development
of a lake during the interval between the depositions of the thick volcaniclastic successions.
Volcaniclastic sediments (Gyeokpori Formation) and tuff beds (Beolgeumri and Uhangri
Formations) also indicate syndepositional volcanic influences on sedimentation in the
lacustrine environments.
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Modern and Quaternary data show that large amounts of unconsolidated volcaniclas-
tic sediments are dispersed on volcanoes and surrounding areas by pyroclastic density
currents and fall out from the eruption column during and immediately after explosive vol-
canic eruptions [42]. The fine-grained and poorly sorted nature of volcaniclastic sediments
prevents infiltration of rainwater into the substrate. This causes an increase in surface
runoff, resulting in frequent flooding (e.g., lahar) after explosive volcanic eruptions [43].
The flood water erodes and carries large amounts of unconsolidated sediment toward
lowlands. Therefore, the rates of sediment supply are increased dramatically—enough
to reduce topographic relief by the filling of lowlands via sedimentation [44,45]. Despite
high rates of sediment supply after the explosive eruptions, the SSDS-bearing, Beolgeumri,
Gyeokpori, and Uhangri Formations accumulated in the lake during and after the erup-
tions. This indicates that the preservation of lacustrine environments during sedimentation,
and rates of accommodation space creation exceeded or at least compensated for the
sedimentation rates with the forceful input of sediment.

The creation of accommodation space could be attributed to a wet climate that caused
an increase in the amount of water flowing into the lake. However, Late Cretaceous
sedimentary successions in the Korean Peninsula commonly contain evaporites, calcrete
nodules, and raindrop prints, indicating arid to semi-arid climatic conditions [23,46]. Thus,
the creation of the accommodation space was interpreted to have resulted from tectonic
subsidence, which lowered lake floors. Tectonic subsidence commonly involves moderate
and strong earthquakes [5]. Previous studies targeting the SSDS-bearing strata of the
Beolgeumri, Gyeokpori, and Uhangri Formations suggest that SSDSs were formed by
ground shaking during syndepositional earthquakes [12,18,19,34]. During field observa-
tions, we found that all SSDSs are underlain and overlain by undeformed laminated or
homogeneous mudstones, suggesting that these SSDSs were not related to depositional
events such as slumps. In addition, possible triggering mechanisms for SSDSs, such as
rapid sedimentation and passage of large waves (> 10 m in wave height), cannot be applied
to lacustrine environments [6,7]. Thus, the development and preservation of the lacustrine
environments in which SSDS-bearing strata were deposited were likely due to syndeposi-
tional tectonic subsidence, and concomitant earthquakes caused the deformation of the
sediments, forming the SSDSs.

The geochemical and geochronological data also support this interpretation. The
trace element and REE geochemical characteristics of volcanic rocks are similar to those
of subduction-related calc-alkaline volcanic rocks from active continental margins. In
the classification of Pearce et al. [47], the Wido, Buan, and Haenam rhyolitic volcanic
and volcaniclastic samples occur in the volcanic arc granitoid field (Figure 10). During
the late Cretaceous, a continental volcanic arc formed as a consequence of the oblique
subduction of the Paleo-Pacific Plate. The arc volcanism produced large amounts of
volcaniclastic sediment. Contemporaneously, oblique subduction of the Izanagi Plate
underneath the Eurasian Plate caused sinistral strike–slip crustal deformation. The sedi-
mentary basins of strike–slip fault systems are characterized by rapid subsidence compared
to extensional basins [48]. Geochronological data from numerous SHRIMP and IDTIMS
studies [10–13,28,49–51] of the Cretaceous volcanic rocks can be divided into two age
groups in the southern Korean Peninsula: (1) Early Cretaceous (115–96 Ma) volcanism
related to the major sedimentation in the Gyeongsang Basin, and (2) Late Cretaceous
(91–77 Ma) regional volcanism and minor sedimentation in the southern Korean Peninsula,
with maximal activity at 87–85 Ma (Figure 11). Thus, from 87 to 84 Ma, the southwestern
part of the Korean Peninsula was affected by vigorous tectonomagmatic activities, not only
producing large amounts of volcaniclastic sediment but also creating sufficient accommo-
dation space due to tectonic subsidence, as reflected by the SSDSs in lacustrine sediments
of the volcano-sedimentary successions.
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7. Conclusions

(1) Cretaceous volcano-sedimentary successions in the Wido, Buan, and Haenam areas
of the central to southwestern part of the Korean Peninsula are distributed along the
sinistral strike–slip fault systems.

(2) SSDS-bearing lacustrine strata of the Beolgeumri, Gyeokpori, and Uhangri Formations
were deposited during a period of syndepositional active volcanism between 87 and
84 Ma.

(3) The volcanic and volcaniclastic rocks in this study have the geochemical characteristics
of subduction-related calc-alkaline volcanic rocks from active continental margins.

(4) The SSDS-bearing strata were interpreted to have been deposited as a result of synde-
positional tectonic subsidence and deformed by syndepositional earthquakes in the
southwestern Korean Peninsula during the Late Cretaceous.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min11050520/s1, Table S1: SHRIMP U-Pb zircon data of the Late Cretaceous volcano-
sedimentary successions, South Korea. Table S2: Major and trace element analyses of the Cretaceous
volcanic rocks in the Wido, Buan and Haenam areas in the SW Korean Peninsula.
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