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Abstract: The relationship of sedimentary organic matter, oil-gas and sandstone-type uranium (U)
deposits is the key problem of U-mineralization. Whether migrate hydrocarbons participate in
U-mineralization is still a controversy. Typical U deposits of the Erlian Basin in northeast China
have been investigated through detailed petrography, mineralogical, micro spectroscopic, organic
geochemical and C-isotope studies. Petrographic observations, Microscopic Laser Raman Spectro-
scopic, Infrared Spectroscopic and Scanning Electron Microscope analyses indicated there are three
types of organic matter (including carbonaceous debris and migrated hydrocarbons). A significant
amount of uranium was associated with pyrites, clay minerals and carbonaceous debris organic
matter, either coexisted with hydrocarbon fluids. There are at least two stages mineralization events,
stage I is related to sedimentary organic matter (syngenetic pre-enrichment stage), and stage II is
related to mobile hydrocarbon fluids (main mineralization stage). Therefore, our results support that
migrated hydrocarbons were involved as a reducing agent for the main uranium mineralization after
synsedimentary mineralization.

Keywords: carbonaceous debris; migrated hydrocarbon; uranium mineralization; sandstone-type
uranium deposit

1. Introduction

Sandstone-type uranium deposits account for about 40% of the currently discovered
deposits [1]. Since the 1980s, China has gradually focused on a search for economically
recoverable in-situ leachable sandstone-type uranium deposits in Mesozoic sedimentary
basins. The Erlian Basin is one of the large Mesozoic continental sedimentary basins in
North China; it is located at the southeastern edge of the Central-Asia Uraniferous Province
(CAUP). The CAUP is one of the largest metallogenic provinces in the world with uranium
ore deposits located from the Transbaikal region in Russia, in southern Kazakhstan, in
Uzbekistan, in Mongolia and North China [2]. Several large in-situ leachable sandstone-
hosted uranium deposits (e.g., Bayanwula, Saihangaobi, Hadatu) and mudstone-hosted
uranium deposits (e.g., Nuheting) with poor economic value at present were found in the
Erlian Basin.

In Erlian Basin, researchers have carried out work in sedimentology [3,4], miner-
alogy [5,6], geochemistry [7,8] etc., including some research on the genesis of the de-
posit [9,10]. Several metallogenic models have been proposed for the origin of deposits.
There is a consensus by all metallogenic models for roll front deposits, that U is transported
by oxidizing groundwater; different origins of the reductant for precipitation of U and
associated elements result in three broad subfamilies of genetic models [10]. The first model
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declared that sedimentary organic matter (OM) was inherited from carbonaceous debris
(ancient plants, e.g., ZoovchOvoo basin, Mongolia) [11,12]. The second model emphasized
that migration hydrocarbon bearing basinal fluids (e.g., oil, CH4, H2S etc.) are introduced
into sandstone without inherited sedimentary OM (e.g., Franceville basin, Gabon) [13,14].
It is unclear whether the migrated hydrocarbon fluids are involved in U-mineralization in
Erlian Basin. Taking the Nuheting deposit as an example, Li and Kuang (2010), Bonnetti
(2015) regarded as hydrocarbon fluids did not participate in uranium mineralization [12,15],
whereas Niu et al. (1995) and Zhang et al. (1996) hold the opposite opinion, they argued for
a genetic relationship between oil-gas fields and uranium mineralization, hence favoring an
epigenetic mineralizing process [16,17]. In addition, Wang (2016) discovered the symbiosis
of bitumen and uranium minerals in the Saihangaobi deposit, providing evidence that
hydrocarbon fluids participate in U-mineralization [18]. In fact, many petroleum reservoirs
have been discovered under the layers of uranium deposits in Erlian Basin [19–21]. The
petroleum reservoirs are closely related to uranium deposits in terms of spatial distribution,
but it is unclear whether they are genetically related.

In this paper, we carried out the studies of petrography, mineralogy, C isotope and
biomarker compounds by methods of optical microscopy, fluorescence microscopy, scan-
ning electron microscope with X-ray energy dispersive spectrometer (SEM-EDX), microlaser
Raman and Infrared spectroscopy, gas chromatography with mass spectroscopy (GC-MS)
and Elemental Analysis with Gas Isotope Mass Spectrometer (EA-GIMS). The purpose of
this paper is to focus on genetic relationships between carbonaceous debris OM, migration
hydrocarbon fluids and U-mineralization.

2. Geological Setting
2.1. The Erlian Basin

The Erlian Basin is located in northeast China, Inner Mongolia, close to the border
between China and Mongolia. It is located at the junction of the Siberian plate and the
North China plate (Figure 1a), covering an area of approximately 110,000 km2 [22,23].
The Erlian basin is divided into six secondary tectonic units of “five Sub-basins and one
uplift” [23]. From southwest to northeast, it includes the Chuanjing sub-basin, Wulanchabu
sub-basin, Manite sub-basin, Tengge’er sub-basin and Wunite sub-basin, and the Sunite
uplift spreads along the north-east direction in the central part [24,25] (Figure 1b).

The Erlian basin lies on a folded metamorphic basement corresponding to the southern
margin of the Xing’an or Xingmeng Mongolian orogenic belt, and developed as a rift-type
basin in the late Mesozoic [26]. The basement of the basin is composed of Ordovician-
Permian strata, which are composed of metasandstone, slate, carbonate and volcanic
tuff [25]. High uranium contents (3–13 ppm) of basement volcanic rocks and granites
are argued to provide uranium sources [26,27]. The basin is filled with Jurassic and
Cretaceoussediments, which comprised lacustrine and fluvial deposits.
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Figure 1. (a) The location of the study area shown in Figure 1b; (b) Tectonic units and Structural map of Erlian Basin
showing the distribution of uranium deposits and the study area (including drill hole); U1: Bayanwula deposit; U2: Manglai
deposit; U3: Saihangaobi deposit; U4: Nuheting deposit; U5: Hadatu deposit; Modified after Yan et al. (2013) [28], Nie et al.
(2020) [25], Liu et al. (2020) [24].

2.2. Tectonic Evolution and Basin Filling

Erlian basin have been tectonically inverted during the late stage of the Early Cre-
taceous, the tectonic stages of the basin can be divided into two stages [29]. In the early
to middle Jurassic (stage 1), tectonism is characterized by volcanic eruptions along the
NE- and NNE-trending large-scale faults, which produced volcanic assemblages of basalt,
andesite, trachytic andesite, quartz trachytic andesite, and rhyolite [25,29]. During this
stage a series of volcanic rocks, coarse-grained clastic rocks and coal-bearing clastic rocks
deposited in the Erlian Basin. During the Early Cretaceous (stage 2), tectonism is char-
acterized by fault-controlled sub-basins filled with large amounts of coal-bearing clastic
rocks [25,29].

Jurassic and Cretaceous continental sediments of fluvial and alluvial-deluvial prove-
nance fill the basin.The cover formation is mainly composed of Alatan-Heli Group of the
Middle-Lower Jurassic (J1-2al), Lower Cretaceous Arshan Fm (K1a) and, Tenge’ger Fm (K1t),
Saihan Fm (K1s), Erlian Fm (K2e) of upper Cretaceous and Yierding-Manha Fm of Eocene
Series (E2y) [25], the stratigraphic column is listed as Figure 2. The Aershan, Tenggeer,
and Saihan formations (Fms) were developed throughout the Erlian Basin. Arshan Fm
and Tenge’ger Fm are formed in deep or semi deep lake sedimentary environment with
the thickness above 1000 m, and comprised of fine-grained clastic rocks contained oil [30].
The Saihan Fm are comprised of ash-color coarse clastic rocks which is the main uranium
mineralization section of paleochannel sandstone-type deposits, it is formed in swamp and
fluvial sedimentary environment with the thickness of 200–1200 m [30].
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Figure 2. Stratigraphic column of the Erlian Basin. Modified after Nie et al. 2020 [25].

2.3. Sandstone-Type Uranium Deposits

Since 1990s, four medium-large sandstone-type uranium deposits (e.g., Bayanwula,
Hadatu, Manglai, Saihangaobi) and one mudstone-type uranium deposit (e.g., Nuheting)
have been discovered in the Erlian Basin, and many uranium mineralization drill holes
have been discovered around the periphery of the deposits, estimated exceed ~20,000 tons
of U in total at an average grade of 0.01–0.05% U [31]. All of the sandstone-type uranium
deposits are located in the paleo-channels in the Manite and Wulanchabu sub-basins
(Figure 1b), the location of uranium deposits is spatially consistent with oil–gas reservoirs.
The paleo-channels are sandwiched between the Sunite and Bayinbaolige uplifts.

The positioning of paleochannel sandstone-type uranium deposits is controlled by
scale, sedimentary microfacies, oxidation zone, and reduction capacity of paleochannel
(Figure 3) [32]. In the Erlian Basin, the typical sandstone-type U deposits that have been
discovered so far include the Hadatu deposit, the Bayanwula deposit and the Saihangaobi
deposit, all of which have reached the scale of medium—large deposits. The ore-bearing
stratum is mainly Saihan Fm, followed by Yierdingmanha Fm. The lithology of ore-
bearing stratum is mainly yellow and gray gravel-bearing medium coarse sandstone, coarse
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sandstone and mudstone interbeds, the upper part of the ore body is mainly red mudstone
and argillaceous siltstone, the lower part of the ore body is grey carbonaceous mudstone
or grey-green argillaceous siltstone [32,33]. Alterations include hematitization, limonite,
chloritization and kaolinization [25,30,32,33]. Ore bodies have various forms in different
deposits, most of ore bodies are tabular -shaped, and part of ore bodies are lenticular-shaped
(Figure 4). The main ore body distributed in a NE direction and continuous in the strike,
which is basically same as the distribution of the paleo-river valley. The length of the ore
body is 300 to 5500 m, and the thickness of the ore body is 0.50 to 22 m [33]. The surrounding
rocks of the ore body are generally yellow, red or yellowish green, the mineralized rocks
are gray and dark gray, and the extra-rich uranium ore is black (Figure 3). The grade of
uranium ore is generally 0.01% to 0.2%, and the grade of extra-rich uranium ore can reach
more than 1% [31,32]. Most of the uranium mineralization mainly occurs in the clastic
sediments of fluvial facies containing abundant organic matter [30], U-mineralization is
described as possibly related to paleo-phreatic oxidation fluids, sedimentary organic matter,
and reducing hydrocarbon fluids [32]. Mineralized sandstones have elevated background
values of Re, Se, Mo, Sc and V, which correlate positively with U [34].

Figure 3. Geological sketch map of typical sandstone-type uranium deposits in Erlian Basin and its metallogenic model
map. Modified after Liu et al. 2013 [32].
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Figure 4. Cross section of a-b Hadatu U-deposit.

3. Sampling, Analytical Procedures and Methods
3.1. Samples

The more than fifty samples of this study were collected from the several drill holes
distributed along a profile oriented perpendicular to the main geochemical and miner-
alogical zoning of Hadatu deposit, Bayanwula deposit and exploration area outside the
deposits. Before the indoor studies, the samples were carefully observed, photographed
and described. Mineralogical, Micro molecular spectroscopy, organic geochemical studies
were carried out on the samples.

3.2. Mineralogical Study

Fifteen samples were selected for Mineralogical study, which includes 8 ore-bearing
sandstone samples, 5 reduction zone sandstone samples and 2 mudstone samples, and
microprobe section and fluid inclusion section were made. Detailed mineralogical studies
(i. e., microscopic observation, SEM-EDX and electron microprobe (EPMA) analysis were
conducted at the Laboratory of division of geology and mineral resources, Beijing Research
Institute of Uranium Geology.

3.2.1. SEM and EDX Analysis

Back scattered electron (BSE) images and elements Mapping images were obtained on
microprobe section from VEGA3 scanning electronic microscope (TESCAN, Brno, Czech
Republic). The analytical conditions include a 20 kV voltage accelerating, a 15 µA beam
intensity. EDX Analysis was conducted by EDAX TEAM energy dispersive spectrometer
(AMETEK, CA, USA) with the following parameters: single point acquisition time of 200 µs,
the input CPS was more than 20,000, and the dead time was less than 30%.
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3.2.2. EPMA Analysis

The EPMA analysis were obtained on microprobe section from a JXA-8100 electron
microprobe (JEOL, Tokyo, Japan). The analytical conditions include a 15.0 kV accelerating
voltage, a 2 µm beam diameter, a counting time of 15 s and a current of 2.00 × 10−8 A.
The calibration was made against natural and synthetic oxides or alloys (orthoclase, albite,
MnTiO3, wollastonite, hematite and olivine), the detection limits is between 0.01% and
0.05% (with slight changes at different test conditions, different elements). Micro spec-
troscopy analysis was conducted at the analytical Laboratory of Beijing Research Institute
of Uranium Geology.

3.3. Micro Spectroscopy Analysis of Organic Matter

Micro spectroscopy analysis of OM was analyzed by microlaser Raman spectroscopy
and Mid-IR spectroscopy. Micro spectroscopy analysis was also conducted at the Lab-
oratory of division of geology and mineral resources, Beijing Research Institute of Ura-
nium Geology.

3.3.1. Raman Microprobe Spectroscopy

The thin section samples were placed on the stage of an BX-41 microscope (Olympus,
Tokyo, Japan) that is equipped with10× to 100× objectives which are a part of the Evolution
type laser Raman microscope system (HORIBA, Tokyo, Japan), as well as an electronic
cooled CCD detector, an illuminant system, and a filter system. The Raman spectra were
excited by 532 nm YAG laser at a resolution of 1 cm−1 with the following parameters:
100× objectives, scanning range between 100 and 4000 cm−1, a grating of 1800 gr/mm,
gaining a single point in 8 s, and accumulating for 4 times. The spectrum was calibrated
using the 520.7 cm−1 lines of a silicon wafer. Data processing and spectral manipulation
such as smoothing, peak analyzing, and baseline correcting were performed using the
software Labspec 6 of Horiba.

3.3.2. IR Spectroscopy

Mid-infrared spectra were obtained using a LUMOS micro Fourier transform infrared
(FTIR, Bruker, Karlsruhe, Germany) within an ATR model. The spectra were obtained
after 64 scans with a scanning range between 4000 and 640 cm−1 and a resolution of
4 cm−1. Data processing and spectral manipulation such as smoothing, baseline adjustment,
normalization and band component analysis were performed using the special software
OPTU 7.5 as an accessory instrument.

3.4. Organic Geochemical Studies

The ore samples were crushed to 80 mesh (Φ = 0.18 mm) and extracted with
trichloromethane for 72 h to collect the chloroform bitumen A (Bitm-A), refers to Soxh-
let extract procedure. The extracts were separated into saturated, aromatic and polar
(NSO) fractions. The saturated and aromatic hydrocarbon fractions were prepared for the
next analysis.

3.4.1. GC-MS Analysis

GC-MS analysis was performed using an 5977A gas chromatograph-mass spectrome-
ter (Agilent, Santa Clara, CA, USA). The column used a HP-5 fused silica capillary column
(60 m × 0.25 mm × 0.25 µm i.d.). The GC oven was held isothermally at 120 ◦C for 2 min,
programmed to 300 ◦C at 4 ◦C/min and then remained at this temperature for 12 min. The
solvent is n-hexane, helium is used as the carrier gas, and the pressure is 15.475 psi, Take
the standard substance perfluorotributylamine as a reference.

3.4.2. C Isotope Analysis

C isotope analysis of extracts was performed using a system composed of Flash
2000 element analyzer (Thermo Fisher, Waltham, MA, USA) and Delta v Plus gas isotope
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mass spectrometer (Thermo Fisher, Waltham, MA, USA). Prepare the extract samples
drying in oven for 24 h at 70 ◦C, were wrapped in a tin cup to be converted into CO2
in Flash 2000 Element analyzer. Then, the CO2 is brought into the gas isotope mass
spectrometer to test the carbon isotope composition by helium through the online pipeline.
The column used was a SS fused silica capillary column (3 m × 6 mm × 5 mm i.d.). The
oxygen-passing reaction time is 3 s, and the temperature of the reaction furnace is 960 ◦C.
Helium was the carrier gas and CO2 were used as a reference gas (GBW04407, GBW04408
and IAEA-600). The standard deviation of the EA-GIMS for each measurement was less
than 0.2 %.

Among the above-mentioned laboratories, the extraction experiment (Bitm-A) and
GC-MS analysis were carried out in the State Key Laboratory of Oil and Gas Reservoir
Geology and Exploitation, Chengdu University of Technology, and other experiments were
carried out in Beijing Research Institute of Uranium Geology.

4. Results
4.1. Petrography and Mineralogy

Drilling cores show that U-rich sandstone is generally black and dark grey, and some
are rich in carbonaceous debris (fragments of ancient plants), and the other not (Figure 5a,b).
Ore-bearing sandstone ore is mainly composed of quartz, feldspar and carbonate minerals,
rich in pyrite and OM (Figure 5). Three forms of OM were observed in U-bearing sandstone
and reduction zone sandstone, the first type OM (type-I) has the characteristics of plant cell
structure, which should come from inherited OM (fragments of ancient plants) sedimented
and scattered into the sandstone (Figure 5c,d). The second type OM (type-II) presents the
evidence of mobility and migration (Figure 5c,e), being distributed along micro fracture
of U-bearing sandstone. The third type OM (type-III) also presents the characteristics of
mobility and migration, as it is distributed in dissolution voids of detrital minerals (calcite,
barite, feldspar, etc.) of high-grade ore (Figure 5g). Under the UV fluorescence, most of the
OM in the samples does not fluoresce, part of U-bearing sandstone samples shows light
blue fluorescence (Figure 5e), and some oil-gas (hydrocarbon) fluid inclusions showing
strong light blue fluorescence were observed in the micro-fractures of quartz (Figure 5h,i).

In the core of the drilled hole (exploration area outside the Hadatu deposit), a layer of
U-anomalous mudstone (≈80 ppm) with a thickness of about 5 m was found under the
U-mineralization sandstone of the Saihan Fm, in which numerous vertical micro-cracks
developed and filled with grey-black material (Figure 6a). Petrography and SEM-EDX
studies shows that the grey-black material distributed along the vertical cracks is composed
of light distillates (fluorescence), bitumen and pyrite (Figure 6b–f).

SEM analysis shows that U-minerals are distributed in various forms. Some U-
minerals are distributed as vein along micro cracks of U-bearing sandstone (Figure 7a),
some U-minerals distributed in the pores between grains of clastic minerals or in the
hole of carbonaceous debris (Figure 7c), and some along the micro fractures (Figure 7b)
or dissolution voids of clastic minerals (Figure 7d–i). Pyrites mainly occurred in grey
and dark-grey sandstone of the reducing zone and high-grade U-ores, shows columnar,
granular or scattered as tiny crystals. U-minerals are mainly uraninite, and a small amount
of coffinite (Ti-bearing) which is closely associated with pyrite and OM (Figure 7b–d,g).
EPMA analysis verifies that U-minerals of high-grade ore are mainly uraninite, the content
of UO2 is between 76% and 84%, and rich in S, P, As, Fe, Ca etc.

4.2. Micro Spectroscopy Analysis

Micro spectroscopy studies on the OM and uraninite after microscopic observation
and SEM analysis, including microlaser Raman and micro Fourier transform infrared
spectroscopy (FTIR) analysis.
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Figure 5. Photos of U-bearing sandstone and Microscopic characteristics of organic matter in Erlian Basin. (a,b)Pictures
of the representative U-bearing sandstone of Saihan Fm and different form organic matter in Uranium ore; (c) Inherited
carbonaceous debris (ancient plants) OM with cell structure and mobile OM distributed along fracture of high-grade
ore; (d,e) Inherited carbonaceous debris (ancient plants, fluorescence) OM with cell structure of U-bearing sandstone; (f)
mobile OM (no fluorescence) distributed along fracture of reduction zone sandstone; (g) pyrite, mobile organic matter (no
fluorescence) and uraninite distributed in dissolution hole of calcite in high-grade ore; (h,i) oil-gas (hydrocarbon) fluid
inclusion (intensive fluorescence) distributed along fracture of quartz in U-bearing sandstone. OM: organic matter; Ur:
Uraninite; Py: Pyrite; Oil-gas FI: Oil-gas fluid inclusion; T-im: transmission light image; UV-im: UV fluorescence image.

4.2.1. Microlaser Raman Analysis

Three types of OMs, which were founded in the U-bearing sandstone, was analyzed
by a micro-laser Raman spectroscopy, uraninite and pyrite associated with type-III OM
in the dissolution voids of calcite were analyzed by a microlaser Raman too. Type-I
OM (fragments of ancient plant) have two first-order characteristic peaks in the laser
Raman spectrum, the D band is between 1380~1407 cm−1 and the G band is between
1590~1620 cm−1. The G band is narrow, and the intensity of G band is significantly
higher than D band (Figure 8c). The type-II OM (migration OM) also have two Raman
characteristic peaks, the D band is between 1300~1390 cm−1 and the G band is between
1570~1590 cm−1, The G band and D band are wide, and the intensity of G band is slightly
higher than D band (Figure 8a,b). The type-III OM also have Raman band at ~1320 cm−1

(D band) and 1587 cm−1 (G band) (Figure 8d). D band is related to the degree of disorder
of carbon material, the width of D band will decease as the exaltation of OM, the G band is
related to the stretching vibration of the C=C bond in the molecular structure of carbon
material, the intensity of G band will increase as the degree of evolution of OM [35].
Therefore, type-II and type-III OMs are lower degree of evolution and highly disordered,
type-I OM is higher degree of evolution and more orderly than type-II and type-III OMs.
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Figure 6. Mudstone sample under the orebody of Saihan Fm (a) and Microscopic characteristics of the vertical cracks of the
mudstone sample (b–f); (a) Gray U-anomalous mudstone (≈80 ppm) with numerous vertical micro cracks was found under
the U-mineralization sandstone of the Saihan Fm, and filled with some gray–black OMs; (b,c) Light distillates (intensive
blue fluorescence), pyrite and OM distributed along the vertical cracks of mudstone; (d) BSE image shows pyrite and OM
distributed along the vertical cracks of mudstone; (e,f) EDX spectrum of pyrite and OM distributed along the vertical cracks
of mudstone.
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Figure 7. Microscopic characteristics of U-minerals and organic matter in the Erlian Basin. (a) Uraninite, pyrite and OM
distributed along the fracture of high-grade ore; (b) Uraninite, pyrite and OM distributed along the fracture of calcite
in high-grade ore; (c) Uraninite, pyrite and OM coexist in U-bearing sandstone, the OM has the characteristics of cell
structure; (d) Electron backscatter image shows Uraninite (grayish white), pyrite (gray) and mobile organic matter(black)
coexist in dissolution void of calcite in high-grade ore; (e,f) Mapping image shows Uraninite (yellow), pyrite (pink) and
mobile organic matter (black) coexist in dissolution void of calcite in high-grade ore, (e) Multi-element composite image,
(f) Single element of U image; (g) BSE image shows Uraninite (grayish white), pyrite (dark gray), molybdenite(gray) and
mobile organic matter(black) coexist in dissolution voids of barite in high-grade ore; (h,i) Mapping image shows Uraninite
(yellow), pyrite (light purple), molybdenite (purple) and mobile organic matter(black) coexist in dissolution voids of barite
in high-grade ore, h is multi-element composite image, (i) Single element of U image; OM: organic matter; Ur: Uraninite;
Py: Pyrite; Mo: molybdenite; Cal: calcite; Brt: barite; BSE: Electron backscatter image; Mapping: element Mapping image
transmission light image; UV-im: UV fluorescence image. EPMA M-P: EPMA measurement point.

Raman analysis shows the uraninite in the dissolution voids of calcite has the multiplex
Raman characteristic peaks, such as 370 cm−1, 401 cm−1, 778 cm−1, 813 cm−1, 924 cm−1,
1327 cm−1 and 1570 cm−1 (Figure 8e), indicated that uraninite in the dissolution voids
is not a single material component. Raman bands at 401 cm−1, 778 cm−1, 813 cm−1,
924 cm−1 are attributed to the characteristic peak of vibrational modes of U-O group
(Figure 8e). The same situation, type-III OM were detected the Raman characteristic peaks
at 419 cm−1, 727 cm−1 and 817 cm−1 beside the ~1320 cm−1(D band) and 1587 cm−1

(G band) (Figure 8d), which are attributed to the characteristic peak of vibrational modes of
U-O group, it is showing that type-III OM in the dissolution voids is not a single material
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component too, which contains some invisible U-minerals. Pyrite in the dissolution voids of
calcite also has the multiplex Raman characteristic peaks at 341 cm−1, 377 cm−1, 426 cm−1,
552 cm−1, 611 cm−1, 1306 cm−1 and 1587 cm−1 (Figure 8f). Raman band at 341 cm−1 and
377 cm−1 are attributed to the characteristic peak of pyrite, 426 cm−1 is attributed to the
vibrational modes of U-O group, 1306 cm−1 and 1587 cm−1 are attributed to the D band
and G band of OM, 552 cm−1 is unknown substance. In short, in the dissolution voids
of calcite, Raman bands at ~1320 cm−1 and 1580 cm−1, which were detected in uraninite
and pyrite, are attributed to the G and D bands of OM, this indicate the presence of OM in
Uraninite and pyrite, Raman band at 370 cm−1, which is detected in uraninite, indicate the
presence of invisible pyrite in Uraninite, Raman band at 426 cm−1, which is detected in
pyrite, indicate the presence of invisible U-minerals in pyrite. Uraninite, pyrite and OM
are closely symbiotic, they may precipitate in the same fluids.

Figure 8. Raman Spectrums of OM and Uraninite (OM-bearing). (a) Raman Spectrum of OM which is distributed along
fracture of ore-bearing sandstone; (b) Raman Spectrum of OM which is distributed along micro-fracture of Qz in high-grade
sandstone; (c) Raman Spectrum of the inherited carbonaceous debris (ancient plants, fluorescence) OM of U-bearing
sandstone which has cell structure; (d–f) Raman Spectrum of mobile OM, OM-bearing uraninite, OM-bearing pyrite which
are distribution in dissolution voids of calcite of high-grade ore. Qz: quartz; Cal: calcite.
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4.2.2. Micro FTIR Spectroscopy Analysis

Three types of OMs and OM-bearing uraninite, which were founded in the U-bearing
sandstone, was analyzed by a micro FTIR spectroscopy. The infrared absorption peaks of
different OM are shown in Table 1 and Figure 9.

Table 1. Micro FTIR spectroscopy analysis result of OM.

Testing No. Sample Properties Distribution Pattern Absorption Peaks

FTIR-1 type-I OM Scatter in porosity of U-bearing sandstone 826, 1033, 1182, 1242, 1457, 1508, 1604;
2871, 2928, 2962

FTIR-2 type-II OM Distribution along cracks of
U-bearing sandstone

749, 809, 855, 1031, 1180, 1249, 1374,
1438, 1595, 1747; 2853, 2924

FTIR-3 type-III OM Distribution in the dissolution voids of
U-bearing sandstone

749, 855, 995, 1352, 1402, 1610;
2852, 2924

FTIR-4 OM-bearing Uraninite Distribution in the dissolution voids of
U-bearing sandstone

711, 871, 953, 1376, 1795, 2512;
2856, 2874, 2924, 2981;

Figure 9. FTIR Spectrums of OM and Uraninite (OM-bearing) in Erlian Basin. (a) FTIR Spectrum of the inherited carbona-
ceous debris (ancient plants, fluorescence) OM of U-bearing sandstone which has cell structure; (b) FTIR Spectrum of OM
which is distributed along fracture of ore-bearing sandstone; (c,d) FTIR Spectrums of mobile OM-bearing uraninite and OM
which is distribution in dissolution voids of calcite of high-grade ore; Cal: calcite.

Type-I and type-II OMs are exhibit a very complex infrared spectrum, mainly covers
700~900 cm−1, 1000~1300 cm−1, 1400~1600 cm−1 and 2800~3000 cm−1 (Figure 9a,b), they
have the same peaks of ~810 cm−1, ~1030 cm−1, ~1180 cm−1, ~1245 cm−1, ~1600 cm−1

(Table 1, Figure 9a,b). Type-III OM have lower peaks of 700~900 cm−1 and 1200~400 cm−1,
higher and broad peaks of ~995 cm−1 (Figure 9d). Compare with published literature, all
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of three type of OMs have major bands at 2800~3000 cm−1, which are identified as typical
stretching vibration of CH2 group of aliphatic (Figure 9a,b,d). Bands at ~2960 cm−1 corre-
sponds to the asymmetric stretch of C-H bond’s, and 1460 cm−1, 1350 cm−1 corresponds
to the deformation vibration and symmetric stretch vibrations of C-H bond’s,1600 cm−1

corresponds to C=C bond in benzene ring or C-H bond’s stretching vibration [36,37]. Band
at ~1030 is assigned to the C-O bending vibration of alcohol and ether, Band at ~1380 cm−1

is assigned to bending vibration of CH2 and CH3 groups or asymmetric stretching vibra-
tion of COO- group of aromatics [38], Bands at ~1250 cm−1 are assigned to stretching
vibration and bending mode of phenolic [39]. Bands at ~750 cm−1 and ~850 cm−1 assigned
to vibration bonds of aromatics. Band at ~3400 cm−1 is assigned to vibration of hydroxyl
of H2O. In general, all the OMs have the similar groups of methyl, methylene, benzene
ring, carboxyl, but the type-III OM is obviously different at the broad peaks of ~995 cm−1,
this is attributed to the type-III OM not a single substance, which contains other material
components. The infrared spectrum characteristic peaks are superimposed in the area of
1000~1100 cm−1, resulting in the broad and strong peak of 995 cm−1.

The IR spectrum of uraninite have the peaks of 711 cm−1, 871 cm−1, 953 cm−1,
1376 cm−1, 1796 cm−1 and 2800~3000 cm−1 (Figure 9c). Bands at ~711 cm−1, ~871 cm−1

and 953 cm−1 are assigned to vibration of U-O bond [39,40],1376 cm−1 is assigned to
bending vibration of CH2 and CH3 groups or asymmetric stretching vibration of COO-
group of aromatics, 1796 cm−1 is assigned to vibration of C=O bond [38], 2800~3000 cm−1

are identified as typical stretching vibration of CH2 group of aliphatic [37]. Overall, in
addition to the bands of U-O bond, uraninite also contains broad bands of 1376 cm−1,
2856 cm−1, 2874 cm−1, 2924 cm−1, 2980 cm−1, it is instructed that existence tiny OM in
Uraninite, which is hosted in the dissolution voids of calcite of U-bearing sandstone.

4.2.3. GC-MS Analysis of Soxhlet Extracts

The GC-MS analysis results and geochemical parameters of the Soxhlet extracts of
U-bearing sandstone are shown in Table 2. Most U-bearing sandstone samples contain a
certain amount of soluble OM, ranging from 0.0012% to 0.0289%. The saturated hydrocar-
bon content is 13.13% ~ 51.35%, the aromatic hydrocarbon content is 2.70%~15.79%, the
colloid (nonhydrocarbon) content is 32.69%~66.67%, the bitumen content is 1.27%~28.85%
(Table 2). Sa-HC/ Ar-HC is 1.3~19.0, the Saturated hydrocarbon occupies a dominant
position, it reflects a high maturity of hydrocarbons in the U-bearing sandstone, and good
oil-generating parent materials.

Table 2. Group composition and geochemical parameters of Soxhlet extracts of ore-bearing sandstones.

Sample No. Cont
Bitm-A*/% Sa-HC /% Ar-HC /% Non-HC/% As/% Main C-Peak Sa/ Ar Pr/Ph CPI OEP Pr/nC17 Ph/nC18

EK405-109-1 0.0052 31.58 15.79 44.74 7.89 nC17 2.0 0.912 1.301 1.077 0.335 0.386

BK405-105-1 0.0074 51.35 2.70 37.84 8.11 nC17 19.0 0.964 2.143 1.041 0.351 0.382

BK405-105-2 0.0289 31.51 2.74 57.53 8.22 nC17 11.5 0.979 1.849 1.049 0.356 0.430

E19-02-4 0.0003 13.13 10.10 66.67 10.10 nC18 1.3 0.792 1.617 0.960 0.304 0.274

E19-02-5 0.0021 30.77 9.40 49.57 10.26 nC23 3.3 1.009 3.921 3.938 0.288 0.256

E19-02-6 0.0016 20.00 8.33 61.67 10.00 nC18 2.4 0.754 1.407 0.920 0.283 0.266

EZK1215-3 0.0013 30.40 7.67 51.42 10.51 nC25 4.0 1.128 2.127 1.907 0.116 0.085

EZK1215-4 0.00008 # 25.00 6.25 53.12 15.63 nC23 4.0 0.600 9.396 2.265 0.277 0.344

EZK1215-8 0.00009 # 31.11 6.67 44.44 17.78 nC18 4.7 0.622 1.752 0.970 0.307 0.430

EZK1215-9 0.0029 20.00 13.33 51.67 15.00 nC25 1.5 0.588 2.649 2.039 0.303 0.394

E20-D3-3 0.0012 30.77 7.69 32.69 28.85 nC19 4.0 0.730 2.138 1.060 0.323 0.347

* Calculation formula of Content of Bitm-A: X = G2−G1
m × 100%. X: Content of Bitm-A, %; G1: Mass of empty weighing bottle (minimum

value of two times), g; G2: Mass of weighing bottle plus Bitm-A (minimum value of two times), g; m: Mass of sample, g. Sa: Saturated; Ar:
Aromatic; As: Asphaltene HC: hydrocarbon; Pr: pristane; Ph: phytane; CPI: Carbon preference index; OEP: odd-even predominace; the
value with “#” is relatively low and only used as a reference value.
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The carbon number of n-alkanes are distribution ranges from nC17 to nC32. There are
two types of peak shape in general. The first type is the former single peak shape with
main peak carbon No. of nC17~nC19, and the second type is of bimodal morphology, with
the main peak carbon characteristics of nC17~nC19 and nC23~nC25 (Figure 10a), the low
molecular n-alkanes occupies a dominant position, but there are also some high molecular
n-alkanes. The Pr/Ph value is 0.588~1.128 (Table 2), and the average value is 0.808. The CPI
(Carbon preference index) value is 1.30~3.92, OEP (odd-even predominace) is 0.92~3.94,
and the odd-even advantage is not obvious, indicating that the hydrocarbon components
of the ore-bearing sandstone are in the mature stage. The Pr /nC17 value is 0.116~0.364,
the Ph /nC18 value is 0.085~0.464, and the Pr /nC17 with Ph /nC18 correlation graph
has a narrow distribution range (Figure 11), indicating the formation of source rocks in
reduction-weak oxidizing environment. The chromatogram of m/z 217 was dominated
by pregnane and homopregnane. The distribution of C27–C28–C29 regular steranes had an
order of C29 > C27 > C28 (Figure 10c), The pentacyclic terpanes were characterized by a high
abundance of C30 hopane, while the C23 tricyclic terpane was predominate in the tricyclic
terpanes (Figure 10b), this shows that sedimentary environment was salty and autotrophic
algae have more advantages than bacteria. The Ts/Tm (Neohopane/Trinorhopane) value
is 0.90~1.06, ETR ((C28+C29)/Neohopane)) value is 0.64~0.66, GI (Gammacerane index)
value is 0.32~0.38, it also indicates that the hydrocarbon source rock was formed in the
reductive sedimentary environment of Saline water.

Figure 10. Gas chromatograms and ion mass chromatograms of Soxhlet extracts of U-bearing sandstone in Erlian Basin.
(a) Gas chromatograms of n-alkanes; (b) Characteristics of terpanes of Soxhlet extracts; (c) Characteristics of steranes of
Soxhlet extracts.



Minerals 2021, 11, 532 16 of 23

Figure 11. Pr/nC17-Pr/nC18 plot of the Soxhlet extracts of U-bearing sandstone in Erlian Basin.

4.2.4. C Isotope of Chloroform Bitumen A

The C isotope composition of the Soxhlet extracts of U-bearing sandstone are shown
in Table 3. The δ13C isotope value of extracts ranges from −33.4‰ to −27.0‰, with
an average value of −29.9‰. It falls within the δ13C value range of organic matter
(δ13C = −10‰~−35‰) [41].

Table 3. δ13C composition of Soxhlet extracts of ore-bearing sandstones.

Sample No. Deposit Sample Properties δ13C V-PDB (‰)

EK405-109-1 Bayanwula Dark, high-grade U-ore −31.1

BK405-105-1 Bayanwula Dark, high-grade U-ore −33.4

BK405-105-2 Bayanwula Dark, high-grade U-ore −32.0

E19-02-4 New area drill Grey, U-bearing sandstone −28.6

E19-02-5 New area drill Grey, U-bearing sandstone −28.1

E19-02-6 New area drill Grey, U-bearing sandstone −27.0

EZK1215-3 Hadatu Dark, medium-grade U-ore −29.6

EZK1215-4 Hadatu Dark, high-grade U-ore −30.9

EZK1215-8 Hadatu Dark, medium-grade U-ore −28.6

5. Discussion
5.1. The Nature and Source of OM

According to sedimentological core analysis, coal layers are absent or less abundant
inside the reservoir zone. Three forms of organic matter are documented from the sedimen-
tary rocks of U-bearing sandstone and reduction zone sandstone. The type-I OM originated
from the sedimentation of fragments of ancient plants, it is supported by the evidence of
plant cell structure, but type-II and type-III OMs are different.
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Micro laser Raman analysis indicated that the type-I OM has a narrow G band charac-
teristic, which is comparable to the low-mature (Ro = 0.5%–1%) coal chip characteristics
reported by Morga et al. (2014) [42] and Su et al. (2016) [43], It is obviously different from
the Raman spectrum characteristics of bitumen reported by Zhang et al. (2013) [44] and
Wang et al. (2015) [45]. The type-II and the type-III OMs have the characteristics of broad D
band and G band. The D band (~1350 cm−1) (disordered induced) could be explained by
phonon dispersion of graphite, G band (~1600 cm−1) is related to the stretching vibration
of C=C bond in the molecular structure [35,46], The intensity ration of G band and D
band (IG/ID) is increasing as the maturation of OM [47,48]. Type-I OM has the Raman
characteristics of higher G band, type-II and type-III OMs have the Raman characteristics
of lower G band (Figure 8), it shows that the type-I OM has a higher degree of evolution
than type-II and type-III OM, which are higher disordered.

All three types of OM have complex molecular structure was instructed by FTIR
studies. The type-I OM has the similar infrared characteristics of the coal reported by
Sun et al. (2001) [49], but it still has a more complex composition and molecular structure,
this may be caused by a certain degree of thermal evolution. Infrared characteristics of
type-II OM is different from the type-I OM, and is similar to the infrared spectrum of the
standard bitumen from the Sichuan Basin, South China (Figure 12a), but is quite different
from the infrared spectrum of humic acid reported by Jiménez-González et al. (2019) [50],
Wei et al. (2018) [51] and Zhang (2015) [52]. (Figure 12b–d). Type-III OM has very broad
peaks from 1000 cm−1 to 1500 cm−1, it is due to the superimpose of the peaks of OM and
ore-forming elements, this view is also supported by the SEM-EDX, EPMA and laser Raman
analysis results of U-minerals. Infrared and Raman analysis shows that the OM related
to U-mineralization is a macromolecular substance with a complex structure, containing
methyl, methylene, carboxyl, benzene ring etc., it is similar to bitumen, which contains
molecular groups such as methyl, carboxyl and benzene ring groups of alcohol, ether,
aliphatic, aromatic and phenolic etc.

Figure 12. FTIR spectra of standard bitumen sample from Sichuan Basin (a) and FTIR spectra of humic acid of related
references(b–d). (a) FTIR spectra of standard bitumen sample from Sichuan Basin; (b) FTIR spectra of humic acid from soil
reported by Jiménez-González et al. (2019); (c) FTIR spectra of humic acid from soil reported by Zhang (2020); FTIR spectra
of humic acid from peat reported by Wei et al (2018).
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GC-MS analysis results show that the extracts of U-bearing sandstone have a high
abundance saturated hydrocarbon, aromatic hydrocarbon. Low-carbon n-alkanes are
mainly derived from plankton and algae fatty acids and high-carbon n-alkanes derived
from the epidermal wax layer of terrestrial plants [53,54]. Low-carbon and high-carbon
n-alkanes coexist in U-bearing sandstone, indicated that the parent material is mainly
lower aquatic organisms, while higher plants also have a certain contribution. Pr/Ph < 1.0
indicating reduction environment [55,56]. The Pr/Ph value (average value is 0.808) of
n-alkanes indicating that the parent material comes from a strong reducing environment.
The CPI, OEP recommend the hydrocarbon components of the ore-bearing sandstone was
passive the mature stage. The Pr/nC17 with Ph/nC18 correlation graph indicate the source
rocks in reduction-weak oxidizing environment. The biomarker of Pregnane, hopane,
homopregnane and tricyclic terpane, Ts/Tm, ETR, GI values also show the source rock was
formed in reduction and salty environment. The main geochemical parameters obtained
from the above studies are comparable with the crude oil of pioneering studies in the
Wulanhua and Saihantala sag in Erlian basin [57,58].

The δ13C isotope value of extracts ranges from −33.4‰ to −27.0‰, with an average
value of −29.9‰, indicates that carbon should be derived from sapropelic kerogen rather
than humic-type kerogen [59]. It is basically consistent with the δ13C isotope values
(−32‰~−29.0‰) measured by Feng et al. (2020) and Wang et al. (2020) of the crude oils
in the Wulanhua sag and Saihantala sag [57,58], implies that the extracts are related to the
deep hydrocarbon fluids in the Erlian Basin. The presence of hydrocarbon inclusions (light
blue fluorescence, Figure 5h,i) in quartz of U-bearing sandstone, and the bitumen veins
and light distillates in the vertical cracks of the mudstone of Saihan Fm (Figure 6), these
are supported the hydrocarbon fluids invaded the ore-forming zone of Saihan Fm.

5.2. The Relationship Between OM and Uranium Mineralization

OM has long been known to be associated with many types of mineral deposits, espe-
cially certain types of uranium deposits [60]. The precipitation of uranium in sedimentary
basin is described as the process of reducing uranyl ions from U6+ to U4+ [61], OM provides
the reductant for uranium precipitation, the reaction process of U precipitation has also
been confirmed by simulation experiments [62,63]. Initially, scholars believed that this
kind of OM was mainly charcoal formed by burial of ancient plants [64,65], Later, some U
deposits were also discovered in the formations which are lacking carbonaceous debris
OM (e.g., Grants in the United States, Oklo in Gabon, Athabasca in Canada, WitWatersrand
in south Africa, Bigrlyi in Australian), hydrocarbon fluids were noticed and speculated for
the importance role of U-mineralization in this type deposit [13,14,66–69].

The mechanism of the combination of OM and uranium is very complex, including
reduction, absorption, complexation, etc. [70–73]. Beside the absorption, OM may con-
tribute to U-mineralization mainly in two ways: (1) The first way is to reduction the U(VI)
of the formation as a reducing agent [70], then the U as tiny particles(solid) or dissolved
status enter the ore-forming fluids, the chemical reaction formula of reduction described
as: CH3COO− + 4U(VI) + 4(H2O)→ 4U(IV)+2HCO3− + 9H+ [71]; (2) The second way is
to complexation with uranium and migration together in the form of the macromolecular
structure of the U-organic complex [72]. Under oxidizing conditions, the U-organic complex
decomposes and precipitates, the chemical reaction formula of U-organic complexation and
oxidation decomposition described as: 2R-COOH + UO2

2+ → RCOO-(UO2)-OOCR + 2H+,
2(RH) + UO2

2+ → 2R0 + 2H+ + UO2 [73].
In Erlian basin, previous studies have generally agreed that the role of OM in U-

mineralization. However, whether this OM is carbonaceous debris or mobile hydrocarbon
fluids is still very controversial [12,15,18]. Our study shows that most U-minerals occur in
the intergranular pores, micro-cracks and detrital mineral dissolution voids of sandstone
(Figure 7a,b,d,g), and only a small amount of U-minerals are found in the cavities of ancient
plant fossils (Figure 7c), indicates that there is no large-scale U-mineralization occurred
during the stage of sedimentary diagenesis. The OM related to large scale mineralization
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has the characteristics of mobility, the mobile OM has the significantly different characteris-
tics of Raman and infrared spectroscopy as carbonaceous debris, but has the characteristics
of macromolecular OM similar to the high disordered and amorphous bitumen. These evi-
dences are in contrast with the contribution of inherited carbonaceous debris to large-scale
U-mineralization. Furthermore, hydrocarbon fluid inclusions (intensity blue fluorescence)
in Quartz of U-bearing sandstone and hydrocarbon fluids in vertical fractures of mudstone
were found, confirmed that deep oil-gas fluids intruded into ore-bearing layer. C-isotope
and biomarker compounds of extracts are similar to crude oil in the Wulanhua sag and Sai-
hantala sag of Erlian basin, indicates that the hydrocarbon fluids originate from lacustrine
source rocks in the lower layer of the Saihan Fm.

Tenge’ger Fm (131 Ma~121 Ma) is a large section of dark gray–black mudstone-based
sediments (>500 m), formed in a warm–humid climate and floodplain circumstance [30,74].
Saihan Fm (Aptian-Albian stage,120~100 Ma) is a river and lacustrine facies coal-bearing
coarse clastic sediments (>200 m), formed in a Semiarid climate [75]. The age of large-scale
hydrocarbon generation of the source rocks of Tenge’er Fm and oil–gas invading event
is around 100–95 Ma [74], indicating that the hydrocarbon invading event was after the
Saihan Fm sedimentary. The main U- mineralization age in the Erlian Basin varies widely,
ranging from 85 Ma to 35 Ma [15,76,77], U-mineralization age is significantly later than the
age of oil-gas fluids invading event. U deposits and oil–gas reservoirs are consistent on
the spatial scale (i.e., produced in the same basin), and U-mineralization is later than the
oil–gas invading event. U mineralization is affected and restricted by oil–gas fluids system,
supporting the idea that hydrocarbons are involved in U mineralization in the Erlian Basin.

An important issue needs to consider is what the role of hydrocarbons in the U-
mineralization in the Erlian Basin. Our research found the co-existence of bitumen vein,
light distillates and pyrite vein in the cracks of mudstone under the U-bearing layer
(Saihan Fm), as well as the light oil-gas fluid inclusions (intensity blue fluorescence) in
microfractures of quartz of U-bearing sandstone, this proved that the hydrocarbons from
the lower layer actually intrude into the U-mineralization layer, and the occurrence of
hydrocarbons cracking–differentiation. Besides, we found the tiny U-minerals, pyrite,
and migration OM (related to the differentiation-cracking of hydrocarbons) closely co-
existing in the dissolution voids of detrital minerals, this proved that U-minerals, pyrite
and mobile OM originate from the same ore-forming fluid system. Two models could
utilize for the role of hydrocarbons in the U-mineralization. The first model is that the
uranyl ions are reduced to sub-micron minerals by the reduction agents from cracking
hydrocarbons, the sub-micron U-minerals entered the ore-forming fluid and transported
with fluids together, U was precipitated during the changes of physical–chemical conditions
of ore-forming fluid. The second model is that the uranyl ions are complexed with OM
(evolution from hydrocarbons) and migrated together, U was precipitated during the stage
of decomposition of coordination compound.

6. Conclusions

Our research has identified three types of OM and provided direct evidence that
mobile OM (mainly hydrocarbon fluids) participates in U-mineralization. We believe that
there are at least two stages mineralization events, stage I is related to sedimentary organic
matter (syngenetic pre-enrichment stage), and stage II is related to mobile hydrocarbon flu-
ids (main mineralization stage). Therefore, our results support that migrated hydrocarbons
were involved as a reducing agent for the main uranium mineralization after synsedimen-
tary mineralization. The migration OMs should originate from deeply oil–gas system under
Saihan Fm, involved in main U mineralization stage. In addition to the OMs participating
in the oxidation-reduction event of U-mineralization, we proposed a model of uranium
and OM complex migration, decomposition and precipitation. Of course, this is just a
hypothetical model, which may need to be verified by more experiments and researches.
We believe that our study, albeit preliminary, has shown that migration hydrocarbons have
all the characteristics required to mobilize U and act as ore fluids, therefore, it is reasonable
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to consider the possibility that for these deposits at least, hydrocarbon fluids may have
contributed significantly to ore formation as an agent of uranium transportation.
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