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Abstract: Mine workers operate heavy equipment while experiencing varying psychological and
physiological impacts caused by fatigue. These impacts vary in scope and severity across operators
and unique mine operations. Previous studies show the impact of fatigue on individuals, raising
substantial concerns about the safety of operation. Unfortunately, while data exist to illustrate the
risks, the mechanisms and complex pattern of contributors to fatigue are not understood sufficiently,
illustrating the need for new methods to model and manage the severity of fatigue’s impact on
performance and safety. Modern technology and computational intelligence can provide tools to
improve practitioners’ understanding of workforce fatigue. Many mines have invested in fatigue
monitoring technology (PERCLOS, EEG caps, etc.) as a part of their health and safety control system.
Unfortunately, these systems provide “lagging indicators” of fatigue and, in many instances, only
provide fatigue alerts too late in the worker fatigue cycle. Thus, the following question arises:
can other operational technology systems provide leading indicators that managers and front-line
supervisors can use to help their operators to cope with fatigue levels? This paper explores common
data sets available at most modern mines and how these operational data sets can be used to model
fatigue. The available data sets include operational, health and safety, equipment health, fatigue
monitoring and weather data. A machine learning (ML) algorithm is presented as a tool to process
and model complex issues such as fatigue. Thus, ML is used in this study to identify potential leading
indicators that can help management to make better decisions. Initial findings confirm existing
knowledge tying fatigue to time of day and hours worked. These are the first generation of models
and future models will be forthcoming.

Keywords: machine learning; mine worker fatigue; random forest model; health and safety management

1. Introduction

Heavy industries such as mining, which require rotational shift schedules of their
personnel, are exposed to fatigue risk. This risk manifests itself in health and safety dangers
presented by fatigued individuals operating heavy equipment. Fatigue is often a contribut-
ing factor to many health and safety incidents in mines, but, in addition, fatigue can also
affect cognition adversely, with a negative impact on the operational performance of mine
sites. These risks need improved modeling, which can enable a better understanding
and better management. Improved models can eventually lead to more progressive and
dynamic fatigue management with a positive impact on operational safety and efficiency.

Bauerle et al. (2018) recently discussed the limitations and lack of studies on fatigue in
the mining industry [1,2]. However, several devices and technologies have been developed
to identify and reduce fatigue-related risk. These tools are appealing as a risk control
approach that monitors behavioral and task performance indicators that potentially indicate
increases in fatigue risk [3]. Moreover, in mine operations, many real-time operational data
sets exist and have great potential to provide far more analytical insight to model future
undesirable events such as fatigue.
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This paper presents a method that uses operational data sets to model workers’ fatigue.
The goal is to better understand the factors, tracked in operational technology systems,
which could be used as predictors for fatigue events. The primary questions of this paper
are: (1) Are there indicators within operational and other common data sets at mines that
can be used to model fatigue events? (2) When these data sets are integrated and analyzed
on common dimensions, is there potential value in analyzing the data with advanced
computational tools such as machine learning algorithms? The approach presented in
this paper is different from previous studies of mining fatigue because we use a machine
learning model to identify predictor elements of workers’ fatigue. The proposed model and
future iterations may be useful in identifying environmental, operational and managerial
events that lead to fatigue events in mine workers. This approach, when fully developed,
has the potential to enhance safety and health management systems by quantifying areas
of managerial focus.

The first step of the data analysis is assessing the preliminary relationships of the data.
Based on the literature, there are some hypotheses around potential variables affecting
fatigue in operators, which are tested in the initial data analysis section. First, does the
average production or operational patterns of the mine influence the number of fatigue
events? Is there any relation between time, week, month or year and the number of fatigue
events? What are the differences between night and day shifts in terms of fatigue? Can
the distribution of the fatigue events by shift and hour give us insights into the fatigue
events? Lastly, are there any variables from weather data that cause a higher number of
fatigue events?

2. Literature Review

Fitness for duty in mining is influenced by an individual’s physical and psychological
fitness, such as drug- and alcohol-induced impairment, fatigue, physical fitness, health
and emotional wellbeing, including stress. Among these factors, fatigue is a strong driver
of fitness for duty in mining, which significantly is caused by excessive work hours or
insufficient rest periods associated with shiftwork [4,5]. Hence, while fatigue is identified
as an issue that mine sites must address, studying factors that are contributing to or
ameliorating fatigue issues is important. Fatigue in the workplace often results in a
reduction in worker performance. Fatigue must be controlled and managed since it causes
significant short-term and long-term risks. In the short term, fatigue can result in reduced
performance, diminished productivity, human error and deficits in work quality. These
effects might result in lower levels of alertness, coordination, judgment, motivation and
job satisfaction, which cause increased severe health and safety issues including accidents
and injuries [6–9]. Fatigue can also cause long-term negative health implications. These
outcomes will result in future mental and physical morbidity, mortality, occupational
accidents, work disability, excess absenteeism, unemployment, reduced quality of life and
disruptive effects on social relationships and activities [10,11].

Based on a study by Drews et al. (2020), fatigue in the mining industry is different
from other industries due to mining-specific environmental factors. Some of these factors
are repetitive and monotonous tasks, involving long work hours, shiftwork, sleep depri-
vation, dim lighting, limited visual acuity, hot temperatures and loud noise [2]. However,
Drews et al. (2020) also mention the high monotony of equipment operation in mining
haulage as a key contributor to fatigue. Various psychological and physiological issues
have effects on the fatigue of workers, which makes fatigue measurement and manage-
ment difficult. Drews et al. (2020) extended a conceptual model of fatigue, which added
sleep efficiency to a previously proposed model of fatigue [2]. This model shows that
distal and proximal factors have effects on fatigue including clinical factors such as, life
events and stressors, personality factors, previous shift conditions and sleep efficiency.
Their study was based on data collected with haulage operator focus groups. Participants
discussed factors that contributed to their fatigue, such as diet, shift schedule, travel time
to work, sleep amount and quality, domestic factors, physical fitness and the presence
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of sickness. Another finding from the study is that operators have a clear awareness of
fatigue’s impacts on their performance and how to reduce the impact through nutrition,
physical fitness, etc. [2]. Even considering this, other studies show that there is no clear
approach to control, monitor and mitigate the fatigue of workers by health and safety
management during mine operations [2]. Some technologies can monitor drivers of fatigue,
such as tracking eye movement and head orientation (PERCLOS monitoring system) or
hard hats with electroencephalogram (EEG) activity tracking. Each of these technologies
has its advantages and disadvantages [2]. Each can detect fatigue when worker fatigue
occurs; however, these systems do not necessarily prevent or mitigate fatigue [2]. Moreover,
users of these technologies, such as the PERCLOS system, expressed privacy concerns
regarding the system’s constant monitoring and mentioned a high number of false alarms
from the equipment, thus being a nuisance [2]. Bauerle et al. (2018) mentioned that, despite
the complexity and uncertainty regarding the fatigue of miners, some real solutions could
be developed for improving fatigue-related issues with fatigue assessment interventions,
looking beyond sleep and physical work, and shift work effects [1]. In the same vein,
Drews et al. emphasized that health and safety management should take a socio-technical
systems perspective, since a sole focus on technological solutions may create an illusion of
safety, while not necessarily improving safety performance. Moreover, these approaches
require user acceptance and high levels of trust in order not to have an adverse impact on
their functionality [2]. Successfully modeling fatigue will require a multi-faceted approach
and a variety of data inputs from the mining system.

In addition to the health and safety implications on workers, fatigue can result in
damage or loss of expensive mine equipment such as haul trucks. Therefore, the mining
industry has long focused on measuring operational risk losses for the purpose of capital
allocation and the process of managing operational risks. Operational risk results from in-
sufficient or failed internal processes, people, control, systems or external events, including
equipment health, individual health and safety and worker fatigue [12]. To manage the
health of equipment, organizations have deployed early warning systems through equip-
ment monitoring and modeling technology. These technologies depend on understanding
either machine design or empirical modeling methods to determine normal equipment
behavior and detect any signs of abnormal behavior [13]. These technologies learn the
dynamic operational behavior of equipment using equipment sensor data and create a
predictive model. The predictive model output, which is the equipment’s performance, will
be compared with actual measurements from sensor signals to detect any abnormalities
or failures [13].

The entire mine workplace could benefit from new technologies to collect and analyze
real-time safety data such as fatigue monitoring data. A critical issue is the ability to use this
information to react prior to an incident. The development of new technologies can assist
safety managers in providing timely measures to predict an increase in risk, resulting in the
prevention of serious incidents [14]. To manage the operational safety and health in mines,
it is necessary to have safety indicators. There are two different types of safety indicators:
lagging and leading indicators [15]. Lagging indicators evaluate safety and health using
incident and illness rates, while leading indicators measure workplace activities, conditions
and safety and health-related events [16]. In the case of fatigue, lagging indicators are
evident after fatigue has occurred, while leading indicators are measurements that could
prevent fatigue, such as sleep patterns or caffeine intake, and steps that help to lower
fatigue when it is not so high. Since lagging indicators have a reactive and delayed nature,
managers need to develop appropriate leading indicators to measure workplace safety and
health risk [16]. Leading indicators have a predictive value regarding unsafe workplace
conditions or behavior that is followed by an incident [17–20]. There are three main uses
of leading indicators: monitoring the level of safety, deciding where and how to take
action and motivating managers to take action [21,22]. Passive leading indicators (PLIs)
are measurements that can provide an indication of the probable safety performance [14].
On the other hand, active leading indicators (ALIs) are dynamic and more subject to active
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change in a short period of time [14,23]. To have predictive values, ALIs must be recorded
in a timely manner in order to obtain accurate measurements and observations.

ALIs are continually being advanced as new technology is introduced into production
systems. Internet of things (IoT), big data, artificial intelligence (AI) and machine learning
(ML) are being used to enhance the safety, efficiency and quality of the operations [24–26].
In high-risk environments such as mines, internet of things can be used to raise safety
and decrease the probability of human error and disasters [24–26]. In addition, IoT can
be a relatively inexpensive and effective approach for hazard recognition and sending
safety notifications [14].

Machine learning (ML) has been demonstrated to be a predictive tool to support
management to make better decisions [16,27]. In spite of the abundant leading indicators,
the use of ML to predict leading indicators is rare [16,27]. ML is flexible to operate, without
any statistical assumptions, and has the ability to identify both linear and non-linear
relationships within the phenomenon investigated [16,24,28]. Poh et al. (2018) used ML
to predict safety leading indicators on construction sites [16]. They used a data set that
was collected from a construction contractor to identify the input variables and develop
a random forest (RF) model to forecast the safety performance of the project [16]. They
mentioned that the occurrence and severity of incidents is not random, which means that
there is a pattern describing the incidents, and they can be predictable [16]. This pattern can
be used to explain the complexity of the leading indicators and long-term data collection
helps to elucidate the interactions of safety indicators over time [16,29].

The literature suggests that finding leading indicators to predict fatigue in the mining
industry is necessary [2]. Due to the complexity of fatigue, applying computational intelli-
gence methods such as machine learning (ML) algorithms on the real-time data captured
from current and future IoT technologies can benefit mine operations in modeling fatigue.
Such a model could identify ALIs and predictive elements of workers’ fatigue. Poh et al.
collected data sets for the purpose of modeling safety. However, their study was limited
to only safety data, likely neglecting other possible predictive factors. A comprehensive
study incorporating a wider range of data sets will extend possible independent features
in the model to identify the best predictive factors. If these factors can be developed as
leading indicators of fatigue, enhanced safety and health decisions can be made earlier in
the fatigue cycle.

3. Methodology
3.1. Data Set Characterization

The presented study uses 3.5 years of data at a single, large, operating surface mine.
Table 1 provides an overview of the data sets, the types of information encoded in the data
and the range of dates covered by each data set.

Table 1. Data sets’ details.

Data Source Key Factors Date Range

Fatigue monitoring Operator drowsiness,
micro-sleeps, etc. 2014–2017

Time and Attendance Hours worked, shift worked, etc. 2014–2017

Fleet management system
(production and status)

Production cycles, faulty equipment,
delayed equipment, etc. 2014–2017

Equipment health alarms
and events

Notification of equipment abuse, use
of equipment, etc. 2014–2017

Weather conditions
Temperature, wind speed, wind

direction, change,
precipitation, relative humidity, etc.

2014–2017
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The site utilizes a PERCLOS monitoring system, which has been in place since 2014.
This system uses cameras to track, monitor and model the eye movements of haul truck
operators [2]. The system detects certain eye movements and can determine if the eyes are
closed, blinking rapidly and other factors that indicate fatigue. If the system cannot detect
that the operator’s eyes are open for more than 3 s, it alerts the operator using seat buzzes
and vibration. In addition to a local alarm, the system also sends a message or alarm to the
dispatcher, supervisor and the company supporting the system.

Data captured from the system are categorized based on type of the events: micro-
sleep with a stable head posture, other eye closure (drowsiness), eyewear interference
(clear lenses), eyewear interference (sun glasses), normal driving, bad tracking, glance
down, glance away, driver leaning forward, camera covered, testing, IR pods covered, no
driving, video error, seat position change, partial distraction, other. Based on the study
by Drews et al. (2020), micro-sleep and drowsiness are signs of operator fatigue [2]. The
study assumes that the PERCLOS system is functioning and properly collaborated. Much
work has been done establishing the PERCOLS technology. Testing the viability of this
technology is beyond the scope of this paper. The literature shows that the fatigue events
captured by these systems are important indicators of fatigue [1,2]. Therefore, for the
purpose of our study, micro-sleeps and drowsiness have been used to demonstrate a
fatigue event, and other types of alarms are assumed to be system errors or because of
negative behaviors such as distracted driving. These are labeled in the PERCLOS systems
as “other eye-closure (drowsiness)” and “micro-sleep with stable head”. The operational
difference between these two categories is having a stable head posture at the time of
fatigue or not. In the case that the operator’s head is moving downwards, the fatigue event
is labeled as “other eye closure (drowsiness)”. On the other hand, when the operator has a
stable head posture at the time of fatigue, it is labeled “micro-sleep with stable head”.

More details of fatigue events are shown in Table 2. The average number of events
per day and the number of days with these fatigue events are provided for comparison.
The data show more drowsiness compared to micro-sleep, representing 60% of the fatigue
events that were captured by the system. The % of days with fatigue shows that on 98%
and 99% of the days, there was at least one micro-sleep and drowsiness fatigue event,
respectively. Therefore, fatigue is a critical daily hazard for those working in mines.

Table 2. Count of days and percentage of total days by fatigue type.

Fatigue Event Type
Average

Number of
Events per Day

Days with
Fatigue Events

Percentage of
Days with

Fatigue

Percentage
of Fatigue

Events

Micro-Sleep with
Stable Head 13 1313 98% 40%

Other Eye Closure
(Drowsiness) 20 1327 99% 60%

The surface mine maintains a fleet management system (FMS), which tracks the
production and status of equipment. The FMS data are made available in a business
intelligence (BI) database. Status event data provide details on the state of an asset. Status
event coding can be used to determine if a piece of equipment is down for maintenance,
in a production activity or in standby mode. This information is valuable to compare
against event rates, as well as show breaks and delays. Other information in the BI
database includes the load cycle data. A production cycle shows the load of a shovel or
truck. Detailed steps within a load, such as loading, dumping, running empty, running
loaded, etc., are shown. The most important data for this study are the production rate
by shift/hour, which can be used to normalize the data as well as understand the activity
levels of haul truck drivers.

Time and attendance data are provided via the hours worked by hourly employees.
The mine uses a swipe-in/swipe-out time keeping system, the data from which are pro-
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cessed and loaded into a time and attendance database. The data set was used to measure
shifts and hours consecutively worked by haul truck operators.

Mobile machinery such as haul trucks generates large amounts of equipment health
data. The data are produced by hundreds of sensors and are used to track the location,
production cycles, equipment status and equipment health alarms. The sensors can be
valuable predictors of production achievements and operator behavior. The surface mine
utilizes an equipment health database to capture and model the health and use of their
large capital assets. These databases track in detail how a given piece of equipment is being
operated at any given time. The sensors can detect if an operator is operating outside of
the safe boundaries of the machine and create an alarm. These alarms vary by severity and
location and generate massive amounts of data.

Lastly, weather data are gathered from a local weather station in the mine. This data
set includes information for the weather at the mine site. Over 10 variables are captured at
10 min intervals. Each interval contains information regarding temperature, temperature
change, wind speed, precipitation and air pressure.

Data Pre-Processing

In this step, data need to be pre-processed to make them appropriate for the application
of the chosen modeling approach. Initial data analyses are performed to identify possible
patterns of data with the identified fatigue events. This analysis informs the next modeling
step by identifying an appropriate approach to predict fatigue events with the data sets.

Fatigue data provided from the fatigue monitoring system were reviewed and divided
in different categories. Among them, drowsiness and micro-sleeps were identified as the
fatigue events occurring among workers, so they are considered to be the dependent vari-
ables of the model. All other data, including weather, production cycles, equipment health
alarms and time and attendance data, are modeled as predictors and criterion variables.

Each data set had to be cleaned and missing data removed prior to input to the
model. The process of cleaning data entails removing incorrect, duplicate, incomplete
and corrupted data. Updating data types is also a common cleaning activity. A list of
all variables used in the model is given in Table 3. After all data engineering, data are
prepared for two distinct models: shift-based and hourly-based models. Data sets were
thus grouped by shift ID and hour of data time.

3.2. Initial Data Analysis

As stated above, the primary questions posed by this study are: Are there new
indicators within existing mining data sets that can be used to model fatigue events? In
addition, what are potential patterns when these data sets are analyzed? In this section, the
available data sets are presented to explore how they can be used to test the hypothesis
of the research. Modern machine learning approaches require various levels of data
engineering to facilitate statistical analysis. This section presents the process and logic
used to identify key variables and the direction for further data engineering used in the
development of the ML model. More specifically, the analyses presented here cover the
distribution of the fatigue events, average production compared to fatigue events, number
of fatigue events during night and day shifts and temperature versus fatigue events.

Fatigue is first examined by analyzing its frequency distribution by shift, which
suggests non-normal distribution, as illustrated in Figure 1. This figure visualizes the
distribution of the fatigue events per shift, which is seemingly close to Poisson distribu-
tion, with a mean of approximately 17 events per shift. Calculation of the probability of
having 0 and >52 events per shift shows, respectively, very low probabilities p = 0.013 and
p = 0.0097. However, the probability of having 7–8 events per shift, which is the mode of
the distribution, is estimated to be p = 0.052. The next question is why some shifts have a
higher number of fatigue events compared to other shifts. Therefore, to find the potential
variables that drive this difference, aggregated data by shift are included in the model.
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Table 3. List of the variables based on the data source.

Data Source Variables Data Type and Example Data

Time and Attendance

Shift ID Integer (1 to 4140)
Shift of Day (shift type) Categorical Integer (0 and 1)

Crew Name Categorical Integer (1 to 4)
Days On Integer (0 to 4)

Year Integer (2014 to 2017)
Month Integer (1 to 12)
Week Integer (1 to 54)
Day Integer (1 to 31)

Day of week Integer (1 to 7)
Day of year Integer (1 to 365)
Hour of day Float (0 to 24)

Shift is end of month Categorical Integer (0 and 1)
Shift is start of month Categorical Integer (0 and 1)
Shift is end of quarter Categorical Integer (0 and 1)
Shift is start of quarter Categorical Integer (0 and 1)

Shift is end of year Categorical Integer (0 and 1)
Shift is start of year Categorical Integer (0 and 1)

Fleet management system
(production and status)

Mine Production Factor Integer (1335 to 589,201)
Mine Loaded Travel Distance Integer (37,884 to 37,797,788)
Mine Measured Production Integer (0 to 430,812)

Mean Measured Production (broken
down by fleet, creating 8 variables) Float (0 to 413.83)

Mine Load Capacity Percentage Float (0 to 1)
Mean Load Capacity Percentage (broken

down by fleet, creating 8 variables) Float (0 to 1)

Mean Loaded Travel Distance Float (3735.2 to 13,711.66)
Mean Loaded Travel Lift Float (272.25 to 1083.29)

Mean Loaded Travel Lift Distance Float (3735.2 to 13,711.66)
St Dev Loaded Travel Distance Float (604.55 to 16,118.27)

Weather

Mean Barometric Pressure Float (0 to 25.1)
Mean Precipitation Float (0 to 439.1)

Mean Temperature (2 m) Float (−6.8 to 34.8)
Min Barometric Pressure Float (0 to 25.01)

Min Precipitation Float (0 to 29.71)
Min Temperature (2 m) Float (−8.4 to 30.44)

Max Barometric Pressure Float (0 to 25.1)
Max Precipitation Float (0 to 756.9)

Max Temperature (2 m) Float (−4.435 to 36.82)
Sum Precipitation Float (0 to 5269.17)

Equipment health alarms and events

Both Alarm Count Integer (0 to 632)
Electrical Alarm Count Integer (0 to 892)
Lockout Alarm Count Integer (0 to 35)

Maintenance Alarm Count Integer (0 to 1094)
Mechanical Alarm Count Integer (0 to 1753)

None Alarm Count Integer (0 to 2608)
Normal Alarm Count Integer (0 to 121)

Operational Alarm Count Integer (0 to 819)
Undetermined Alarm Count Integer (0 to 1282)

Scheduled Down Count Integer (0 to 85)
Unscheduled Down Count Integer (0 to 141)
Operational Delay Count Integer (0 to 1126)
Operational Down Count Integer (0 to 80)

Ready Non-Production Count Integer (0 to 977)
Ready Production Count Integer (0 to 1322)

Fatigue
monitoring system

Drowsiness and Micro-Sleep Fatigue
Events Count (Normalized) Float (0 to 1)
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Figure 1. Fatigue events per shift frequency.

In order to analyze the effect of shift time on fatigue, Figure 2 shows the average
hourly production and hourly number of fatigue events per person (including drowsiness
and micro-sleep). Shift change times (7 am/pm) are indicated by substantial reductions in
fatigue events due to the relatively high levels of activities associated with shift changes.
In addition, the results illustrate that fatigue counts increase from the beginning of a night
shift until the shift end; however, during day shifts, the fatigue levels of the operators peak
at around 1 pm. Regarding the relationship between the numbers of fatigue events and
hourly production, the findings suggest no clear relationship. Figure 2 suggests that the
time of day and shift type could be included as additional variables in the model. This
figure also suggests a negative relationship between production and fatigue. Production
rates, disruptions and aggregate levels, to a certain extent, affect the operational behavior
of the site. A higher number of cycles or longer cycles have the potential to influence how
engaged operators are, which could provide an interesting additional measure to predict
fatigue. Information about production cycles and delays will be modeled against fatigue to
further explore this potential relationship.
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Figure 2. Hourly fatigue events and average hourly production.

To illustrate the relationship between hourly data and the frequency of fatigue events,
their distribution is provided in Figure 3. This right-skewed distribution shows that
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more than 50% of the hours contain at least one fatigue event. This suggests that further
exploration is needed to identify the variables contributing to the range of hourly fatigue
events. Therefore, a second model with hourly aggregated data is developed, which will
be introduced in the model section. In addition, Figure 4a shows that night shifts contain
significantly more events compared to day shifts. Moreover, the average event counts by
month indicate a seasonality effect, with lower rates of fatigue in spring and higher rates in
summer and winter (Figure 4b). To summarize, the above explorations demonstrate that
some variables, such as shift type, time of day and worked hours, have effects on fatigue.
At the same time, the findings suggest that advanced approaches will be required to model
fatigue events.
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Figure 4. (a) Fatigue events per shift; (b) Average monthly fatigue events.

Next, we conduct an exploration of the influence of environmental variables on oper-
ator fatigue. Figure 5 illustrates the monthly average ambient temperature and monthly
fatigue events per person, without any clear pattern. Thus, there appears to be no obvious
correlation between temperature and fatigue events in this plot. Therefore, for further
exploration, weather data are added as independent variables to the model.

The main purpose of the above analyses was to explore relationships between fatigue
events and variables contained in the existing data sets. From our initial data analyses,
fatigue appears to have some relationship with variables such as weather, shift type, time
of day, etc. These analyses introduce more variables for the purpose of the modeling and
data aggregating methods. The full list of variables is shown in Table 3. However, these
preliminary analyses are not able to identify a pattern of fatigue based on these variables,
although they are able to provide a critical insight into the data. The literature shows that
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fatigue is a complex issue and different psychological and physiological variables influence
fatigue in workers [2]. Considering the limitations of the above analytical approaches, we
use machine learning (ML) approaches as an alternative to explore the data set to elucidate
relationships that are not easily identifiable. Because the above analyses show that shift
type and hour of day appear to have significant effects on the fatigue of haul truck drivers,
data were aggregated by shift and hour to create two different models. One approach
involves fatigue prediction using the shift-based data, and the other uses hourly data to
predict fatigue. The next section presents the modeling approach.
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Figure 5. Monthly fatigue events per person vs. average temperature.

3.3. Machine Learning Model

Figure 6 presents the procedure and methods of the modeling steps involved in the
development of the machine learning model. The process involved the following steps:

• Data collection;
• Data pre-processing;
• Data engineering;
• Training model;
• Testing model;
• Model evaluation;
• Making predictions.
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3.3.1. Random Forest Regression Algorithm

The machine learning model selected for this analysis is a random forest (RF) regres-
sion algorithm. Random forest algorithms were chosen for their tendency to generalize
well to a wide variety of problems, their rapid speed of training and because they are a
key feature of many well-known machine learning solutions. Another key benefit of using
random forests is the tooling that has been built in recent years to help researchers to gain
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insights into what has long been thought of as the black box of machine learning. These
new analytical tools allow researchers to see the features that the model relies upon the
most in order to make predications and determine how marginal changes in these features
impact the predicted outcomes [30,31].

When data are not linearly scattered, a regression tree, which is a type of decision
tree, can be used. In this type of decision tree, each leaf presents a threshold value (TV)
for each feature of the model. For the purpose of finding the best decision tree, the model
tries to find the best threshold value for each feature (independent variable) by finding the
minimum sum of square residuals (SSR). SSR is the sum of the squared difference of each
prediction value and actual value (Figure 7). For models with more than one feature, the
decision tree root is the feature with the lowest SSR. Figure 8 represents an example of a
random forest regression decision tree with five features.
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A random forest regression algorithm is an ensemble of randomized regression trees.
The random forest algorithm creates bootstrap samples from the original data. Bootstrap-
ping is a procedure that resamples a single data set to create many simulated samples. For
each of the bootstrap samples, the algorithm increases a classification or regression tree.
This algorithm chooses a random sample of the predictors and selects the best split among
variables. Then it predicts new data by aggregating the predictions of the trees. Models
can estimate the error rate based on the training data by each bootstrap iteration [30,31].

3.3.2. Model

Two models were created using available data subsets as dependent variables. For
the shift-based model, the dependent variable was the number of fatigue events in a 12 h
shift, which was normalized to scheduled haulage hours in the shift (labor hours). For the
hourly-based model, the dependent variable was the number of fatigue events in an hour,
which was normalized to scheduled haulage hours (labor hours). All independent variables
in these models, also known as features, are representations of the mine’s operation as
represented in the data sets. These features contain values such as the average production,
average temperature and equipment alarm (see Table 3).

For this model, data were divided into two sets: 80% constituted the training data set
and 20% constituted the validation data set. The goal of these models was to determine the
features that can predict fatigue in such a way that minimizes RMSE. In these models, only
data subsets with micro-sleeps and drowsiness containing fatigue were modeled. From
151,432 possible events, only 44,953 contained micro-sleep and drowsiness in the data sets
to train and validate the random forest algorithm. After exploratory data analysis, this
study focused on refining models to predict the fatigue of the operator.

The independent variables (features) in these models were minimally engineered.
Then, possible sample counts, means, sums, mins and maxes were used without combining
multiple fields from the underlying tables. The goal of these models was to predict fatigue
as well as the possibility of including all available feature sets, such as the hour of the day,
shift, month of the year, ambient temperature, wind speed, precipitation, etc. Data for
these models were constrained to the number of days contained in the fatigue data, which
was a dependent variable. Thus, the models were created using data from 1 January 2014
to 9 August 2017.

3.3.3. Evaluating Model Performance

One way to evaluate the model performance is out-of-bag error or OOB. The out-of-
bag set includes data not chosen in the sampling process when initially building a random
forest. The out-of-bag (OOB) error is the average error for each calculated prediction from
the trees not contained in the respective sample. Here, we used the Random Forest python
package, which can generate two optional information values, a value of the importance
of the predictor variables (feature importance) and a value of the internal structure of the
data (the proximity of different data points to one another) [30].

Next, the performance of the model was evaluated using the root mean squared errors
(RMSE) and coefficients of determination (R2). The coefficient of determination is the best
method to compare models that are trained using different dependent variables. Both RMSE
and coefficients of determination are important means of measuring performance between
models trained to predict the same dependent variable. The reason that R2 should be used
when comparing models trained on different dependent variables is that the coefficient of
determination is normalized to the mean of the dependent variable for each model.

3.3.4. Model Generalization

When creating machine learning models, it is important to ensure that the predictions
are generalizable to data that the model was not trained on. A model that has a very
low training error but a very high validation error is considered not to generalize well.
This scenario is known as overfitting [32]. The most common method to ensure that a
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model has not been overfit is splitting data into training and validation sets. The model
learns its parameters from the training data set. The performance of the trained model
is then determined by how well it predicts the outcomes of the validation data set. The
hyperparameters of the model can then be tuned by the developer, and the model is
retrained to improve its performance against the validation data set. Hyperparameters
are the values that define the model and cannot be learned from data; they are set by
the developer of the machine learning algorithm (number of estimators, max number of
features, etc.). The number of estimators and the max number of features for the best model
here are 1000 and sqrt (number of features), respectively. For each model here, the data sets
were split into training and validation sets. In this study, due to a lack of sufficient data for
a double hold-out (test set), there is only a validation set.

3.3.5. Feature Importance

Feature importance is the process of ranking the individual elements of a machine
learning model according to their relative importance to the accuracy of that model [33,34].
Feature importance is a means of determining the features that have the greatest magnitude
of effect in a model. Features that have a high feature importance value have a greater
impact on the model. Feature importance refers to a technique to assess the scores of
independent variables to a predictive model. It indicates the relative importance of each
independent variable (feature) when making a model prediction. These scores can be used
to better understand the data and model and reduce the number of input features. The
relative scores of feature importance can highlight which features are more useful to predict
fatigue and, conversely, which features are the least helpful to predict fatigue. This may be
used as the basis for gathering more or different data. Moreover, it shows that the model
has been fit to the most important features. In addition, feature importance can be used to
improve a predictive model. It can be used to eliminate the features with the lowest scores
or retain those with the highest scores. Therefore, it can help to select features and speed
up the modeling process.

4. Results

Differences between the two models were found after the analyses. The hourly-based
model does not perform as well as the shift-based model according to their R2 and RMSE.
The best model used the shift-based data to predict fatigue. Below, we discuss feature
importance and drop column tools to examine the feature set of the shift-based model.

In Table 4, the results of the best performed model are displayed. The best-performing
model predicted fatigue events across the site, with an R2 value of 0.36 and RMSE value of
0.006. All other models were deemed to have values too low to warrant further exploration
using this feature set. The best model used the shift-based data to predict fatigue. Below,
we discuss feature importance and drop column tools to examine the feature set of the
shift-based model.

Table 4. Refined model performance results.

Model
Root Mean Squared

Error (RMSE) Coefficient of Determination R2

Training Validation Training Validation OOB

Shift-based
model 0.002 0.006 0.93 0.36 0.47

4.1. Feature Importance of Best-Performing Model

Generally, feature importance provides a score that identifies the value of each feature
in creating the random forest model. Features that have a greater effect on key decisions
have higher relative importance. Table 5 shows the most important features and their values
for the fatigue event prediction model (shift-based model) with the best performance.
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Table 5. Permutation importance of features for shift-based model (most important features).

Data Category Dependent Variables Feature Importance
Score

Time and Attendance Shift type (day or night shift) 0.1650

Equipment health alarms
and events Unscheduled downtime count 0.0588

Fleet management system
(production and status)

Mine load capacity percentage 0.0297
Mine measured production 0.0293

Mine production factor 0.0248

Time and Attendance Year 0.0245

Weather Mean temperature (2 m) 0.0235

Equipment health alarms
and events None alarm count 0.0230

Fleet management system
(production and status)

Mine loaded travel distance 0.0226
Mean measured production of haul

truck (CAT 793D) 0.0226

Weather Maximum temperature (2 m) 0.0223

Equipment health alarms
and events

Ready production count 0.0222
Mechanical alarm count 0.0215

Fleet management system
(production and status)

Mean load capacity percentage of haul
truck (CAT 793D) 0.0213

Mean measured production of haul
truck (CAT 793C) 0.0211

Mean loaded travel distance 0.0209
Mean measured production of haul

truck (CAT 793B) 0.0209

Mean load capacity percentage of haul
truck (CAT 793C) 0.0208

Mean load capacity percentage of haul
truck (CAT 793B) 0.0207

Equipment health alarms
and events Scheduled down count 0.0206

The shift type (day/night shift) variable has the strongest effect on the model. Next,
the amount of unscheduled downtime of the equipment of the whole mine for a shift
affected the model. “Unscheduled downtime” is when a piece of equipment goes down
for maintenance reasons in an unplanned situation. Other factors that have effects on
fatigue are production variables. These outcomes corroborate with the initial data analyses
regarding the effects of day shifts and night shifts on the fatigue of workers. It also
demonstrates that production and equipment alarm variables such as equipment downtime
can aid in predicting the occurrence of fatigue events. Moreover, weather variables such as
maximum and average temperature can increase the rate of fatigue events among workers.

4.2. Drop-Column Feature Importance

With large data sets, there is always a risk of having variables that are covariates
or have co-dependences. Random forest tools recognize that this risk exists and include
mechanisms to address it, which can assess the individual effects of each feature on the
model. Co-dependencies stem from the fact that the trees are not independent since they
are sampled from the same data in the process of making the RF model. It is important
to see how the model works without individual features and how each feature impacts
the model, whether positively or negatively. Instead of carrying out different iterations,
random forest algorithms have a built-in tool which runs models with fewer features and
tracks the models’ performance. This is achieved by dropping out each column (or feature)
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from the model, retraining the entire model and then comparing the score with the base
score. Negative values show features that improve the model when removed. Positive
values show features that weaken the model when removed. Values that are close to zero
tend to indicate features that are correlated with other features; thus, removing them makes
little difference in the model’s ability to find relationships using the correlated variables. In
Table 6, the ten most and ten least important features are displayed.

Table 6. Drop-column importance for the best model.

Dependent Variables Feature Importance Score

Shift type (day or night) 0.2922
Unscheduled downtime count 0.0317

Mechanical alarm count 0.0235
Day on 0.0225

Day of week 0.0205
Mean measured production of haul truck (CAT 797F) 0.0139

Shift is end of year 0.0129
Electrical alarm count 0.0129

Mine measured production 0.0127
Undetermined alarm count 0.0125

. . . . . .
None alarm count −0.0022

Mean loaded travel distance −0.0025
Mean load capacity percentage of haul truck (CAT 793D) −0.0031

Year −0.0034
Mean Temperature (2 m) −0.0073

Mean load capacity percentage of haul truck (CAT 793B) −0.0073
Mean loaded travel lift distance −0.0074

Maintenance alarm count −0.0083
Mean loaded travel lift −0.0119

Mine load capacity percentage −0.0325

As shown in Table 6, shift type has the strongest effect on the model, followed by some
production and alarm variables, as indicated by their feature importance score. This score
shows that dropping, for example, shift type, from the features, causes the performance of
the model (R2) to drastically decrease by 0.2922. On the other hand, eliminating the mine
load capacity percentage increases the performance of the model by 0.0325.

4.3. ICE Plot

Another tool to visualize how marginal changes in features affect the predictions of
the model is an individual conditional expectation (ICE) plot. An ICE plot identifies the
dependence of the prediction on a feature for each instance independently. It generates one
line per instance, which can be compared to one line overall in partial dependence plots. A
partial dependence plot (PDP) is the average of the lines of an ICE plot. The value of a line
or model score is compared when all other features are kept the same. The result is a set of
points for an instance with a feature value from the grid and the respective predictions [35].
ICE plots for the four top features are displayed in Figure 9 and ICE plots of ten top features
are provided in Appendix A. They show how the models’ predictions change depending
on marginal changes to the top features. For instance, they illustrate that the prediction
difference in the model for shift of day decrease from the day shift to the night shift. The
ICE plot of unscheduled downtime count shows that the prediction difference of the model
for a small amount of unscheduled downtime of the equipment is not high, but it starts
to increase after 40 counts of unscheduled downtime of the equipment. Moreover, the
prediction difference of the model for mine measured production is small, but it increases
after 300,000 tons of production. Therefore, looking at the marginal changes in the top
features offers insights into how marginal changes affect the model prediction.
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4.4. Comparison

Table 7 shows the top features from two different generated models. Of the models
that were run, the best performance was demonstrated by the shift-based fatigue model
that is used to predict fatigue events based on shift data. This model achieved an R2 value
of 0.36, which is reasonably high for the prediction of outcomes that are the result of very
complex interactions. Fatigue is a complex issue and can occur for different psychological
and physiological reasons; therefore, it is difficult to predict it with high accuracy.

Table 7. Comparison of the top features for hourly-based and shift-based models.

Rankings Shift-Based Model Hourly-Based Model

1 Shift type (day or night shift) Mean temperature (2 m)
2 Unscheduled downtime count Hour of day

3 Mine load capacity percentage Mean measured production of haul
truck (CAT 793B)

4 Mine measured production Mean measured production of haul
truck (CAT 793D)

5 Mine production factor None alarm count
6 Year St Dev loaded travel distance
7 Mean temperature (2 m) Mean barometric pressure
8 None alarm count Maintenance alarm count
9 Mine loaded travel distance Undetermined alarm count

10 Mean measured production of haul
truck (CAT 793D) Mine production factor
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Another model, which is based on the hourly aggregated fatigue occurrence, identifies
that the time of day helps to predict the fatigue as expected, since this is one of the top
features in the hourly-based model. Moreover, ambient temperature has a notable effect
on fatigue, which is evidenced by the hourly-based model; however, it is obvious that
temperature is linked to the time of day. More work is needed to assess the potential role
of air conditioning in this. In addition to time and weather factors, some production and
equipment health alarm variables have effects on the fatigue of haul truck drivers, as the
hourly-based model shows (see Table 7).

5. Discussion

The model output identifies the variables that have the greatest impact on all fatigue
events. Table 8 illustrates the most important features and their data sources. The results
confirm our existing understanding of fatigue and offer some interesting insights into
additional factors that potentially cause fatigue. While it is not surprising that shift type
causes fatigue, it is interesting that maintenance processes such as unscheduled downtime
and production rates, as well as other operational variables, can affect fatigue among haul
truck drivers. Having identified these additional predictors for fatigue, these indicators
can be used by managers to prioritize safety management efforts. The ICE plots show how
marginal changes to specific variables affect the model. Therefore, they can be potentially
used as thresholds for KPIs. For example, if the mine is approaching a value of 40 for
unscheduled downtime, a higher risk of fatigue is indicated.

Table 8. Top features by data classification.

Data Category Feature Rank Feature

Time and attendance
1 Shift of day (day or night)
6 Year

Fleet management system
(production and status)

3 Mine load capacity percentage
4 Mine measured production
5 Mine production factor
9 Mine loaded travel distance

10 Mean measured production of haul
truck (CAT 793D)

14 Mean load capacity percentage of haul
truck (CAT 793D)

15 Mean measured production of haul
truck (CAT 793C)

16 Mean loaded travel distance

17 Mean measured production of haul
truck (CAT 793B)

18 Mean load capacity percentage of haul
truck (CAT 793C)

19 Mean load capacity percentage of haul
truck (CAT 793B)

Equipment health alarms
and events

2 Unscheduled down count
8 None alarm count
12 Ready production count
13 Mechanical alarm count
20 Scheduled downtime count

Weather
7 Mean temperature (2 m)
11 Maximum temperature (2 m)

In many fields of science, it is difficult to consider models that achieve R2 values of
high magnitude. Since fatigue is a complex issue, finding a comprehensive model with
a high R2 is challenging. However, the methodology and future iterations could provide
beneficial insights. The finding that 36% of fatigue events can be explained by shift type,
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weather and operational data indicates that 64% of the variance can be attributed to factors
that we currently are not modeling. Therefore, the next step in fatigue modeling would be
exploring additional contributors to operator fatigue. In this study, the mine’s data have
been aggregated according to shift or hour, but future models could examine fatigue in a
more individualistic way. Deeper integration of the data sets upon individual operators
could be one way of accomplishing this. Additional factors such as an individual’s habits
and sleep patterns could also provide another level to the model and would give a more
detailed view of the fatigue of the workers.

From the perspective of health and safety management, the most important features
found in this study can be considered potential leading indicators (ALIs) to reduce fatigue.
The surprising finding of unscheduled equipment downtime events is an aspect that needs
to be explored further. Process disruption’s impact on fatigue was one finding that was
consistent with the study by Drews et al. (2020) [2]. More research from a health and safety
perspective is needed to understand why some of the alarm and production variables of
different fleets have a greater effect on fatigue. However, fitness for duty could be one
reason behind the different fatigue events for different fleets. Mining companies can use
these indicators to anticipate increases in fatigue and to potentially mitigate fatigue. These
model outcomes can be utilized to implement health and safety policies, training programs
and mitigation practices. If mine operations can identify the times and shift types that are
more susceptible to fatigue, specific strategies could be implemented, such as mandatory
break times for the operators and supervisory support during this time. Management can
also train the operators to be more alert at specific times of the day and during specific
shifts. They also can train them to be more aware of how fitness can decrease fatigue. The
models’ output shows that ambient temperature has also significant effects on the fatigue
of haul truck drivers. This also must be studied further to understand the degree to which
this factor influences specific individuals’ fatigue states.

Moreover, the hourly-based model results provide an understanding of the effects of
the variables that impact fatigue for health and safety management. It demonstrates that
a leading indicator to predict fatigue is the time of day. Therefore, special attention and
planning is required for those times with a higher risk of fatigue. All of these outcomes can
be considered when prioritizing tasks by health and safety management.

6. Limitations and Future Work

This study shows the application of machine learning in health and safety management
using operational data sets of mining operations. The findings of this study confirm that
fatigue is caused by a wide variety of factors and many are likely very difficult to quantify,
but there may be a small but impactful percentage of factors that can be quantified. Fatigue
prediction is a matter of predicting the complex interactions between human behavior and
the ever-changing work environments at mines. In the social sciences, it is very common to
see situations where a low R2 value captures relationships that quantify a relatively high
amount of variance in a complex relationship [36]. Individual worker data can be added to
the model to increase the accuracy of the prediction model, since only operational data and
weather data are utilized in these models.

In all of the models developed, the training scores are substantially better than the
validation scores. This is most often attributable to overfitting of the model, but in this case,
it is likely largely due to the difficultly in generalizing a model that can predict fatigue due
to the complex psychological and physiological factors associated with fatigue. This line of
research will become more important as the fitness for duty of equipment operators takes
on greater significance in scheduling operator work shifts.

Even when using a fairly simple model with a small data set, the best-performing
model in this study is able to achieve excellent results. Many refinements were made to the
models during this study, but there are many avenues of exploration that could yield even
stronger predictive models. Some key areas to explore in future models could include:

• Looking at individual fatigue events instead of the aggregated fatigue events;
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• Using a machine learning method that can model more complex relationships, such as
a neural network;

• Increasing the size of the training data set—this could be accomplished by adding
more data either from the same mine or from another mine;

• Creating common naming conventions between data sets so that they can be linked
by location, operator and equipment;

• Adding more complex features such as the sleep pattern, health condition, fitness or
diet of the operator;

• Adding features that represent information collected during time periods prior to
when the fatigue occurred, such as downtime or production on the previous day;

• Adding some features related to the working schedule of the operator in terms of
fatigue at the time and the day or week before;

• Exploring more details of each feature to reduce the number of features that have a
lower impact on fatigue.
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