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Abstract: The crystal structures of compounds with the general formula Cs{[6]Al2[[4]TP6O20]} (where
T = Al, B) display order-disorder (OD) character and can be described using the same OD groupoid
family. Their structures are built up by two kinds of nonpolar layers, with the layer symmetries
Pc(n)2 (L2n+1-type) and Pc(a)m (L2n-type) (category IV). Layers of both types (L2n and L2n+1) alternate
along the b direction and have common translation vectors a and c (a ~ 10.0 Å, c ~ 12.0 Å). All ordered
polytypes as well as disordered structures can be obtained using the following partial symmetry
operators that may be active in the L2n type layer: the 21 screw axis parallel to c [– – 21] or inversion
centers and the 21 screw axis parallel to a [21 – –]. Different sequences of operators active in the L2n

type layer ([– – 21] screw axes or inversion centers and [21 – –] screw axes) define the formation of
multilayered structures with the increased b parameter, which are considered as non-MDO polytypes.
The microporous heteropolyhedral MT-frameworks are suitable for the migration of small cations
such as Li+, Na+ Ag+. Compounds with the general formula Rb{[6]M3+[[4]T3+P6O20]} (M = Al,
Ga; T = Al, Ga) are based on heteropolyhedral MT-frameworks with the same stoichiometry as in
Cs{[6]Al2[[4]TP6O20]} (where T = Al, B). It was found that all the frameworks have common natural
tilings, which indicate the close relationships of the two families of compounds. The conclusions are
supported by the DFT calculation data.

Keywords: OD structures; polytypism; polymorphism; heteropolyhedral framework; modularity;
topology; borophosphates; aluminophosphates; DFT

1. Introduction

Borophosphates (as well as borophosphate ceramics and glasses) attract interest
because of their wide technological applications as materials with optical [1–5], electro-
chemical [6–9], magnetic [10–12], and catalytic [13–15] properties. Moreover, crystalline
borophosphates and metal borophosphates with microporous structures are considered
as zeolite-like materials [16–20]. Borophosphates are characterized by a wide diversity of
tetrahedral and mixed triangular-tetrahedral anionic motifs [21–24], owing to the different
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possible coordination environments of boron. At present, more than 300 representatives of
this class are known, which are characterized by anionic motifs with different dimensional-
ities (from isolated groups to 3D frameworks).

Compounds with the general formula Cs{[6]Al2[[4]TP6O20]} (where T = B [25], Al [26])
are based on microporous heteropolyhedral frameworks formed by tetrahedral borophos-
phate or aluminophosphate [TP6O20]-layers linked by isolated AlO6 octahedra. The
large framework cavities are filled by Cs+ cations. As was previously shown, both
Cs{Al2[BP6O20]} and Cs{Al2[AlP6O20]} are of modular character [27] and can be consid-
ered as polytypes belonging to the same OD family [20,25]. However, the corresponding
groupoid family has not been reported so far.

In this paper we provide a complete OD-theoretical analysis of the compounds with
the general formula Cs{[6]Al2[TP6O20]} (where T = B [25], Al [26]) and derive symmetry
and atom coordinates for the hypothetical MDO2 polytype. The energies of the observed
and hypothetical structures of the family are calculated using the density functional theory
(DFT). Possible ion-migration paths inside the microporous frameworks of the family are
estimated for different alkaline ions using the topological analysis.

2. Methods

The symmetrical relations between the compounds have been analyzed using the OD
theoretical approach [27–30] for the OD families containing more than one (M > 1) kind of
layers [31]. The OD layers have been chosen in accordance with the equivalent region (ER)
requirements [32]. As a reference structure for the further analysis, the MDO1 polytype
observed in Cs{Al2[AlP6O20]} [26] was used. This compound was reported in the non-
standard setting of the space group C2cb [a = 10.0048(7) Å, b = 13.3008(10) Å, c = 12.1698(7) Å],
which was transformed into the standard setting Aea2 using the [00–1/010/100] matrix (the
resulting unit cell parameters are: a = 12.1698(7) Å b = 13.3008(10) Å, c = 10.0048(7) Å). The
unit-cell parameters and space groups of the crystal structures of Cs{Al2[BP6O20]} polytypes
have been transformed accordingly in order to preserve the orientation and stacking direction
of the OD-layers.

Topological analysis of the frameworks was performed by means of natural tilings
(the smallest polyhedral cationic clusters that form a framework) of the 3D cation nets [33].
The complexity parameters of the frameworks in different polytypes were calculated as
Shannon information amounts per atom (IG) and per reduced unit cell (IG,total) [34,35]. To
analyze the migration paths of alkaline cations in the structures, the Voronoi method [36],
which has proven itself in the study of cationic conductors of various types [37,38], was
used. Topological and complexity parameters for the whole structures as well as ion
migration paths have been calculated using the ToposPro software [39].

DFT calculations on the existing MDO-, non-MDO-4O, as well as hypothetical MDO2
type polytypes (T = Al, B) were performed using the PBE exchange-correlation func-
tional [40] of the GGA-type utilizing the projector augmented wave method (PAW) as
implemented in the Vienna ab initio simulation package (VASP) [41,42]. The energy cut-
off was set at 500 eV with a 10 × 8 × 8 (MDO1, MDO2), and 6 × 4 × 4 (non-MDO-4O)
Monkhorst−Pack [43] k-point mesh used for Brillouin zone sampling. The convergence
towards the k-point mesh was checked. Full optimization of the unit cell parameters and
atomic coordinates was performed for all the structures except the MDO1 polytype of
Cs{Al2[BP6O20]}, for which the original cell parameters were retained and atomic coordi-
nates optimized (as the compound was found to have the lowest energy, cell parameter
optimization was deemed unnecessary). For the optimization, the structures were con-
verted to the space group P1.
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3. Results
3.1. OD (Order-Disorder) Relationships

The crystal structures of Cs{[6]Al2[[4]TP6O20]} (where T = B [25], Al [26]) belong to
the same OD family of category IV [31] with two types of nonpolar OD layers and can be
described by an OD groupoid [27]. The layers are as following:

1. Nonpolar L2n+1 type with the layer symmetry pcn2 [or Pc(n)2 in terms of the OD
notation, where braces indicate the direction of missing periodicity [44]] was reported
previously [20] and is represented by the tetrahedral [[4]TP6O20]-layer (Figure 1);

2. Nonpolar L2n type consists of aluminum and oxygen atoms on the borders of a thin
slab with the layer symmetry pcam [Pc(a)m or P21/c (2/a) 21/m].
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Figure 1. The general view of the tetrahedral L2n+1 type layer in the crystal structures of
Cs{[6]Al2[[4]TP6O20]} polytypes. The fundamental building block (FBB) of the layer is represented
by open-branched heptamer with the following descriptor [21,45]: 7�:[3�]2�|2�|�|�. Modified
after [20].

Layers of both types (L2n and L2n+1) alternate along the b direction and have common
translation vectors a and c (a ~ 10.0 Å, c ~ 12.0 Å), with b0, the distance between the two
nearest equivalent layers, corresponding to one half of the b parameter of the compound
studied by Lesage et al. [26]. Because the symmetry of the L2n type layers is higher than
that of the L2n+1 type layers, polytypic relations are possible. All ordered polytypes as well
as disordered structures can be obtained using the following symmetry operators that may
be active in the L2n type layer: the 21 screw axis parallel to c [– – 21] or inversion centers
and the 21 screw axis parallel to a [21 – –] (Figure 2) [20]. The symmetry relation common
to all polytypes of this family are described by the OD groupoid family symbol:

Pc(n)2 P 21/c (2/a) 21/m
[r, 0]

, (1)

where r = 0; the first line contains the layer-group symbols of the two constituting layers,
while the second line indicates positional relations between the adjacent layers [46].
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erating operation, giving rise by the continuation to an A-centered structure with the basis 
vectors a, b = 2b0, c and the space group Aea2. The MDO1 polytype corresponds to the 
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In accordance with the NFZ relation [27,28], there is only one kind of the (L2n, L2n+1,
L2n+2) triples and two kinds of the (L2n-1, L2n, L2n+1) triples. Consequently, the smallest
possible number of different triples in a structure is two and only two MDO polytypes
are possible:

OD− layer Layer group Subgroup of λ-τ-operations N F Z
A1 = L2n P 21/c 2/a 21/m P c 2 m 4↘ ↗ 1

Symmetry of a layer pair→ P c 1 1 2
A2 = L2n+1 P c n 2 P c 1 1 2↗ ↘ 2

, (2)

The first MDO structure (MDO1 polytype) (Figure 3, left) can be obtained when
the [– – 21] operator is active in L2n type layer. Through the action of this operator the
asymmetric unit at x, y, z (I) is converted into the asymmetric unit at –x, 1

2 –y, 1
2 +z (II); the

latter unit is converted by the [– – 2] operator in the L2n+1 layer into the asymmetric unit
at x, 1

2 +y, 1
2 +z (III). I and III are related by the translation vector t = b0 + c/2, which is the

generating operation, giving rise by the continuation to an A-centered structure with the
basis vectors a, b = 2b0, c and the space group Aea2. The MDO1 polytype corresponds to
the structure of Cs{Al2[AlP6O20]} with the following unit cell parameters: a = 12.1698(7) Å
b = 13.3008(10) Å, c = 10.0048(7) Å [26].

The second MDO structure (MDO2 polytype) (Figure 3, right) can be obtained when
the inversion centers and [21 – –] operators are both active in the L2n type layer. Through
the action of the operator [21 – –] the asymmetric unit at x, y, z (I) is converted into the
asymmetric unit 1

2 +x, –y, 1
2 –z (II); the latter unit is converted by the [– n –] operator in

the L2n+1 layer into the asymmetric unit x, 1
2 +y, –z (III); (I) and (III) are related by a b

glide normal to c, with translational component b0, which is the generating operation: its
continuation also generates an orthorhombic structure with the basis vectors a, b = 2b0,
c (the same for the MDO1 polytype) and the space group Pcnb (or Pbcn in the standard
setting). The MDO2 polytype has not yet been observed for the compound with the general
formula Cs{[6]Al2[[4]TP6O20]}. The calculated atomic coordinates for the MDO2 polytype
are given in Table S1 (Supplement Materials).
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(Figure 4). The AlO6 octahedra in the L2n+2 and L2n+4 type layers are tilted slightly differ-
ently, which can be explained by the “desymmetrization” effect of OD structures 
[27,47,48], when the ideal symmetry suffers slight (in some cases severe) distortions and 
the symmetry of OD layers in the polytype is lower than the idealized one. The ortho-
rhombic structure of Cs{Al2[BP6O20]}–4O is characterized by the basis vectors a, b = 4b0, c 
(where a = 11.815(2) Å, b = 26.630(4) Å, c = 10.042(2) Å [25]) and the space group Pcab 
(nonstandard setting of the space group Pbca). 

Figure 3. The general views of the MDO1 (with the space group Aea2) and MDO2 (with the space group Pcnb) polytypes.
The operations active in the L2n type layers as well as the generating operations are shown. Legend: AlO6-octahedra are
colored in cyan; PO4-tetrahedra are colored in purple; TO4-tetrahedra are colored in dark yellow. Extra-frameworks Cs
atoms are omitted.

Different sequences of operators active in the L2n type layer ([– – 21] screw axes
or inversion centers and [21 – –] screw axes) define the formation of structures with
the increased b parameter, which are considered as non-MDO polytypes (because of
the presence of more than one kind of (L2n–1, L2n, L2n+1) triples) [27]. The compound
Cs{Al2[BP6O20]} [25] contains four L2n and L2n+1 types layers, where each L4n type layer
has active [21 – –] screw axes, while in the L4n+2 type the inversion centers and [– – 21]
screw axes are active (Figure 4). The AlO6 octahedra in the L2n+2 and L2n+4 type layers
are tilted slightly differently, which can be explained by the “desymmetrization” effect of
OD structures [27,47,48], when the ideal symmetry suffers slight (in some cases severe)
distortions and the symmetry of OD layers in the polytype is lower than the idealized one.
The orthorhombic structure of Cs{Al2[BP6O20]}–4O is characterized by the basis vectors a,
b = 4b0, c (where a = 11.815(2) Å, b = 26.630(4) Å, c = 10.042(2) Å [25]) and the space group
Pcab (nonstandard setting of the space group Pbca).
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3.2. Topological Features

Compounds with the general formula Cs{[6]Al2[[4]TP6O20]} (where T = B [25], Al [26])
are characterized by the heteropolyhedral MT-frameworks [20,49–51] of MO6-octahedra
and TO4-tetrahedra related to classic zeolites and zeolite-type materials where all oxygen
ligands are bridged between two cations only [52]. In accordance with the theory of mixed
anionic radicals [53–55], the general crystal chemical formula of the framework (taking
into account the degree of sharing of oxygen ligands) can be written as [20]:{

Mm

[
(T1)n1

(T2)n2
O3m+2(n1+n2)

]}m(VM−6)+n1(VT1−4)+n2(VT2−4)
, (3)

where where m and ni, VM and VTi are the valences of the M and Ti cations, respectively. If
M = M3+, T1 = T3+, T2 = P5+, m = z, n1 = y, n2 = z, the Formula (3) can be rewritten as:{

Mx

[
TyPzO3x+2(y+z)

]}−3x−y+z
. (4)

Taking into account the observed ratio between the x, y, and z coefficients, the stoi-
chiometry of the heteropolyhedral MT-framework is:

{M2[TP6O20]}1−. (5)
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Topological features of the MDO1 and non-MDO 4O polytypes have been described
previously [20]. The cationic 3D net corresponding to the heteropolyhedral MT-framework of
MDO2 polytype consists of four natural tiles (Figure 5): [4.62]2[3.5.62]2[44.52.72][32.42.66.72].
The (6T1M)-[4.62] and (6T2M)-[3.5.62] tiles are topologically equal to those observed in
the MDO1 and non-MDO 4O polytypes; the (10T4M)-[44.52.72] tile is equal to that in the
non-MDO 4O polytype. The (16T6M)-[32.42.66.72] tile is unique and is present in the MDO2
polytype only (Table 1).
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Figure 5. Topological features of the 3D cationic nets of the heteropolyhedral MT-frameworks in the
structures of MDO1, MDO2 and non-MDO 4O polytypes of compounds with the general formula
Cs{[6]Al2[[4]TP6O20]} (where T = B, Al).

Table 1. The natural tiles in the MT-frameworks of the polytypes of compounds with the general
formula Cs{[6]Al2[[4]TP6O20]} (where T = B, Al).

Polytype Natural Tiles
MDO1 [4.62]2 [3.5.62]2 [64.74] [3.42.5.72]2 [4.72]2
MDO2 [4.62]2 [3.5.62]2 [44.52.72] [32.42.66.72]

non-MDO
4O [4.62]4 [3.5.62]4 [44.52.72] [3.42.5.72]2 [4.72]2 [3.4.65.73]2

Note. The point symbol of the 3D net has the form Aa. Bb . . . indicating that there are a angles with shortest
cycles that are A-cycles, b angles with shortest cycles that are B-cycles, etc., with A < B,<· · · and a + b + · · · =
n(n–1)/2 [33]. The topologically equivalent tiles are colored in the same color.
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The complexity parameters of the heteropolyhedral MT-framework of MDO2 polytype
are: v = 116 atoms; IG = 3.892 bits/atom; IG,total = 451.526 bits/unit cell. The complexity
parameters increase in the row MDO1→MDO2→ non-MDO 4O.

3.3. Ion Migration Path

Migration maps of Na+ cation were constructed for the MDO1, MDO2, and non-MDO
4O polytypes (Table 2). Despite the presence of large pores filled by large Cs+ ions, the size
of the effective windows between them is not enough for the migration of large alkaline
cations. However, all the types of the microporous heteropolyhedral MT-framework are
suitable for the migration of smaller ions such as Li+, Na+ Ag+. The types of migration
maps depend on the topological type of the MT-framework (Figure 6), in particular, for Na+

ions, the maps are represented by 2D layers parallel to (100) for the MDO1 and non-MDO
4O polytypes, while for the MDO2 polytype it is represented by the system of parallel 1D
channels directed along [010] (Figure 6). In the case of Li+ ions, the migration 3D maps are
similar for all the types of the frameworks.

Table 2. The natural tiles in the MT-frameworks of the polytypes of compounds with the general
formula Cs{[6]Al2[[4]TP6O20]} (where T = B, Al).

Polytype
Natural Tiles

Li+ Na+ Ag+ K+ Rb+ Cs+

MDO1 3D 2D 2D – – –
MDO2 3D 1D 1D – – –

non-MDO 4O 3D 2D 2D – – –
Note: The following significance criteria for elementary channels (Rchan) and voids (Rsd) have been used for
the construction of migration maps: Li+ (Rchan = 2.02 Å; Rsd = 1.38 Å); Na+ (Rchan = 2.16 Å; Rsd = 1.54 Å);
Ag+ (Rchan = 2.20 Å; Rsd = 1.58 Å), K+ (Rchan = 2.30 Å; Rsd = 1.70 Å); Rb+ (Rchan = 2.38 Å; Rsd = 1.78 Å);
Cs+ (Rchan = 2.47 Å; Rsd = 1.88 Å).
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3.4. DFT Calculations

In order to gain more insight into the stability of various polytypes, energy-wise,
we have performed DFT calculations on the existing as well as hypothetical compounds
with the general formula Cs{Al2[TP6O20]} (T = Al, B) with the structures belonging to
MDO1, MDO2, and non-MDO 4O type polytypes, for T = Al; B. The comparative data and
optimized unit cell parameters are given in Table 3 (for MDO1, T = Al, original unit cell
metrics were retained).

Table 3. Comparative data for the frameworks of different polytypes.

Parameter

MDO1
Polytype

MDO2
Polytype

Non-MDO 4O
Polytype

T = B T = Al T = B T = Al T = B T = Al

Unit cell parameters (Å), a, b, c n.d.
12.170,
13.301,
10.005

n.d. n.d.
11.815,
26.630,
10.042

n.d.

Volume (Å3) n.d. 1619.46 n.d. n.d. 3159.55 n.d.

Optimized unit cell parameters
(Å), a, b, c

12.0296,
13.2109,
9.9017

12.1698,*
13.3008, *
10.0048 *

11.7893,
13.4876,
10.1609

11.9479,
13.6593,
10.3157

11.8248,
26.7192,
10.0423

12.2217,
26.9351,
10.1760

Optimized volume (Å3) 1573.60 1619.46 1615.68 1683.52 3172.86 3349.86

Z 4 4 8
Energy per formula unit (eV) –219.1885 –218.2701 –219.2479 –217.7659 –219.2780 –218.2109

FD [(M + T)/1000 Å3] 19.76 19.81 19.01 22.69 21.49
v (atoms), framework, all 58, 60 116, 120 232, 240

IG (bits/atom), framework, all 3.892, 3.974 3.892, 3.974 4.858, 4.907
IG, total (bits/unit cell),

framework, all 225.763, 238.413 451.526, 476.827 1127.052, 1177.654

n.d.—no data, because of the absence of structural information; original unit cell parameter.

As seen from the comparison between the original and optimized cells of Cs{Al2[BP6O20]}
of the non-MDO 4O type, they are in a very good agreement, with the difference in volume
of ca. 13 Å, i.e., ca. 0.4% (see Table 3). The optimized coordinates in all structures showed
only minimal shifts from their original positions, mostly associated with a very small
rotation of tetrahedra. It is important to note that, despite unconstrained optimization, all
the structures, observed as well as hypothetical, retained their original cell symmetries.

As seen from Table 3, for the T = Al series, the structure with the lowest energy was
the MDO1-type polytype. However, the non-MDO 4O-type structure was only ca. 0.06 eV
higher in energy, which corresponds to ca. 6.2 kJ/mol. This difference is not large, yet
is arguably outside the margin of error for the computational method used, which is
commonly estimated as 1–2 kJ/mol. The important thing here is that both experimentally
observed types of structures (albeit not both of them for T = Al), showed comparable
energies. Moreover, our calculations indicate that, under the right conditions, it might be
possible to obtain the non-MDO 4O polytype for aluminum. Regarding the MDO2-type
structure, the optimization gave us a stable minimum structure with the energy of ca. 0.5 eV
(ca. 49 kJ/mol) higher than MDO1. This means that, potentially, such a structure might
exist, however, the energy difference to the lowest energy structure is significant, and thus
it might be difficult to stabilize such a polytype.

For the T = B series, once again the lowest energy corresponds to the experimentally
observed structure, this time it is the non-MDO 4O polytype (see Table 3). In this case,
however, its energy is only ca. 0.03 eV (ca. 3 kJ/mol) lower than that of the hypothetical
MDO2-type structure. The difference is on the border of the perceived accuracy of the
computational method, thus the MDO2 polytype appears to be a good candidate for the
experimental discovery. The MDO1-type structure in this case looks like the least favorable,
energy-wise, with the difference between its energy and minimal structure being ca. 0.09 eV
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(ca. 8.6 kJ/mol). This is clearly outside the margin of error; however, the difference
is small enough to be compensated by various effects in real crystals. It must also be
noted regarding all our calculations, that by their very nature they simulate ideal periodic
crystals in their ground state at 0 K. In addition, in our computations we cannot account
for potential kinetic hindrance of certain paths of compound formation.

4. Discussion

The heteropolyhedral MT-frameworks with similar stoichiometry (3) have been
found in compounds with the general formula Rb{[6]M3+

2[[4]T3+P6O20]}, where M = Al,
Ga; T = Al, Ga [26,56]. The unit cell parameters are similar to those for MDO1 and
MDO2 polytypes of Cs{Al2[TP6O20]} (T = Al, B): a = 9.876–10.002 Å; b = 12.885–13.082 Å;
c = 11.919–12.071 Å; space group C2221. Their crystal structures contain mixed tetrahedral
[TP6O20]-chains, which are linked by the MO6-octahedra (Figure 7). The tetrahedral chain
is formed by the condensation of FBU, an open-branched heptamer with the descriptor
7�:[3�]2�|2�|�|� similar to that for the tetrahedral [TP6O20]-layers in Cs{Al2[TP6O20]}
(T = Al, B). The negative charge of the framework is balanced by Rb+ ions.
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Figure 7. The general view of the crystal structure of compounds with the general formula
Rb{[6]M3+

2[[4]T3+P6O20]} (where M = Al, Ga; T = Al, Ga [26,51]) and a tetrahedral chain going
along [001].

Despite of the absence of the tetrahedral layers, the MT-framework can also be con-
sidered as the result of alternation along b of two types of nonpolar OD layers parallel
to (010):

1. The first one corresponds to a layer with the symmetry P2(2)21 consisting of tetrahe-
dral chains. The tetrahedral layer in Cs{Al2[TP6O20]} and tetrahedral pseudolayer
in Rb{M2[TP6O20] are formed by the same FBU and demonstrate the symmetrical
relationship (Figure 8) indicating the possible OD-character as was previously shown
for compounds with tetrameric [57] and pentameric [20] borophosphate FBUs, as well
as for the silicate layers [58,59];

2. The second one consists of an octahedral layer with the symmetry P21(2)21 similar to
that observed in Cs{Al2[TP6O20]} (T = Al, B) (the layer group P21221 is a subgroup of
the layer group Pcam). To date, there are no other polytypes of this type of framework,
however they may be found later.
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Topological features of the MT-framework are reflected in the sequence of its natural tiles:
[4.62]2[4.72]2[3.5.62]2[3.42.5.72]2[64.74]. It should be noted that three tilings ([4.62], [4.72]), and
[3.5.62]) are topologically equivalent to those in the Cs{Al2[TP6O20]} (T = Al, B) compounds,
which indicate the relation of the two types of the {[6]M3+

2[[4]T3+P6O20]}-frameworks.

5. Conclusions

The polytypism of compounds with the general formula Cs{Al2[TP6O20]} (T = Al, B)
has been described using the OD theory approach. The crystal structure of the hypothetical
MDO2 polytype has been proposed and optimized using DFT calculations. It was shown
that the heteropolyhedral MT-frameworks of all the polytypes contain similar natural
tilings. The compounds with the general formula Rb{[6]M3+

2[[4]T3+P6O20]} (M = Al, Ga;
T = Al, Ga) have the heteropolyedral MT-frameworks with the same stoichiometry. It was
found that all the frameworks had common natural tilings, which indicates the relationship
of both families of compounds. Our computational data agree well with those which
are experimentally available and, we believe, provide a reasonable basis for an internally
consistent picture which supports crystallographic considerations concerning the formation
of the polytypes of compounds with the general formula Cs{Al2[TP6O20]} (T = Al, B). Thus,
it is seems possible to synthesize the MDO2 polytype as well as the “missing” members,
such as MDO1 polytype of Cs{Al2[BP6O20]} and non-MDO 4O polytype of Cs{Al2[AlP6O20]}
using hydrothermal techniques.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min11070708/s1, Table S1: Site coordinates (xyz) and site multiplicities (Mult.) for MDO2
polytype of Cs{Al2[TP6O20]}. The optimized unit cell parameters and atomic coordinates for MDO1,
MDO2, and non-MDO-4O polytypes of compounds with the general formula Cs{Al2[TP6O20]}
(T = Al, B) are given (the atomic coordinates are given for the whole crystal structures for the space
group P1).
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