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Abstract: Thallium is a highly toxic metal and is predominantly hosted by sulfides associated
with low-temperature hydrothermal mineralization. Weathering and oxidation of sulfides generate
acid drainage with a high concentration of thallium, posing a threat to surrounding environments.
Thallium may also be incorporated into secondary sulfate minerals, which act as temporary storage
for thallium. We present a state-of-the-art review on the formation mechanism of the secondary
sulfate minerals from thallium mineralized areas and the varied roles these sulfate minerals play
in Tl mobility. Up to 89 independent thallium minerals and four unnamed thallium minerals have
been documented. These thallium minerals are dominated by Tl sulfosalts and limited to several
sites. Occurrence, crystal chemistry, and Tl content of the secondary sulfate minerals indicate that Tl
predominantly occurs as Tl(I) in K-bearing sulfate. Lanmuchangite acts as a transient source and
sink of Tl for its water-soluble feature, whereas dorallcharite, Tl-voltaite, and Tl-jarosite act as the
long term source and sink of Tl in the surface environments. Acid and/or ferric iron derived from
the dissolution of sulfate minerals may increase the pyrite oxidation process and Tl release from
Tl-bearing sulfides in the long term.

Keywords: thallium; pyrite; acid mine drainage; secondary sulfate minerals; environmental signifi-
cance

1. Introduction

Thallium (Tl) is a typical heavy metal element with high toxicity and is listed as a
priority pollutant by the United States Environmental Protection Agency (USEPA). Human
exposure to Tl leads to acute toxicity or chronic toxicity dependent upon uptake dosage.
Kidneys, lungs, heart, and nerve damage have been reported by acute toxicity of Tl [1].
Eighty-seven chronic Tl poisoning cases occurred in the 1960s in a Chinese valley with
hair loss, loss of appetite, and pain in the lower extremities as typical symptoms [2]. In
recent years, occasional Tl pollution events have been reported in China and Italy [3]. It is
suggested that mining and processing of Tl-bearing sulfide ores has become a predominant
source of Tl pollution in ecosystems [4–6].

Despite its extreme biotoxicity, Tl is currently still utilized in some high-tech fields
(e.g., semiconductors, superconductors, and optical fibers, etc.) in an irreplaceable way [7].
The global Tl deposits widely occur and can be categorized into three types according to
their genesis. The first type is associated with Carlin-type gold deposits, distributed in
Carlin gold deposits in Nevada, the USA, and Lanmuchang Hg-Tl-Au deposit in Guizhou
Province, China. The second type is associated with As and Sb mineralization, and is
distributed in North Macedonia, Switzerland, and France [8–12]. The third one is related
to Zn-Pb mineralization, such as in Lanping Zn-Pb deposit. Thallium mineralization in
the deposits is formed in low-temperature conditions, and Tl is mainly hosted by sulfide
minerals, e.g., lorandite, carlinite, and pyrite [13–17]. To date, 63 thallium sulfide or
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sulfosalt minerals have been documented in the literature. Moreover, scarce thallium
selenide minerals were also reported [18].

In spite of the occurrence of diverse independent Tl minerals, the ubiquitous pyrite
in hydrothermal deposits has also been reported to exhibit strikingly high Tl content
at several sites in China and Spain [19–24], especially in independent Tl deposits (e.g.,
Lanmuchang and Xiangquan in China) [21,23], as well as in numerous Tl-bearing deposits
(e.g., Yunfu and Jinding in China, McArthur River in Australia, and Bathurst Mining
Camp in Canada) [25–28] where pyrite is the most important ore mineral. Unfortunately,
oxidation and dissolution of these Tl sulfide minerals, particularly pyrite, will generate
acid mine drainage (AMD) and mobilize large amounts of sequestered heavy metals. Thus,
it raises concern about potential Tl exposure risk in the Tl mineralization areas.

Microbial-mediated sulfide minerals oxidation is responsible for the generation of
AMD, which is characterized by low pH value and high load of sulfate and trace metals.
As it more abundantly occurs and has a higher S/metal molar ratio than other sulfides,
pyrite acts as the predominant AMD producer. Metals liberated by sulfide oxidation
and dissolution may keep soluble in the AMD or precipitate locally as sulfate minerals
(hereafter referring to secondary sulfate minerals). The formation and dissolution of the
secondary sulfate minerals exert an important impact on the storage and transport of Tl and
other heavy metals following weathering and oxidation of sulfide minerals. In addition,
the composition of the secondary sulfate minerals could provide information about the
formation condition and water-rock reaction process [29].

This paper aims to summarize the thallium deposits and minerals and crystal chemistry,
field occurrence, formation, and environmental significance of secondary sulfate minerals
associated to Tl mineralization areas. The solubility and Tl content of the secondary sulfate
minerals are the important aspects for the sequestration and migration of Tl in supergene
environments, which is essentially constrained by the crystal chemistry of the metal sulfate
that results from AMD reaction with gangue minerals in various mineralized backgrounds.
Therefore, Tl cycling constrained by secondary sulfate minerals will contribute new insights
into the control of Tl pollution derived from Tl sulfide mining and processing.

2. Thallium Ore Deposits and Tl Minerals
2.1. Thallium Ore Deposits

Thallium deposits occur in diverse geological environments and countries (Figure 1).
Carlin-type gold deposit, characterized by Au–Tl–As–Hg–Sb geochemical signature, was
first reported containing high Tl concentrations in mineralized rocks. Thallium has been pro-
posed as a more useful indicating element than gold in finding this type of gold deposit [8].
Carlin-type gold deposits have become chief gold sources and are mainly distributed in
Nevada State in the USA and southwest China [30]. Thallium in the ores is mainly hosted
by independent thallium minerals (e.g., lorandite, carlinite, galkhaite, and hutchinsonite) or
incorporated into pyrite, orpiment, or other sulfides [19]. Lanmuchang Hg–Tl–Au deposit
in southwest China is the first reported independent Tl deposit in the world [31]. The addi-
tional small size of Carlin-type deposits are also found in Canada, the Republic of North
Macedonia, Russia, Southern Tienshan Belt (including Uzbekistan, Tajikistan, Kyrgyzstan,
and China), Indonesia, and Malaysia [6,30,32–34]. Given the widespread distribution of
the Carlin-type gold deposits, Tl mineralization areas associated with gold, antimony, and
mercury are supposed to become the global important Tl ore deposit occurrences.

The metamorphic-hosted deposits represent the second important thallium occurrence
documented in the literature. Typical deposits include Apuan Alps; Tuscany in Italy [35],
Lengenbach in Switzerland; and Yunfu in Guangdong, China [12,36]. This type of Tl
deposit shares the elemental assemblage of Tl–Hg–As–Sb–Pb–Zn in ore geochemistry. The
primary Tl-bearing phases are pyrite and the complex sulfosalt due to the metamorphic
remobilization of Tl [37]. Both Apuan Alps and Lengenbach are well known for the
Tl-bearing sulfosalts and sulfides [37,38].
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Mississippi Valley Type zinc-lead deposits have emerged as a new type of Tl-bearing
sulfide deposit reported in Yunnan Lanping and Anhui Xiangquan of China [19,22]. The
mineralized wall rock is carbonate rock (e.g., Xiangquan) or gypsum-bearing sandstone
(e.g., Lanping). Zn–Pb–Tl–Ba–Sr characterizes the element assemblage, with pyrite be-
ing the prevailing Tl-bearing mineral, and less common, lorandite and raguinite [39,40].
Skrikerum Cu–Ag–Tl–(Au) selenide deposit from SE Sweden is the only thallium se-
lenide deposit in which thallium is mainly hosted by bukovite (Cu4Tl2Se4) and crookesite
(Cu7(Tl,Ag)Se4) in calcite-selenide veins [18].
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Despite the fact that Tl-(bearing) deposits are increasingly discovered in various mineral-
ized geological settings around the world, little research has been conducted to date focusing
on Tl mineralization. Apparently, almost all Tl-(bearing) deposits are associated with low-
temperature hydrothermal fluids, and Tl is predominantly hosted in sulfide phases. It signifies
that in hydrothermal systems Tl shows a higher affinity for sulfur compared to potassium. To
the best of our knowledge, weakly acidic Tl-rich polymetallic ore fluids originated from the
deep crust are considered to be the prerequisite for Tl mineralization [41,42]. Both theoretical
calculations [43] and simulation experiments [44] support that the temperature decrease,
especially the effective neutralization of acidity by the host rock, are crucial factors for Tl
precipitation from ore fluids, and field observations have also revealed extensively developed
argillization from neutralizing acidic fluids in the Lanmuchang-independent Tl deposit [45] as
well as Tl mineralisation in the Allchar Au-As–Sb–Tl deposit in North Macedonia occurring
at the distal end of the hydrothermal system [46].

2.2. Thallium Minerals

Owing to the same charge (+1) and similar ionic radii between Tl and K (1.70 Å for Tl+

and 1.64 Å for K+), Tl can be incorporated into K-bearing silicate minerals by isomorphic
substitution for potassium. It is evidenced by the elevated concentration of Tl in mica and
K-feldspar over 20 ppm compared to 0.7 ppm of the crust abundance [47]. However, Tl also
appears to have sulfur affinity for similar-sized Ag+ and Pb2+ in sulfides and sulfosalts [48].
As such, Tl can form independent sulfide or sulfosalt minerals with Pb, Zn, Cu, As, Sb, Fe,
Hg, and Au in various hydrothermal processes [15].

2.2.1. Thallium Sulfide

Thallium sulfide mineral carlinite was first found in the Carlin gold deposit in Nevada,
the USA and is named for its locality Carlin [49]. Although Tl could present as Tl(I)
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and Tl(III), carlinite (Tl+1
2S) is the only reported thallium sulfide mineral that occurs in

Carlin gold deposit and Buus Fe–As–Tl mineralized occurrence in the Swiss Jura Moun-
tains [49,50].

2.2.2. Thallium Sulfosalt

Thallium sulfosalts represent the most abundant thallium minerals mainly found in
hydrothermal deposits due to their complex structure, structure diversity, and the preva-
lence of isomorphism substitution among cations (e.g., As, Sb, Pb, Hg, Ag). Sulfo-arsenite
and sulfo-antimonide dominate 63 known thallium sulfosalts. Thallium sulfosalt mineral-
ogy and crystal chemistry have been well-reviewed [51–54]. According to their structure
types, seven archetypes (SnS, PbS, sphalerite, Tl-rich structures, structures of combination
of two archetypes, chain structures, and layer structures with thallium-rich layers) have
been categorized, and detailed crystal structures and crystal-chemical generalizations have
been made [54]. Tuscany in Italy and Lengenbach in Switzerland are two classic localities
for these rare thallium sulfosalt minerals [35,55]. Metamorphic overprint upon previous
hydrothermal deposits is responsible for the complex thallium mineralization [55,56].

Lorandite (TlAsS2) is the most common thallium sulfosalt mineral in Tajikistan, Russia,
Iran, Switzerland, North Macedonia, and China in various mineralized backgrounds [57,58].
However, Allchar in Macedonia and Lanmuchang in China are two prominent concentrated
localities [31,57]. Unlike common links with Hg, As, and Sb mineralization, lorandite in
Fengshan of Eastern China is closely associated with Cu–Au skarn mineralization with
high Tl concentrations (up to 2016 ppm) in gold ore [58].

2.2.3. Thallium Telluride and Selenides

Very rare thallium tellurides and selenides are documented in some sites. Honeaite
(Au3TlTe2) is the only reported natural thallium-bearing gold telluride [59]. These minerals
are found in Karonie gold deposit, Eastern Goldfields province, Western Australia. Native
gold and tellurobismuthite are common paragenetic minerals [60]. Electron-microprobe
data on 17 grains of honeaite give an average Tl concentration of 19.46% [60]. Bukovite
(Cu4Tl2Se4), crookesite (Cu7(Tl,Ag)Se4), and Sabatierite (Cu6TlSe4) are three reported
thallium selenides, which together with Tl tellurides, are formed in the low temperature
and slightly oxidized conditions [18].

2.2.4. Other Thallium Minerals

Thallium halides and primary sulfates are both limited to the fumaroles. Lafossaite
(Tl(Cl, Br)), Nataliyamalikite (TlI), thallium-enriched flinteite (K,Tl)2ZnCl4 (27.7 wt.% Tl),
saltonseaite (K,Tl)3NaMnCl6 (3.5 wt.% Tl), chrysothallite K6Cu6Tl3+Cl17(OH)4·H2O, kalithal-
lite K3Tl3+Cl6·2H2O, karpovite Tl2VO(SO4)2(H2O), evdokimovite Tl4(VO)3(SO4)5(H2O)5, and
markhininite TlBi(SO4)2 have been discovered in the fumaroles [61–63]. It is noteworthy
that chrysothallite and kalithallite are two of the three known natural minerals of Tl3+ (the
third is avicennite Tl2O3), containing not only thallium but also potassium in different
structural sites. Occurrences of these thallic minerals imply that there may be other mech-
anisms responsible for the oxidation of Tl+ to Tl3+ in addition to the avicennite typically
associated with manganese oxides [64,65]. However, the mechanisms for oxidation have
not been elucidated yet.

Pd thallide (Pd3Tl) and two new Pd thallide phases were documented in the magmatic
PGE deposit of Russia and South Africa. These Pd thallide phases occur as composite
grains or intergrowths of sub-millimeter size. Post magmatic-hydrothermal fluid reaction
with PGE minerals is responsible for forming these unusual PGE thallide minerals [63,66].

In addition to the above-mentioned Tl minerals, other Tl minerals occur much rarer.
All reported 89 thallium minerals and their chemical formula are given in Table 1. Taken
together, thallium sulfosalts and monovalent thallium minerals dominate.
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3. Secondary Sulfate Mineralogy in Tl Mineralization Areas

The oxidation/weathering of pyrite (FeS2) and other sulfide minerals introduces
a high metal (e.g., Fe, Mn, Tl, Cu, Ni) concentration and sulfate into the surrounding
environment. However, the formation of secondary sulfate could critically mediate the
metal releasing process due to incorporating metal and sulfate into the secondary minerals.
Many of the secondary sulfate minerals are soluble in the aqueous media; they represent
the transient sink for sulfate, acidity, and metals [67]. Crystal chemistry exerts the primary
control for the solubility of and incorporation of metal into the minerals.

The secondary sulfate minerals in thallium deposits, including thallium sulfate and
Fe- and Al-hydroxysulfate minerals, have been documented in the literature [19,68–70]. As
oxidation/weathering of pyrite releases large amounts of Fe2+ and SO4

2− into the AMD,
the melanterite group dominates the secondary sulfate with less occurrence of monovalent
metal sulfates (e.g., lanmuchangite and alum), other divalent metal sulfates (e.g., gypsum
and epsomite), and trivalent metal sulfates (e.g., alunogen and coquimbite).

Table 1. Independent thallium minerals.

Mineral (Ref.) Chemical Formula Mineral (Ref.) Chemical Formula

Argentobaumhauerite [71] (Ag,Tl)1.5Pb22As33.5S72 Jentschite [72] TlPbAs2SbS6
Arsiccioite [73] AgHg2TlAs2S6 Kalithallite [74] K3Tl3+Cl6·2H2O

Auerbakhite [75] MnTl2As2S5 Karpovite [76] Tl2VO(SO4)2(H2O)
Avicennite [77] Tl2O3 Lafossaite [63] Tl(Cl,Br)
Bernardite [78] Tl(As,Sb)5S8 Lanmuchangite [68] TlAl(SO4)2·12H2O
Biagioniite [79] Tl2SbS2 Lorándite [80] TlAsS2

Boscardinite [81] TlPb4(Sb7As2)S18 Markhininite [82] TlBi(SO4)2
Bukovite [83] Cu4Tl2Se4 Nataliyamalikite [61] TlI
Carlinite [49] Tl2S Parapierrotite [84] Tl(Sb,As)5S8

Chabournéite [85] Tl4Pb2(Sb,As)20S34 Perlialite [86] K3TlAl3Si4O18·5H2O
Chalcothallite [83] Tl2(Cu,Fe)6SbS4 Philrothite [87] TlAs3S5

Christite [88] TlHgAsS3 Picotpaulite [89] TlFe2S3
Chrysothallite [74] K6Cu6Tl3+Cl17(OH)4·H2O Pierrotite [90] Tl2(Sb,As)10S16

Criddleite [91] TlAg2Au3Sb10S10 Pokhodyashinite [92] Cu2Tl3Sb5As2S13
Crookesite [93] Cu7(Tl,Ag)Se4 Protochabournéite [94] Tl2Pb(Sb,As)10S17

Cuprostibite [95] Cu2(Sb,Tl) Raberite [96] Tl5Ag4As6SbS15
Dalnegroite [97] Tl4Pb2Sb8As12S34 Raguinite [98] TlFeS2

Dekatriasartorite [99] TlPb58As97S204 Ralphcannonite [100] AgZn2TlAs2S6
Dorallcharite [101] TlFe3(SO4)2(OH)6 Rathite [102] Ag2Pb12-xTlx/2As18+x/2S40
Drechslerite [103] Tl4(Sb4−xAsx)S8 Rayite [104] (Ag,Tl)2Pb8Sb8S21

Écrinsite [105] AgTl3Pb4As11Sb9S36 Rebulite [106] Tl5Sb5As8S22
Edenharterite [107] TlPbAs3S6 Richardsollyite [108] TlPbAsS3

Ellisite [109] Tl3AsS3 Rohaite [83] TlCu5SbS2
Erniggliite [110] Tl2SnAs2S6 Routhierite [111] TlCuHg2As2S6

Enneasartorite [112] Tl6Pb32As70S140 Sabatierite [113] Cu6TlSe4
Evdokimovite [114] Tl4(VO)3(SO4)5(H2O)5 Saltonseaite [115] (K,Tl)3NaMnCl6

Fangite [116] Tl3AsS4 Sicherite [117] TlAg2(As,Sb)3S6
Ferrostalderite [118] CuFe2TlAs2S6 Simonite [119] TlHgAs3S6

Ferrovorontsovite [120] (Fe5Cu)TlAs4S12 Spaltiite [121] Tl2Cu2As2S5
Flinteite [122] (K,Tl)2ZnCl4 Stalderite [123] TlCu(Zn,Fe,Hg)2As2S6

Gabrielite [124] Tl2AgCu2As3S7 Steropesite [125] Tl3BiCl6
Gladkovskyite [126] MnTlAs3S6 Thalcusite [83] Tl2Cu3FeS4

Galkhaite [120] Tl(Hg,Cu,Zn)6(As,Sb)4S12 Thalfenisite [127] Tl6(Fe,Ni,Cu)25S26Cl
Gillulyite [116] Tl2(As,Sb)8S13 Thalliomelane [103] TlMn4+

7.5Cu2+
0.5O16

Gungerite [128] TlAs5Sb4S13 Thalliumpharmacosiderite [121] TlFe4[(AsO4)3(OH)4]·4H2O
Hatchite [129] AgTlPbAs2S5 Thunderbayite [130] TlAg3Au3Sb7S6

Hendekasartorite [112] Tl2Pb48As82S172 Tsygankoite [131] Mn8Tl8Hg2(Sb21Pb2Tl)S48
Hephaistosite [62] TlPb2Cl5 Twinnite [132] Pb0.8Tl0.1Sb1.3As0.8S4

Heptasartorite [112] Tl7Pb22As55S108 Vaughanite [133] TlHgSb4S7
Honeaite [60] Au3TlTe2 Voltaite [35] (K,Tl)2Fe8Al(SO4)12·18H2O

Hutchinsonite [134] (Pb,Tl)2As5S9 Vorontsovite [120] (Hg5Cu)TlAs4S12
Imhofite [135] Tl5.8As15.4S26 Vrbaite [136] Hg3Tl4As8Sb2S20

Incomsartorite [137] Tl6Pb144As246S516 Wallisite [138] CuPbTlAs2S5
Jarosite [64] (Tl,K)Fe3(SO4)2(OH)6 Weissbergite [139] TlSbS2

Jankovicite [140] Tl5Sb9(As,Sb)4S22
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3.1. Secondary Thallium and Potassium Sulfate

The mineralogy of thallium sulfate in secondary environments of mining areas is
constrained to very few species. Two Tl+-oxysalts, namely dorallcharite [101] and lan-
muchangite [68], are the reported secondary sulfate minerals, with thallium occurring as
a monovalent ion in the two minerals. Potassium sulfate minerals (e.g., voltaite) have
elevated Tl contents due to the substitution of K by Tl [141]. The chemical formula, unit cell
parameter, and crystal system for these two minerals and the other three thallium sulfate
minerals are given in Table 2.

Table 2. Crystal chemistry for thallium sulfate minerals [68,76,82,101,114].

Mineral Chemical Formula Crystal System Unit-Cell Parameters

Lanmuchangite TlAl(SO4)2·12H2O Isometric a = 12.212 Å, V = 1871 Å3

Dorallcharite TlFe3(SO4)2(OH)6 Trigonal a = 7.3301, c = 17.6631 Å, V = 821.73 Å3,
Evdokimovite Tl4(VO)3(SO4)5·(H2O)5 Monoclinic a = 6.2958, b = 10.110, c = 39.426 Å, V = 2509.4 Å3, β = 90.347◦

Karpovite Tl2VO(SO4)2(H2O) Monoclinic a = 4.6524, b = 11.0757, c = 9.3876 Å, V = 478.60 Å3, β = 98.353◦

Markhininite TlBi(SO4)2 Triclinic a = 7.378, b = 10.657, c = 10.657 Å, V = 680.2 Å3, α = 61.31,
β = 70.964, γ = 70.964◦

Dorallcharite (TlFe3+
3(SO4)2(OH)6) is the Tl-analog of jarosite; it was initially found

in Allchar of North Macedonian and thereafter in France [142] and Switzerland [49]. The
crystal structure for dorallcharite is presented in Figure 2. Dorallcharite occurs associ-
ated with gypsum, rosselrite (MgHAsO4·7H2O), thalliumpharmacosiderite (TlFe4[(AsO4)3
(OH)4]·4H2O), and amorphous Fe and Mn sulfate and/or arsenate at Allchar [101]. The
mean concentration of Tl and K from 25 microprobe measurements is 23% and 1.23%,
respectively [143]. It is formed following Tl removal from sulfide oxidation and subse-
quently retained by the sulfate [101]. Given that Tl+ substitutes K+ in jarosite, a complete
solid-solution series exists between jarosite and dorallcharite [101].
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Lanmuchangite (TlAl(SO4)2·12H2O) is the Tl-analog of alunite. It is only reported
in its type locality, China [68], which is associated with melanterite, pickeringite, alum,
jarosite, gypsum, native sulfur, arsenolite, and some unknown minerals in the oxidized
zone of the Lanmuchang Hg-Tl deposit [68]. It belongs to the alum group with the general
formula X+Al3+(SO4)2·12H2O in which X site is occupied by Na, K, NH4, and Tl. The
crystal structure of the mineral is given in Figure 3. Biagioni et al. [35] documented Tl-
bearing alum (K) from the Apuan Alps in Italy and argued that the substitution of Al3+
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by Fe3+ and K+ by both NH4
+ and Tl+ are responsible for the nonlinear variation of the

unit-crystal parameter from Alum(K) to lanmuchangite.
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Thallium voltaite ((K,Tl)Fe2+
5Fe3+

3Al(SO4)12·18H2O) is reported in the oxidized zone
of thallium deposits (e.g., Tuscany of Italy), which was first named as a new Tl3+-K mineral
monsmedite and was later discredited [35]. The study suggests that the unit-cell parameter
(a = 27.2587 Å and a = 27.2635 Å for Romania and Italy, respectively) of Tl voltaite is
slightly larger than that of synthetic K2Fe2+

5Fe3+
3Al(SO4)12·18H2O (a = 27.234 Å) [35,144].

It is reported that Tl voltaite is chemically zoned with Tl more enriched in the rims (Tl2O
3.30%) than in the core (Tl2O 2.88%) of the voltaite as revealed by electron microprobe
analyses [35]. The Tl voltaite closely occurs with more than 15 secondary sulfate minerals.
The K site replacement by Tl in the voltaite from Apuan Alps has been confirmed by
quantitative EXAFS and single-crystal X-ray diffraction refinement [35].

Pyrite oxidation and subsequent Tl release and K substitution by Tl in various ratios in
the secondary K sulfate are responsible for the formation of dorallcharite, lanmuchangite,
voltaite, and other K sulfate minerals, as evidenced the elevated content of Tl in alum(-K)
(KAl(SO4)2·12H2O), goldichite (KFe3+(SO4)2·4(H2O)), jarosite (KFe3+(SO4)2·(OH)6) and
krausite (KFe3+(SO4)2·(H2O)) in Apuan Alps [69] and Lanmuchang [145]. It is expected
that some K sulfate minerals from Apuan Alps, in which Tl contents have not been analyzed,
such as giacovazzoite (K5Fe3+

3O(SO4)6·10H2O), Magnanelliite (K3Fe3+
2(SO4)4(OH)(H2O)2),

and scordariite (K8(Fe3+
0.67�0.33)[Fe3+

3O (SO4)6]2·14H2O), should contain high Tl concen-
trations.

3.2. Secondary Iron Sulfate

Secondary iron sulfates including ferrous sulfate melanterite (Fe2+(SO4)·(H2O)7)
and halotrichite (Fe2+Al2(SO4)4·22H2O), mixing ferrous and ferric sulfate römerite
(Fe2+Fe3+

2(SO4)4·14H2O), and ferric sulfate fibroferrite (Fe3+(SO4)(OH)·5H2O) are found
in the oxidized zone of thallium deposit [68,69]. Melanterite is the most common sec-
ondary sulfate mineral formed in the earliest period of pyrite oxidation [29]. Partial
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oxidation of ferrous iron in the solution under acid conditions leads to the formation of
romerite and fibroferrite. Due to the significant ionic radius difference between iron and
thallium, only a trace amount of Tl is incorporated into iron-sulfate minerals [69]. All
reported four iron-sulfate minerals are more soluble than jarosite and schwertmannite
(Fe8O8(OH)6SO4·nH2O) [29].

3.3. Secondary Calcium, Magnesium, Aluminum Sulfate

Gypsum (CaSO4·2H2O), anhydrite (CaSO4), alunogen (Al2(SO4)3·17(H2O)),
coquimbite (AlFe3+

3(SO4)6(H2O)12·6(H2O)), khademite (Al(SO4)F·5(H2O)), pickeringite
(MgAl2(SO4)4·22H2O), and magnesiocopiapite (MgFe3+

4(SO4)6(OH)2(H2O)14·6H2O) are
reported secondary calcium, aluminum, and magnesium sulfate in thallium deposit [68,69].
All these sulfate minerals have high solubility, especially in acid solutions [29]. Crystal
chemical difference between Tl and Ca, Mg, and Al inhibits Tl from entering the crystal
lattice of these minerals.

4. Environmental Significance of the Secondary Sulfate Minerals

Precipitation and dissolution of the secondary sulfate mineral in the alternating wet-
dry climate in mining areas can store or release acid and/or toxic elements. Owing to the
varied Tl concentration, crystal structure and composition, and solubility, the secondary
sulfate minerals play different roles in the environment.

4.1. Tl Sulfate

Natural Tl sulfate mineral lanmuchangite is readily soluble in water [68] and remains
stable only in acidic conditions [16]; therefore, lanmuchangite serves as a transient Tl source
and sink in the Tl-bearing mining environment. A high concentration of Tl appeared in
rims of the voltaite at Alpuan mine, which suggests that Tl is enriched in the sulfide
oxidation in K-poor environments [69]. Unfortunately, no literature is documented for Tl
behavior during voltaite dissolution.

Tl-jarosite, which is transformed to dorallcharite when Tl completely substitutes K in
the jarosite crystal lattice, represents common Tl sulfate in the Tl mining areas. In contrast
to lanmuchangite, jarosite is relatively insoluble in water [67]. Moreover, jarosite and most
other sulfate minerals are formed in acid conditions [146]. Therefore, Tl-jarosite plays a
pivotal role in the storage of acid and Tl following sulfide weathering and oxidation and
serves as a long-term sink for Tl and acid, notably in acid mine drainage and acid soil.
Interestingly, the sites where these Tl sulfate minerals are documented, namely Allchar,
Lanmuchang, and Tuscany, are Tl-rich deposits and notorious Tl-polluted areas [6]. Thus,
occurrence of Tl sulfate minerals implies Tl-rich geological settings and abundant Tl release
from oxidation of Tl-bearing sulfide minerals.

Thermodynamic modeling shows a wide stability field for dorallcharite [69]. Do-
rallcharite and Tl-jarosite are susceptible to significantly incongruent dissolution to release
Tl and form iron hydroxides or schwertmannite under circumneutral pH conditions as
described by the following reaction [147–149]:

(Tlx,K1−x)Fe3(SO4)2(OH)6 + 2H2O = 3Fe(OH)3 + xTl+ + (1 − x)K+ + 2SO4
2− + 3H+ (1)

The dissolution is also enhanced by microbial reduction of structural Fe and S. Dissimi-
latory iron-reducing bacteria (DIRB) (e.g., Shewanella putrefaciens CN32, Geobacter metallopro-
teins) have been proved using iron oxides as an electron acceptor for respiration. Jarosite
enhanced reductive dissolution and iron oxides formation by Shewanella putrefaciens CN32,
and Shewanella oneidensis MR-1 have been well recognized under anaerobic and neutral pH
conditions [69,150]. Sulfate-reducing bacteria (SRB) can use sulfate as a terminal electron
acceptor, and reductive-dissolution of jarosite by SRB has also been argued in anaerobic con-
ditions [151–153]. Aqueous Tl data, adsorption experiments, and thermodynamic modeling
demonstrate Tl did not have strong affinity for the iron oxides [147–149,154]. Taken together,
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Tl-jarosite and dorallcharite dissolution will increase Tl mobility and bioavailability driven
by biotic and abiotic processes.

4.2. Calcium, Magnesium, Alumina, and Iron Sulfate

The pyrite’s predominance in sulfides and Tl-hosted phases of Tl ore bodies, pyrite
oxidation, and the subsequent sulfate mineral formation play a significant role in Tl release
from primary Tl-hosted phases. It is commonly accepted that abiotic pyrite oxidation
proceeds as the following simplified reactions [155]:

FeS2 + 7/2O2 + H2O→ Fe2+ + 2SO4
2− + 2H+ (2)

Fe2+ + 1/4O2 + H+ → Fe3+ + 1/2H2O (3)

Fe3+ + 3H2O→ Fe(OH)3 + 3H+ (4)

FeS2 + 14Fe3+ + 8H2O→ 15Fe2+ + 2SO4
2− + 16H+ (5)

Soluble minerals (e.g., gypsum, alum (without K), melanterite, halotrichite, römerite,
and fibroferrite) may precipitate at the surface of mineralized rocks during dry periods [156].
These sulfate minerals are highly impossible to act as a temporary or long-term storage for
Tl for the crystal chemistry reason as evidenced by trace amounts of Tl in these minerals
mentioned in Sections 3.2 and 3.3. Besides, we argued that redox cycling between ferrous
and ferric iron in Equations (3) and (5) might impact the Tl release from Tl-bearing sulfide
oxidation. It is well known that ferrous iron oxidizes to ferric iron in Equation (3) during
pyrite oxidation and is a rate-limiting step [155]. Moreover, the ferrous iron that oxidizes
to ferric iron is also pH dependent. Under the circumneutral pH conditions, the ferric iron
tends to hydrolyze to ferrihydrite, which causes the removal of ferric iron from the aqueous
system. Since the rate of pyrite oxidation involving Fe3+ is significantly higher than that of
O2, as suggested by reaction Equation (2), the O2-dominated pyrite oxidation will proceed
at a relatively lower rate. At the low pH conditions resulting from the secondary sulfate
dissolution during the wet periods, ferric iron oxidizing pyrite in Equation (5) is preferred
to Equation (4). Thus, Equations (3) and (5) construct a closed iron cycling to prompt the
pyrite oxidation approach to a steady state.

The ferrous iron oxidation rate in Equation (3) becomes very slow at lower pH values,
and dissolution and adding of ferric iron sulfate minerals (e.g., fibroferrite) may compensate
for the lower rate. Despite the effectiveness of microbial catalysis for pyrite oxidation
process, abiotic pyrite oxidation at depth is argued at the global scale owing to the pore
limit for the access of bacteria [157]. Therefore, precipitation and dissolution of soluble
iron-sulfate minerals probably sustains long-term pyrite oxidation and associated Tl release
in areas impacted by Tl mining and processing.

5. Conclusions

Tl is a highly toxic heavy metal that is strictly regulated by many countries but has an
irreplaceable role in several high-tech fields, and is mainly introduced into the environment
unintentionally by the mining, mineral processing, and metallurgy related to Tl-(bearing)
deposits. The numerous discoveries of new Tl minerals and Tl-bearing deposits in recent
years suggest that the risk of Tl exposure is much higher than documented, and the
potential Tl pollution associated with the mining activities has attracted considerable
attention. Although up to 89 Tl minerals have been reported, hydrothermal pyrite is the
predominant Tl-bearing phase in most Tl-(bearing) deposits. Pyrite oxidation not only
generates acid but also releases Tl into the environment. Thallium and other metal sulfate
minerals formed during the dry season play varied roles in Tl mobility and scavenging
due to different crystal chemistry signatures. Furthermore, secondary sulfate minerals
dissolution and ferric iron adding can accelerate the pyrite oxidation and Tl release from
pyrite and other Tl-bearing sulfides.
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More in-depth knowledge is needed about the behavior of Tl release during Tl sulfide
minerals oxidation and constrained factors under different natural conditions. Besides, the
roles that the secondary sulfate minerals play on Tl uptake by plants should be further
investigated in future works. These efforts could enable us to control Tl pollution and
reclaim Tl-polluted lands.
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