
minerals

Article

Evolution of the Reaction and Alteration of Mudstone with
Ordinary Portland Cement Leachates: Sequential Flow
Experiments and Reactive-Transport Modelling

Keith Bateman 1,* , Shota Murayama 1, Yuji Hanamachi 2, James Wilson 3, Takamasa Seta 2, Yuki Amano 1,
Mitsuru Kubota 1, Yuji Ohuchi 1 and Yukio Tachi 1

����������
�������

Citation: Bateman, K.; Murayama, S.;

Hanamachi, Y.; Wilson, J.; Seta, T.;

Amano, Y.; Kubota, M.; Ohuchi, Y.;

Tachi, Y. Evolution of the Reaction

and Alteration of Mudstone with

Ordinary Portland Cement Leachates:

Sequential Flow Experiments and

Reactive-Transport Modelling.

Minerals 2021, 11, 1026. https://

doi.org/10.3390/min11091026

Academic Editor: Hegoi Manzano

Received: 9 August 2021

Accepted: 16 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai 319-1194, Ibaraki, Japan;
murayama.shota@jaea.go.jp (S.M.); amano.yuki@jaea.go.jp (Y.A.); kubota.mitsuru@jaea.go.jp (M.K.);
ohuchi.yuji@jaea.go.jp (Y.O.); tachi.yukio@jaea.go.jp (Y.T.)

2 QJ Science, 8-1 Sakaecho, Yokohama 221-0052, Kanagawa, Japan; hanamachi.yuji@jaea.go.jp (Y.H.);
takamasa.seta@qjscience.co.jp (T.S.)

3 Wilson Scientific Ltd., Birchwood, Warrington WA3 6TR, UK; jim@wilsonscientific.co.uk
* Correspondence: bateman.keith@jaea.go.jp

Abstract: The construction of a repository for geological disposal of radioactive waste will include
the use of cement-based materials. Following closure, groundwater will saturate the repository
and the extensive use of cement will result in the development of a highly alkaline porewater,
pH > 12.5; this fluid will migrate into and react with the host rock. The chemistry of the fluid
will evolve over time, initially high [Na] and [K], evolving to a Ca-rich fluid, and finally returning
to the groundwater composition. This evolving chemistry will affect the long-term performance
of the repository, altering the physical and chemical properties, including radionuclide behaviour.
Understanding these changes forms the basis for predicting the long-term evolution of the repository.
This study focused on the determination of the nature and extent of the chemical reaction, as well
as the formation and persistence of secondary mineral phases within a mudstone, comparing data
from sequential flow experiments with the results of reactive transport modelling. The reaction of
the mudstone with the cement leachates resulted in small changes in pH with the precipitation of
calcium aluminium silicate hydrate (C-(A-)S-H) phases of varying compositions. As the system
evolves, secondary C-(A-)S-H phases re-dissolve and are replaced by secondary carbonates. This
general sequence was successfully simulated using reactive transport modelling.

Keywords: ordinary Portland cement; mudstone; sequential flow experiment; reactive-transport
modelling; radioactive waste disposal

1. Introduction

The construction of a repository for geological disposal of radioactive waste will
include the use of cement-based materials [1–4]. Following closure, groundwater will
saturate the repository and the use of cement will result in the development of a highly
alkaline porewater, pH > 12.5, in the case of ordinary Portland cement (OPC) [5,6]. The fluid
will migrate into and react with the host rock. The chemistry of the migrating fluid will
evolve over time, initially being high in Na and K with high pH ~13.5 (Stage I), evolving to
a Ca rich fluid with pH ~12.5 (Stage II), followed by C-S-H buffering (Stage III), and finally
returning to the groundwater composition [7]. This evolving fluid chemistry will affect the
long-term performance of the repository, altering the physical and chemical properties of
the host rock, including radionuclide behaviour ([7] and references within). Understanding
these changes forms the basis for modelling the long-term evolution of the repository.

Flow-through or column experiments [8] are a useful technique with which to obtain
experimental data on the spatial and temporal changes as the chemistry of the migrat-
ing fluid evolves. However, many previous studies have used only a single fluid at a
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time [9–11], and although the reactions of different OPC leachates (representing Stages I
and II) have sometimes been examined, these studies generally compared the reaction of
unaltered solids (either single minerals, synthetic mineral assemblages, or real rocks) and a
single leachate.

It is known, for example, that the Ca/Si ratios of the secondary calcium silicate
hydrate (C-S-H) and calcium aluminium silicate hydrate (C-A-S-H) phases may change by
re-dissolution and precipitation as the chemistry of the reacting fluid evolves, i.e., reduction
in Na and K and increases in Ca concentration [12–15]. Indeed, this has been observed
in laboratory column experiments [15] in which early-formed C-S-H and C-A-S-H gels
were replaced by ones with a lower Ca/Si ratio during successive reaction with fluids
representing the evolution of a cement leachate over time. The initial Na-K-Ca-OH fluid [15]
was followed by a Ca(OH)2-saturated fluid and, finally, a Ca-HCO3-type fluid (neutral
pH), representing eventual re-saturation of by background bicarbonate groundwater [15].
However, this work [15] only used a ‘generic’ crystalline rock.

Some previous modelling studies [16–18] have been undertaken to consider the fluid
evolution impacts on the host and secondary mineralogy, but without experimental data
with which to validate the predictions. In addition, most of these modelling studies used a
single input fluid and tracked evolution of this fluid’s chemistry and change in mineralogy
with time and/or distance. An understanding of how the evolution in chemistry of the mi-
grating cement pore fluids from the repository and subsequent interaction with the altered
the host rock is critical for the prediction of the long-term evolution of the mineralogy, and
will be part of the safety assessment for radioactive waste disposal repository.

This study focused on the sequence of alteration owing to the evolution of OPC-type
leachate chemistry on argillaceous mudstone from the Horonobe Underground Research
Laboratory (URL), Hokkaido, Japan [19]. This study describes the use of sequential fluids
to represent the evolution of the cement leachate fluid chemistry with time and how
it interacts with the host rock, which has been identified as a key area of uncertainty,
particularly with the modelling of such systems [7]. This was performed by setting up
a series of identical flow experiments to provide (at least in a laboratory time frame)
information on the sequence of reaction. The first flow experiment was stopped after the
reaction with a fluid representative of an early OPC cement leachate. In the remaining
experiments, the reactant fluid was then changed to one representative of an evolved
leachate. Again, after a period of reaction, one of the experiments was terminated and
the reactant fluid changed to a natural groundwater for the final stage of reaction. Fluid
chemistry was monitored throughout the experiments, providing a near continuous record
of the evolution of the reacted fluid chemistry, and with the three different fluid types,
‘snapshots’ of the mineralogical variations could be determined. The specific aim of this
work was the determination of the nature and extent of the chemical reaction as well as the
formation and persistence of secondary mineral phases within the mudstone, as the fluid
chemistry evolved, by the comparison of experimental data with geochemical reactive
transport modelling.

2. Materials and Methods
2.1. Horonobe Mudstone

Samples of mudstone, for use in this study, were collected from the Horonobe URL
site, Hokkaido, Japan [19]. The samples were taken from gallery walls located in the Koetoi
formation, which is a massive and lithologically homogeneous, diatomaceous mudstone
that contains amorphous silica (40–50 wt%), clay (17–25 wt%), quartz (7–10 wt%), feldspar
(5–10 wt%), and pyrite (<2 wt%) [20,21]. The mudstone samples were crushed to <500 µm
prior to being used in the experiments. The use of crushed materials increases the surface
area available for reaction and encourages a greater degree of reaction within the time
constraints of a laboratory study. However, it is recognised that the crushing process could
also result in the generation of highly reactive ‘fines‘, resulting in experimental artefacts,
i.e., increased initial dissolution.
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2.2. Description of Fluids

Cement pore fluids representative of the alkaline leachates expected from a cemen-
titious repository [22,23] were used for these sequential experiments. The first fluid rep-
resented a ‘young’ OPC leachate pH ~13.4 with high [Na] and [K]. A second fluid, an
‘evolved’ OPC leachate, was Ca-rich and saturated with respect to portlandite, pH ~12.5.
The OPC leachates were prepared from analytical grade reagents; Na and K were added as
hydroxides and Ca as CaO. The third fluid was Horonobe groundwater (HGW) collected
from the 07-V140-M03 borehole (depth 140 m, sampled on 22 July 2020), located in the
Koetoi Formation, which was stored in stainless-steel containers under nitrogen before use.
Details of the initial concentrations of ions in the fluids are given in Table 1.

Table 1. Initial concentrations of major ions in the OPC leachates and Horonobe groundwater.

Leachate pH @ 24 ◦C Components (mg/L)

‘young’ OPC leachate Na K Ca SiO2 Mg Cl HCO3
−

(Na-K-Ca-OH) 13.4 1500 7300 60 - - - -

‘evolved’ OPC leachate Ca SiO2 Mg Cl HCO3
−

(saturated Ca(OH)2) 12.5 800 - - - -

Horonobe groundwater Na K Ca SiO2 Mg Cl HCO3
−

07-V140-M03
(sampled 22 July 2020) 7.93 2580 74 69 68 97 2900 2200

Upon sub-sampling the fluid from the reservoir used in the flow experiment, it was
noted that the pH of the HGW (pH ~8.65) had increased from that of the original HGW
(pH ~7.93, Table 1) as sampled from the stainless-steel container. This was accompanied
by a corresponding decrease in [HCO3

−] to ~1900 mg/L (from ~2200 mg/L), indicating
that there had been some degassing of the HGW during the set-up of the experiment.
Typically, HGW from the same borehole [24] has a ~pH 7.4~7.8 and a [HCO3

−] ranging
from 2700–3100 mg/L, suggesting that, even in the stainless-steel container, there had been
some degassing of the HGW.

2.3. Description of the Flow Experiments

A small flow cell (SFC) as used in previous studies, examining differences in alteration
of Horonobe mudstone with ordinary Portland and low alkali cement leachates [14], was
used to conduct the experiments. A schematic of the small flow cell set-up is shown in
Figure 1. The SFC was constructed from three pieces of acrylic plastic, sealed by a combi-
nation of ‘O-rings’ and bolts (Figure 1). Both inlet and outlet sides for the cell were fitted
with filters and porous polypropylene disks, which, on the inlet side, aided the distribution
the incoming fluid across the whole face of the mudstone sample. Polypropylene fluid
reservoirs and sample collection bottles were used, with flow through the cell controlled by
a Cole-Parmer MASTERFLEX® peristaltic pump (Cole-Parmer, Vernon Hills, IL, USA) [14].
The dry density of the packed mudstone could be controlled during the initial set-up. The
experiments conducted here used a dry density of 1 g/cm3 (corresponding to a solid mass
~3.14 g); this was achieved using a small stainless-steel hand-press to mould the mudstone
sample. The experiments were conducted inside a glove box continuously flushed with N2.
The primary aim of this flushing was to prevent carbonation of the alkaline leachates by
atmospheric carbon dioxide.
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Figure 1. (a) Schematic (after [14]) and photograph (b) of small flow cell (SFC). 
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acting mudstone samples with successive fluids starting with the ‘young’ OPC leachate 
(SFC-1), followed by the ‘evolved’ OPC leachate (SFC-2), and finally HGW (SFC-3). Figure 
2 gives details of the experiments conducted, together with the reaction duration with 
each fluid. 

 
Figure 2. Details of the experiments, with interval and total times for the sequential experiments with the Horonobe mud-
stone reacting with OPC leachates and then ground water. 

2.4. Fluid Sampling and Analysis 
Sampling of the fluids was performed within the protective N2 atmosphere of the 

glove box. All collected fluids were filtered using 0.2 µm syringe filters and then sub-
sampled for determination of cations, and anions. Typically, a 4 mL sample of the fluid 
was diluted two-fold with 18 MΩ cm demineralised water (Millipore Simplicity® ul-
trapure water system) and then acidified with concentrated HNO3 (1% v/v), in order to 
preserve the sample. This sample was used for the analysis of major cations, by a combi-
nation of ICP-OES (inductively coupled plasma—optical emission spectrometry) using a 
Shimadzu ICPE-9800 (Shimadzu Corporation, Kyoto, Japan), and ICP-MS (inductively 
coupled plasma—mass spectrometry) using a Perkin-Elmer NexION 300× (PerkinElmer, 

Figure 1. (a) Schematic (after [14]) and photograph (b) of small flow cell (SFC).

On completion of the experiments, the SFC was partly dismantled and the mudstone
sample was vacuum dried, while still being held in the central section, before being carefully
extruded and sectioned into ~1.5 mm thick slices, using a thin blade, before subsequent
mineralogical analysis.

A series of three flow experiments were conducted to examine the sequential reac-
tion of Horonobe mudstone with OPC leachates and groundwater. This was achieved
by reacting mudstone samples with successive fluids starting with the ‘young’ OPC
leachate (SFC-1), followed by the ‘evolved’ OPC leachate (SFC-2), and finally HGW (SFC-3).
Figure 2 gives details of the experiments conducted, together with the reaction duration
with each fluid.
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Figure 2. Details of the experiments, with interval and total times for the sequential experiments with the Horonobe
mudstone reacting with OPC leachates and then ground water.

2.4. Fluid Sampling and Analysis

Sampling of the fluids was performed within the protective N2 atmosphere of the glove
box. All collected fluids were filtered using 0.2 µm syringe filters and then sub-sampled for
determination of cations, and anions. Typically, a 4 mL sample of the fluid was diluted two-
fold with 18 MΩ cm demineralised water (Millipore Simplicity® ultrapure water system)
and then acidified with concentrated HNO3 (1% v/v), in order to preserve the sample.
This sample was used for the analysis of major cations, by a combination of ICP-OES
(inductively coupled plasma—optical emission spectrometry) using a Shimadzu ICPE-9800
(Shimadzu Corporation, Kyoto, Japan), and ICP-MS (inductively coupled plasma—mass
spectrometry) using a Perkin-Elmer NexION 300× (PerkinElmer, Inc., Waltham, MA, USA),
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both calibrated using matrix matched standards. A second subsample was taken for
determination of major anions by IC (ion chromatography) using a Dionex ICS-5000 Ion
Chromatograph system (Thermo Fisher Scientific, Waltham, MA, USA), calibrated using
mixed anion standard solution (Kanto Chemical Co., Inc, Tokyo, Japan). All fluid samples
were stored in a refrigerator at <5 ◦C until required for analysis. Considering instrumental
and sample preparation errors (e.g., sample dilution), a total 5% error was assumed.

The pH of the experimental fluids was determined immediately upon sampling using
a DKK-TOA corp., model HM-30P meter and combination electrode calibrated using
DKK-TOA corp., buffers at 4.01, 6.86, and 9.18 pH (Japanese standard), pH accurate to
±0.02 pH.

2.5. Solids’ Sampling and Analysis

On completion of the experiments, the mudstone samples were cut into ~1.5 mm
thick slices, using a thin blade, with SEM stubs and powdered samples for XRD being
prepared for subsequent mineralogical characterisation. Petrographic analysis of the
solid samples was performed using a combination of both scanning electron microscopy
(SEM) (JEOL JSM-6510 Series SEM, JEOL Ltd., Tokyo, Japan) and X-ray diffraction (XRD)
analysis (RigaKu SmartLab XRD, Rigaku Corporation, Tokyo, Japan) with a 9 kW X-ray
source. Sub-samples for SEM analysis were prepared as carbon coated, random mount
stub samples. Techniques used included SEM using secondary electron imaging (SE)
and backscattered electron (BSE) imaging and element distribution analysis using with
energy-dispersive X-ray spectroscopy (EDS). Samples for XRD were prepared for analysis
by taking a representative sub-sample and grinding to a fine powder

2.6. Mineral Saturation State Calculations

The saturation indices (SI = log (IAP/Ks)—where IAP: ion activity product and Ks:
solubility constant) of the primary and potential secondary minerals—in the reacted fluids
were calculated using the PHREEQC v3.6.3 geochemical code [25]. Calculations were
performed using the JAEA thermodynamic database (JAEA-TDB) [26]. JAEA-TDB version
PHREEQC20.dat (v1.2, 11 March 2021) was used for the calculations, being the latest
version available at the time.

2.7. Reactive-Transport Modelling
2.7.1. CABARET Model Concept

Fully-coupled 1D reactive transport models were constructed using the ‘CABARET’
(Cement And Bentonite Alteration due to REactive Transport) computer modelling code
(Quintessa Limited, Henley-on-Thames, UK). CABARET was chosen for the modelling
in preference to codes such as PHREEQC, as it allows coupling of porosity evolution (as
minerals dissolve and/or precipitate) with diffusive and advective transport. CABARET
uses the underlying QPAC Code, which has been used in previous reactive transport
modelling studies [27,28]. CABARET uses an adaptive time-stepper to maximise the solver
efficiency, which reduces the size of the time-step in response to external events (e.g.,
time-dependent inputs) or ‘emergent events’ (e.g., precipitation of secondary minerals or
total dissolution of pre-existing minerals) and increases the time-step when the system is
evolving less rapidly.

Supporting calculations (e.g., aqueous chemical speciation) were undertaken using
PHREEQCv3 to generate the initial fluid compositions and to identify the key aqueous
species specified in the CABARET models. The same JAEA-TDB [26] version was used for
the CABARET calculations as used for the PHREEQC mineral saturation state calculations.

2.7.2. CABARET Model Setup and Parameters

Figure 3 shows the geometry of the experimental set-up as represented in CABARET.
As CABARET was designed to work with a single input fluid type, it was necessary
to generate the fluids ‘in situ’, effectively reproducing the fluid reservoir used in the
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experimental set up. This reservoir contained defined ‘hypothetical minerals’ (Tables S1–
S3) which, when reacted with the inflowing fluid (i.e., pure water), replicated the three
different successive reacting fluids. The resulting chemistry matched the fluid compositions
given in Table 1.
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Although CABARET is an efficient model, as with other complex simulations, it is
still desirable to minimise the number of active components (i.e., chemical species and
minerals) in the system in order to obtain results in a reasonable computational time.

The choice of minerals considered in the model was determined by the analysis of the
Horonobe mudstone and precipitates observed in this study together with information
from previous studies of the Horonobe mudstone mineralogy [18,20,29]. In addition,
previous geochemical modelling studies on various clayrock–cement fluid reactions were
used to inform the choice of likely active minerals [15,30,31]. The active minerals are given
in Table 2. Ten aqueous basis species (H2O, Al+++, Ca++, Cl−, H+, HCO3

−, K+, Mg++, Na+,
Si(OH)4(aq), SO4

–) were active in the model, together with 35 related aqueous complex
species. A full list of the active chemical species is available in Table S4. The choice of
chemical species included was based on the chemical analysis of the reacted fluids and the
compositions of the minerals included in the model.

Table 2. Details of the ‘model’ Horonobe mudstone composition and potentially active minerals.

Vol % Formula in Thermodynamic Database (JAEA TDB, [26])

Porosity 56.4

SiO2(am) 27.5 SiO2

Montmor 4.18

Montmor_Ca Ca0.165(Mg0.33Al1.67)(Si4)O10(OH)2
Montmor_K K0.33(Mg0.33Al1.67)(Si4)O10(OH)2

Montmor_Mg Mg0.165(Mg0.33Al1.67)(Si4)O10(OH)2
Montmor_Na Na0.33(Mg0.33Al1.67)(Si4)O10(OH)2

Quartz 4.15 SiO2

Illite 3.63 K0.6(Mg0.25Al1.8)(Al0.5Si3.5)O10(OH)2

Albite 1.91 NaAlSi3O8

K_Feldspar 1.17 KAlSi3O8

Anorthite 1.09 CaAl2Si2O8

Portlandite Ca(OH)2
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Table 2. Cont.

Vol % Formula in Thermodynamic Database (JAEA TDB, [26])

CSH055
to

CSH165

(CaO)1.65(SiO2)(H2O)2.1167, (CaO)1.55(SiO2)(H2O)2.0167,
(CaO)1.45(SiO2)(H2O)1.9167,

(CaO)1.35(SiO2)(H2O)1.8167, (CaO)1.25(SiO2)(H2O)1.7167,
(CaO)1.15(SiO2)(H2O)1.6167
(CaO)1.05(SiO2)(H2O)1.5167,

(CaO)1.00(SiO2)(H2O)1.4667,(CaO)0.95(SiO2)(H2O)1.4167,
(CaO)0.90(SiO2)(H2O)1.3667, (CaO)0.85((SiO2)(H2O)1.3167,

(CaO)0.80(SiO2)(H2O)1.248,
(CaO)0.75(SiO2)(H2O)1.17, (CaO)0.65(SiO2)(H2O)1.014, (CaO)0.55(SiO2)(H2O)0.858

Stratlingite_Al (Ca2Al(OH)6)(AlSiO2(OH)4)(H2O)3

Analcime
(Analcite) NaAlSi2O6(H2O)

Clinoptilolite_alk,
Clinoptilolite_Ca
Clinoptilolite_K

Clinoptilolite_Na

K2.3Na1.7Ca1.4(Al6.8Si29.2O72)(H2O)26
Ca3(Al6Si30O72)(H2O)20
K6(Al6Si30O72)(H2O)20

Na6(Al6Si30O72)(H2O)20

Phillipsite_alk
Phillipsite_Ca
Phillipsite_K

Phillipsite_Na

K1.4Na1.6Ca0.4(Al3.8Si12.2O32)(H2O)12
Ca3(Al6Si10O32)(H2O)12
K6(Al6Si10O32)(H2O)12

Na6(Al6Si10O32)(H2O)12

Brucite Mg(OH)2

MSH06
to

MSH15

(MgO)0.6(SiO2)(H2O)1.08, (MgO)0.7(SiO2)(H2O)1.2, (MgO)0.8(SiO2)(H2O)1.32
(MgO)0.9(SiO2)(H2O)1.44, (MgO)1(SiO2)(H2O)1.56, (MgO)1.1(SiO2)(H2O)1.68
(MgO)1.2(SiO2)(H2O)1.8, (MgO)1.3(SiO2)(H2O)1.92, (MgO)1.4(SiO2)(H2O)2.04

(MgO)1.5(SiO2)(H2O)2.16

Monocarbonate_Al (Ca2Al(OH)6)2(CO3)(H2O)5

Monosulfate_Al (Ca2Al(OH)6)2(SO4)(H2O)8

Magnesite MgCO3

Thaumasite Ca3Si(OH)6(SO4)(CO3)(H2O)12

Calcite Ca(CO3)2

Dolomite CaMg(CO3)2

Gypsum CaSO4(H2O)2

Ettringite_Al Ca6(Al(OH)6)2(SO4)3(H2O)26

Friedel_Salt_Al (Ca2Al(OH)6)2(Cl)2(H2O)4

Kuzel_Salt_Al (Ca2Al(OH)6)2((SO4)0.5Cl)(H2O)6

Thermodynamic data (equilibrium constants and standard molal volume for minerals)
were taken from the JAEA-TDB [26] version PHREEQC20.dat (v1.2, 11 March 2021). Kinetic
rates for primary minerals were taken from [32,33] and the references within, those for
montmorillonite from [34] and C-S-H from [35]. Data for surface areas were from [34,36].
Ion exchange of Na, K, and Ca from the reactant fluids with the clays in the mudstone was
included, and the ion exchange parameters for montmorillonite were taken from [37].

In terms of the description of diffusion, including the effect of tortuosity, within
CABARET, this was derived from [38] with dispersion and advection as described in [39].
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3. Results
3.1. Aqueous Chemistry

The chemical evolution of the three flow-through experiments was nearly identical
when comparing the same fluid type. That is, the fluid analytical data for the ‘young’ OPC
leachate were the same for SFC-1, -2, and -3 experiments, and the data for the ‘evolved’
OPC leachate from the SFC-2 and 3 experiments were identical. The results of the SFC
experiments with the ‘young’ OPC leachate have previously been discussed in detail in [14].

3.1.1. Changes in pH

Figure 4a shows the evolution of pH with time for the experiment with the ‘young’
OPC leachate, followed by the ‘evolved’ OPC leachate and then HGW (SFC-3). In all three
experiments, there was an initial decrease to pH ~4 due to the presence of dissolution of
sulphate phases, the discussion of which can be found in [14]. The pH recovered from
the low values within the first 24 h to pH ~13.2. The pH reduction with the ‘young’ OPC
leachate was ~0.2 pH units lower than the original leachate, and a similar drop was seen
with the ‘evolved’ OPC leachate (pH ~12.4). With the change to HGW, the pH decreased,
but even after ~36 d of reaction, the measured pH ~9.25 was still higher than that of the
inflowing groundwater (pH ~8.6).
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3.1.2. Changes in Na Concentration

The changes in Na concentrations in the reacted fluids are shown in Figure 4b. In
all three experiments, [Na] decreased from the concentration in ‘young’ OPC leachate to
~1300 mg/L and remained at close to this value until the inflowing fluid was changed to
the ‘evolved’ OPC leachate (Figures 4b and S1) when, as expected, [Na], reflecting the lack
of Na in the ‘evolved’ OPC leachate, decreased to ~10 mg/L (analytical detection limit)
(Figures 4b and S2). With the change to HGW, [Na] slowly rose over the next 25 days
(Figure 4b) to close to that of the HGW (~2600 mg/L). This time to match the incoming
fluid concentration was slower than the time taken for [Na] to reach steady state with the
change from the ‘young’ to the ‘evolved’ OPC leachate, which was only ~10 d.

3.1.3. Changes in K Concentration

With the ‘young’ OPC leachate, [K] initially decreased to ~4100 mg/L, possibly ow-
ing to ion exchange reactions with the clays in the mudstone [14], before increasing to
~5700 mg/L (Figures 4b and S1) and remained, within analytical error, at this concentration
until the fluid was changed to the ‘evolved’ OPC leachate (SFC-2 and -3) when the [K]
dropped to <40 mg/L (Figures 4b and S2). As with [Na], with the change to HGW (SFC-3),
[K] recovered to close to the concentration present in the groundwater.

3.1.4. Changes in Ca Concentration

With both of the OPC leachate types, [Ca] in the reacted fluids was significantly lower
than of the original OPC leachates (<25 mg/L for the ‘young’ OPC leachate and ~640 mg/L
for the ‘evolved’ OPC leachate (Figure 4b, Figures S1 and S2)). When HGW replaced the
OPC leachate, [Ca] decreased over the next 25 days to <5 mg/L, mirroring the changes
seen in [Na], and remained at this value for the remaining duration of the experiment
(Figure 4b).
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3.1.5. Changes in Silica Concentration

In all the experiments (Figure 4b, Figures S1 and S2), the silica concentrations increased
rapidly in the first 6 days of the reaction to high levels ~1000 mg/L, and then slowly
decreased to ~500 mg/L at the time of the change to the evolved’ OPC leachate (~40 d).
With the ‘evolved’ OPC leachate, silica decreased further, so that, after 7 d of flow with the
evolved’ OPC leachate, silica concentrations were <3 mg/L (Figures 4b and S2). When the
inflowing fluid was changed to HGW, silica concentrations in the reacted fluids increased
over 14 d to approximately twice that of the HGW, i.e., ~130 mg/L.

3.1.6. Changes in Other Ions

With the exception of Rb and Sr, which tracked the concentrations of Na and Ca,
respectively, the concentrations of the remaining cations analysed (e.g., Al, Ba, Cs, Cu, Fe,
Li, Mg, Mn) showed no significant change from the concentrations in original fluids.

In general, the concentrations of anions (Br, NO2
−, NO3

−, and F) reflected the re-
spective concentrations present in the OPC leachates and groundwater. With the ‘young’
OPC leachate, sulphate concentrations in the first fluid samples collected showed an early
large peak (up to ~800 mg/L), but, after 7 d, sulphate concentrations were <5 mg/L and
showed no significant change during the subsequent reaction with neither the ‘evolved’
OPC leachate nor HGW.

In all three experiments, phosphate showed a small peak (~10 days reaction) before
decreasing to <1 mg/L. Previous studies [29] reported rare apatite in some samples of
Horonobe mudstone, the dissolution of which may have been the source of this phos-
phate peak.

The behaviour of Cl (Figure 4b) with the change to HGW was similar to that of Na,
and took ~25 d to reach the concentration of the original HGW (~2900 mg/L).

Bicarbonate concentrations in the collected fluids from the reaction with both OPC
leachates were below detection, but once the fluid was changed to HGW, [HCO3

−]
increased to ~1300 mg/L over 14 d, but did not reach the concentration of the HGW
(~1900 mg/L).

3.2. Mineralogical Analysis
3.2.1. ‘Young’ OPC Leachate Experiment (SFC-1)

A summary of the evolution of the mineralogy for the SFC-1 is shown in Figure 5 and
discussed in greater detail in [14]. In the first section (~0–1.5 mm), there was evidence for
the dissolution of the primary material, and no secondary phases were observed. However,
in the next section, ~1.5–3 mm, a wide variety of secondary C-S-H and C-A-S-H phases
were observed (Figure 5 and [14]). By section 3, ~3–5 mm, there was no further evidence
for additional secondary phase precipitation, and mineral surfaces showed little sign
of reaction.

3.2.2. ‘Young’ and Then ‘Evolved’ OPC Leachate Experiment (SFC-2)

A summary of the evolution of the mineralogy for the experiment with ‘young’ OPC
leachate, followed by the ‘evolved’ OPC leachate (SFC-2), is shown in Figure 6. Again, the
mudstone samples were cut into ~1.5 mm thick slices before being prepared for subsequent
mineralogical characterisation.
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Figure 5. Summary of mineralogy of Horonobe mudstone with ‘young’ OPC leachate. All SEM photos are secondary
electron (SE) images. The white square in the SEM image from Section 2 indicates the area used for SEM-EDS analysis of
C(A)–S–H phases (reproduced from [14]).

In the first section (~0–1.5 mm), a variety of C-(A)-S-H phases were observed
(Figure 6), identified by semi-quantitative SEM-EDS analysis. These phases varied in
Ca/Si, Al content, and morphology. By section 3 (~3–4.5 mm), as with section 1, a variety
of C-(A)-S-H phases were observed, but also present were ‘needle-like’ crystals. SEM-EDS
analysis (Figure 6) suggested that they had a high S content, possibly representing an
ettringite or monosulphate-like composition. Both ettringite and monosulphate are often
found in hydrated Portland cement pastes [40]. XRD analysis (Figure S2) proved inclusive
as to which phase(s) was present, but the SEM-EDS analysis suggested Si was also present.
Ettringite has been shown to be able to accept the replacement of up to half of its Al
by Si [41], which suggests ettringite as the likely phase, though monosulphate is still a
possibility if the Si detected was due to the presence of the underlying primary mineral. An
examination of section 6 (~8.5–10 mm) by SEM again showed the presence of a needle-like
sulphur bearing phase and a variety of C-S-H and C-A-S-H phases (Figure 6).

PHREEQC was used to calculate mineral SI in the reacted fluids based on the analysed
fluid chemistry (Figure S3). The calculations showed that, for most primary mineral phases,
the degree of undersaturation increased in the ‘evolved’ OPC leachate, suggesting more
dissolution compared with the ‘young’ OPC leachate. In addition, the modelling suggested
that, as well as C-S-H phases being saturated or close to saturation, both ettringite and
monosulphate would also be saturated in the collected fluids (Figure S3) when reacted
with the ‘evolved’ OPC leachate.
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3.2.3. OPC Leachates Then HGW (SFC-3)

A summary of the evolution of the mineralogy for the experiment with the ‘young’
OPC and then the ‘evolved’ OPC leachate followed by HGW (SFC-3) is shown in
Figure 7. Unlike the experiments with the OPC leachates (SFC-1,2), it was difficult, owing
to partial cementation of the sample, to prepare equally sliced samples for mineralogical
characterisation.

In the first section (~0–1.0 mm), many surfaces showed signs of significant secondary
precipitation. SEM-EDS analysis (Figure 7) of these precipitates showed them to be arago-
nite/calcite, sometimes containing small amounts of Mg, of varying morphologies. Most
of these crystals were small, ranging from around ~2 to ~10 µm, suggesting fairly rapid
formation. As the HGW contained significant carbonate and the mudstone was saturated
with the ‘evolved’ OPC leachate, it was expected that carbonate precipitation would oc-
cur, especially as, in the HGW itself, calcite was close to saturation. Indeed, calculation
of mineral states, using PHREEQC, indicated that carbonates were close to saturation
(Figure 8) in the collected reacted fluids. Apart from aragonite/calcite (Figures 7 and S4),
no other secondary phases were found, and where visible, the primary mineral surfaces
appeared to be clean of ‘fines’. The secondary C-S-H phases, and ettringite/monosulphate,
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observed in the experiments with the OPC leachates (SFC-2) appeared to have re-dissolved
in this section.

In Section 2 (~1.0–2.5 mm), again, ‘clean’ diatoms were visible. Secondary precipitates
of differing compositions were also found. SEM-EDS analysis of these precipitates was
sometimes inconclusive, with some rare precipitates having compositions that could be
attributed to high Ca/Si, C-S-H phases, and/or calcite overlying primary silicate minerals.
The examination of the saturation state of various C-S-H phases in the reacted fluids
suggested that all C-S-H phases were undersaturated (Figure 8), and thus should have
re-dissolved. Elsewhere in this section, secondary calcites of different morphologies,
sometimes containing Mg, were found. Some larger carbonate crystals (Figure 7) with
diameters of 40–50 µm were also observed, suggesting that these had formed more slowly
than those observed in the first section of the SFC.
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By section 6 (~7.5–10 mm), ‘stacked’ carbonate grains (calcite) were frequently ob-
served; again, some of these crystals were large (typical diameters of 30–40 µm), suggesting
slow sustained growth. Although zeolites were identified as possible secondary minerals
from the calculations for the mineral saturation states (Figure 8), no evidence was found for
their formation, though it should be noted that the available thermodynamic data for many
zeolites remain poorly known [17]. However, given the much faster precipitation rate of
both aragonite and calcite relative to zeolites, carbonates would be highly favoured over
zeolites as secondary phases over experimental timescales. In addition, other studies have
suggested that higher temperatures (>60 ◦C) may be required for zeolite formation [42].

4. Results of Reactive Transport Modelling

To further examine the reaction sequence seen in these experiments and to extend
the timescale beyond that possible in the laboratory experiments, coupled 1D reactive
transport models were constructed using the ‘CABARET’ software.
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Model Predictions vs. Experimental Data

Figure 9 shows the comparison of the results of the CABARET model compared with
the experimental data for the major aqueous components. The model predictions for
the evolution of pH (Figure 9a) were a good match for the experimental data. Both Na
and K predicted concentrations were also a good match, especially for the OPC leachates
(Figure 9a). However, Na with the HGW was predicted to increase faster to the concentra-
tion of the HGW than the experimental data. Calcium concentrations (Figure 9b) were also
a reasonable match to the experimental data for the OPC leachates, although predicted
[Ca] with the ‘evolved’ OPC leachate were slightly lower than in the experiments.
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Silica concentrations were more difficult to match with the experimental data
(Figure 9b). Although an initial increase in silica concentration was predicted by the
CABARET model, this was significantly lower than the concentration observed in the
experiments; the reason(s) for this mismatch are not clear, but one possible explanation
could be that, in the experiments, the crushing process produced many highly reactive
‘fines’ that would have reacted before the bulk of the mudstone.

In addition, with the HGW, silica concentrations in the CABARET model initially
rose to ~1200 mg/L (~2 × 10−2 mol/kg) compared with ~140 mg/L (~2.3 × 10−3) in the
experiments, before decreasing after 100 d to ~63 mg/L (~7.65 × 10−4 mol/kg), which was
about half the concentration observed in the experiments.
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Chloride concentrations with the HGW (Figure 9b) showed an almost immediate
increase from <1 to ≈3200 mg/L in the model rather than the delayed increase seen in the
SFC-3 experiment, showing a similar behaviour to sodium.

Comparison of the saturation indices (SI) for selected C-S-H and zeolite phases derived
from the fluid chemistry (see Figure 8) and CABARET are shown in Figure 9c,d. Although
the absolute numerical values for the mineral SI are often different, the trend in the
model is a reasonable match for the experiment derived SI data, with the major difference
being that, in the experiments, zeolites were oversaturated compared with CABARET
model predictions.

Figure 10 shows the predicted variation of porosity and selected minerals with distance,
at defined time steps. The variation in porosity with time and distance (Figure 10a) predicts
that, for the ‘young’ OPC leachate (0 to 20 d) from 0 to 2.5 mm, the porosity would increase,
i.e., dissolution of the primary minerals after 3 mm, the porosity decreases, indicating
formation of a secondary phases(s). From ~7 to 10 mm, the porosity remains close to but
slightly higher than the starting value (56.4%), suggesting continued partial dissolution of
the mudstone minerals.

The predicted changes in porosity mirrored the prediction of C-S-H phase precipitation
(Figure 10b), which was predicted at time step of 40.2 (d), i.e., the change from ‘young’ OPC
to ‘evolved’ OPC to be the greatest, ~3–4.5 mm, which matches well with the mineralogical
observations from the flow experiment with the ‘young’ OPC leachate (SFC-1) (Figure 5).

With the ‘evolved’ OPC leachate, the model suggests continued dissolution of the
mudstone and increased precipitation of C-S-H phases (Figure 10a,b; time steps of 40.2, 58.4,
and 76.7 (d)) with C-S-H phase precipitation extending throughout the flow cell (Figure 6),
but still with its maximum between 2.5 and 4.5 mm.

With the change to HGW (Figure 10a; time steps of 94.9 and 113.2 (d)), the porosity
close to the inlet (0–1 mm) decreases in direct response to the predicted formation of
secondary calcite (Figure 10c), and because calcite is predicted to form throughout the cell,
porosity is also reduced along the whole flow path. Again, this was in good agreement
with the experimental observations of calcite precipitation (Figure 7). Also shown in
Figure 10 are exemplar data for the primary minerals, which show continued dissolution
with time and distance (Figure 10d,e).
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‘young’ to ‘evolved’ OPC leachate; time step of 80.3, (d) change from “evolved’ OPC leachate to HGW.

Figure 11 shows summary plots of the changes in composition of modelled mineral
assemblage for the unreacted mudstone and after reaction with each fluid (i.e., time 0,
~40, ~80, ~120 d). This illustrates the variation in the relative proportions of the primary
and secondary minerals with time and distance. The increase in volume of C-S-H phases
precipitated with the ‘evolved’ OPC leachate compared with the ‘young’ leachate is evident,
as is the complete removal of C-S-H phases and replacement by calcite following reaction
with HGW, which is the same sequence observed in the experiments (see Figures 5–7).
In addition, primary minerals, though showing slight dissolution, dominate the mineral
assemblage throughout.

Zeolites were predicted to form, but, as noted above (Section 3.2.3), carbonates would
be favoured over zeolites as potential secondary phases.
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5. Discussion

In summary, the experimental data obtained from this study on the reaction of mud-
stone with highly alkaline fluids are consistent with previous modelling and experimental
studies on other host rocks [9–11,15,39], although the Horonobe mudstone is less reactive
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than some of the mineral assemblages previously investigated, i.e., Borrowdale Volcanic
Group; Äspö Granite; Wellenberg marl [10], Opalinus Shale [11]; and a generic crystalline
rock [15].

5.1. Chemistry and Mineralogy

The pH with the OPC leachates was buffered to <0.2 pH units below that of the
unreacted leachates, and similar changes in pH have been observed in other studies with
OPC leachates [9–11,14,15]. However, with the change to Horonobe groundwater, the pH
of the reacted fluids did not, within the timeframe of this study, return to that of the HGW
(pH~8.6), but remined slightly higher at pH~9.4 (Figure 4a), suggesting that there was some
longer-term buffering of the pH by the remnant secondary mineral assemblage present
after reaction with the successive OPC leachates, i.e., the presence of C-(A-)S-H phases.

It was also noticeable that, for [Na] and [Cl] (Figure 4b), there was a delay before the
dissolved concentrations increased towards the levels present in the HGW (Figure 4b). As
chloride is normally considered to be a conservative species, this suggests that the lag in the
experiments is due to a physical/transport process rather than a chemical one. A possible
explanation for this is that there was a slow mixing of the HGW with OPC leachate(s)
trapped within the pore spaces by the precipitated C-(A-)S-H phases that continued until
the phases completely dissolved, thereby releasing the trapped fluid; this would also result
in a slightly higher pH than expected with the HGW. Previously, it has been reported
that the presence of C-A-S-H phases caused fluid stagnation and poor flow in some
pores/voids, resulting in some cases in the persistence of secondary precipitates [15]. The
model included porosity in solute transport processes, but did not consider heterogeneity
in the porosity distribution.

The sequential reaction of the mudstone with the OPC leachates was dominated by
the initial precipitation of C-(A-)S-H phases of varying compositions (SEM-EDS, semi-
quantitate analysis), with accompanying variations in the concentration of Ca and Si in the
reacted fluids. This general sequence was also predicted by the modelling, allowing direct
comparison of the experimental system evolution with the reactive transport simulations.
With the change to the groundwater and the consequent reduction in pH, the secondary
C-(A-)S-H phases re-dissolved, confirming model predictions that they would dissolve,
owing to the lower pH of the groundwater, and be replaced by secondary carbonates.

In the experiments, [Ca] remained below that of the HGW owing to the formation of
these carbonate minerals, and [Si] increased as the C-(A-)S-H phases dissolved. However,
the simulated magnitude of the [Si] increase and the subsequent decrease was greater than
that seen in the experiments, suggesting that there was either a kinetic inhibition to the
dissolution of C-(A-)S-H phase(s) in the experiments or that a physical mechanism [15]
not simulated by the model, as discussed above for [Na] and [Cl], was controlling the
dissolution, and hence [Ca] and [Si]. This clearly illustrates the importance of being able to
compare model predictions with analytical data.

5.2. Extent of Reaction

While, with the ‘young’ OPC leachate, the extent of reaction in the experiments was
limited to only the first few millimetres (Figure 5), there was greater reaction with the
‘evolved’ OPC leachate, and thus greater secondary C-(A-)S-H precipitation (Figure 6),
reflecting the higher [Ca] of that leachate. Although observed throughout, the secondary
C-(A-)S-H phases were still, at least subjectivity, most prevalent in the first few millimetres.
The model simulations showed a similar trend with regard to both the extent and degree
of reaction (precipitation) to the experimental data.

In a previous study working with Opalinus clay (OPA) and a similar ‘young’ OPC
leachate as used in this study [11], it was found that, even after 18 months, the precip-
itation zone within the OPA was limited to <2 cm, with C-A-S-H phases together with
Ca-carbonate, portlandite, and brucite identified. Similarly, it has been previously observed
during the reaction of Na-montmorillonite with simulated OPC and OPA porewaters [43]
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that porosity changes were limited to ~2 mm penetration into the clay, and comparable
observations have also been made in related studies [43–46]. In a review of cement-clay
modelling with high pH fluids [47], it was noted that many reactive transport models pre-
dicted limited zones of alteration similar to the extent seen in the experiments undertaken
in this study.

However, the higher than expected pH in the reacted fluids and the trend in Ca
and silica concentrations following the change to groundwater suggest that some C-(A-
)S-H phases may persist for a longer time than predicted by the modelling as a result
of a physical mechanism. A probable explanation for this is that the secondary phases
will have formed in the pore spaces, blocking some fluid flow paths, thus reducing the
impact of the inflowing groundwater, and furthermore that formation in voids will reduce
the reactive surface area of the secondary phases, further slowing their dissolution [15].
Again, this illustrates the importance of having analytical data with which to validate
model predictions.

The experiments provided mineralogical data only at four time steps (i.e., at the
start and at ~40, ~80, and ~120 d) and the outflow fluid chemistry was only sampled
intermittently. As the CABARET model predictions were in general agreement with the
experimental data at these time steps, the model can then be used to examine how the
chemical and spatial changes may have evolved between these data points, as well as to
explore the changes in fluid chemistry within the flow cell, which are difficult (at least at
the millimetre scale of the flow cell used here) to determine experimentally.

5.3. Recommendations for Model Improvements and Validation

The CABARET reactive transport model has been demonstrated to be in general
agreement with the experimental data, which gives greater confidence in the potential use
of this code to make predictions at greater scale. However, common with other reactive
transport models, e.g., PHREEQC [25] and TOUGHREACT [48] and others, there is scope
for improving the agreement with experimental data.

For example, in CABARET, the surface area for each mineral is assigned a fixed
value in the initial set-up file, and this does not subsequently vary with dissolution or
precipitation. Reactive-transport models are able to couple diffusive and advective flow
to porosity, but processes such as heterogenous pore occlusion and secondary minerals
coating primary solids are not considered, with only bulk porosity being able to evolve in
each model cell.

The timing of the sequence of host rock alteration resulting in the formation of
C-(A-)S-H phases, which later re-dissolve with the change to groundwater and the re-
lease of any sorbed radionuclides, requires further investigation, as the experimental data
from this study suggest that this process may occur over a somewhat longer time than
predicted by the reactive transport modelling.

To fully understand the temporal and spatial extent of the reactions on mineral evolu-
tion (precipitation and dissolution) and the subsequent effect on radionuclide migration
requires longer duration experiments with intact samples, under carefully controlled lab-
oratory conditions, and more realistic ‘in situ’ experiments to provide data for model
validation. Further improvements to the available simulation software are also required to
analyse and extend the results from such experimental programmes to repository scales.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/min11091026/s1, Figure S1: Major changes in fluid chemistry with time. Horonobe mudstone
with ‘young’ OPC leachate (SFC-1) and Horonobe mudstone with ‘young’ OPC, and then ‘evolved
OPC leachate (SFC-2). Figure S2: XRD analysis of unreacted and reacted mudstone samples experi-
ment with ‘young’ OPC, and then the ‘evolved OPC leachate (SFC-2). Figure S3: Selected primary
mineral and C-S-H phase saturation states in reacted fluids, experiment with ‘young’ OPC, and then
the ‘evolved OPC leachate (SFC-2). Figure S4: XRD analysis of unreacted and reacted mudstone
samples experiment with ‘young’ OPC, and then the ‘evolved OPC leachate, followed by HGW
(SFC-3). Table S1: Calculated Log K for the hypothetical minerals; ‘young’ OPC leachate. Table S2:

https://www.mdpi.com/article/10.3390/min11091026/s1
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Calculated Log K for the hypothetical minerals; ‘evolved’ OPC leachate. Table S3: Calculated Log K
(for the hypothetical minerals); Horonobe groundwater. Table S4: Details of the dissolved chemical
species included in the CABARET reactive transport model.
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