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Abstract: The super-large Baerzhe Be–Nb–Zr–REE deposit in NE China is hosted in the Early Creta-
ceous peralkaline granites. In this work, the newly discovered granitic dikes developed around the
Baerzhe deposit were studied for the first time, focusing on their genesis and genetic relationships
with the Baerzhe peralkaline granites. Zircon U-Pb dating of these granitic rocks (including the granite
porphyry, rhyolite and miarolitic granite) yielded Early Cretaceous ages of 125–121 Ma. Their mineral
assemblages and geochemical features suggest that they share similar features with the peralkaline
A-type granites. Their geochemical data and zircon Hf isotopic compositions (εHf(t) = +3.4 to +10.5)
indicate that the peralkaline granitic rocks were formed by the partial melting of dehydrated charnock-
ite with extensive plagioclase crystal fractionation, which resulted in a peralkaline affinity. There are
two types of distinct zircons in the studied samples: the type I zircon with a bright rim and dark core,
which may represent a cumulate mineral phase captured together with aggregates during eruption,
and the type II zircon with a higher evolution degree crystallized in the residual melts. Combined
with the simulation results using whole-rock trace elements, we proposed that the peralkaline granitic
dikes represent more evolved interstitial melts than the Baerzhe granitic magma. In the Early Creta-
ceous extensional tectonic settings, mantle-derived magma upwelled, which induced the melting of
the lower crust and prolonged the evolutionary process of the magma crystal mush.

Keywords: Baerzhe; peralkaline granitic dikes; petrogenesis; crystal mush model

1. Introduction

The possible genetic relationships between the concomitant plutonism and volcanism,
as well as their evolution processes, are controversial [1–6]. Some field and geochronologic
studies have suggested that volcanic rocks grow rapidly and erupt almost completely,
whereas pluton growth usually takes a long time, possibly millions of years [1,3,6], indicat-
ing that evolutionary processes between volcanism and plutonism are different. However,
in some cases, the coexisting volcanic rocks and plutons with similar isotope compositions
were thought to have derived from the same magma chamber and interpreted as a mush
model [7–9]: the volcanic rocks (most of them are usually felsic with high SiO2 content)
are produced by the interstitial melt extracted from the long-lived and shallow-crustal
crystal mush or formed by thermal rejuvenation of near-solidus granitic mushes, and
the crystalline residues solidify as plutons [4,5,10–12]. However, a problem remains: the
dynamic mechanisms of interstitial melts’ extraction and eruption are poorly constrained,
and the magma chamber lifespans are also controversial [11–16]. Moreover, if the highly
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evolved felsic volcanic rocks represent the interstitial melts, they must be accompanied by a
reservoir of cumulates with complementary geochemical features [17]. However, the felsic
volcanic rocks coexisting with the granites also show high-silica and highly evolved fea-
tures [18,19]. Are the concomitant felsic plutons rocks residual cumulates or “frozen” melts?
More and further studies are needed to understand the genetic relationships between the
associated felsic volcanic rocks and plutons.

The Baerzhe deposit in NE China is a super-large REE-Nb-Be-Zr deposit, which
was hosted in the peralkaline granites (which we call Baerzhe granites in this study).
Predecessors have carried out a lot of research on this deposit, mainly focusing on the
petrogenesis and mineralization of the ore-forming granites [20–26], but debate remains.
Some studies suggested that the Baerzhe granites were formed by the melting of a juvenile
mantle component [20,24]; while the oxygen isotope composition of magmatic zircons
selected from Baerzhe granites with slightly lower δ18O value than that of the mantle
suggested that the Baerzhe granites may be formed by the partial melting of oceanic crust
that underwent hydrothermal alteration [27–29]. In addition, mineralization and alteration
may alter the rock composition, making it unable to reflect the characteristics of the original
magma.

Recently, we found a large number of peralkaline granitic dikes occurring around
the Baerzhe deposit. Magmatic rocks from these dikes have similar mineral assemblages
with the Baerzhe granites. Both of these dikes and Baerzhe granites intruded into the
Baiyingaolao Formation with no cutting-through relationship between them. Their close
spatial and temporal relationships imply a potential genetic connection between them,
which therefore provides an opportunity to use the mush model to explain the subvolcanic–
plutonic genesis connections.

In this study, we conducted petrographical, whole-rock and mineral geochemical, and
zircon U-Pb and Hf isotopic analyses for the peralkaline granitic dikes from the Baerzhe
area, with the aims to (1) constrain the magma source, (2) clarify the genetic relationships
between the peralkaline granitic dikes and Baerzhe granites, and (3) reveal the formation
mechanisms of the highly evolved peralkaline magmas.

2. Geology and Petrography
2.1. Regional Geology

The Xingmeng (Xing’an–Mongolian) orogenic belt represents the eastern part of the
Central Asian Orogenic Belt, and consists of the Erguna, Xing’an, Songliao, and Jiamusi
blocks from west to east. These microcontinental blocks were amalgamated during the
Paleozoic [29–31]. The study area was located in the south of the Xing’an block, adjacent to
NE-trending Xilinhot–Heihe suture zone (Figure 1a). Voluminous Jurassic to Cretaceous
igneous were developed in this area in an extensional back-arc environment, which is
related to the westward subduction of the Paleo-Pacific plate and the closure of the Mongol–
Okhotsk Ocean [32–34].

The Baerzhe deposit was hosted by the Early Cretaceous Baiyingaolao Formation and
the Manitu Formation (Figure 1b). The Baiyingaolao Formation was formed at 141–124 Ma,
with a peak age of 130 Ma. It consists mainly of rhyolite, rhyolitic tuff, and ignimbrite. The
Manitu Formation is mainly composed of intermediate volcanic rocks and pyroclastic rocks,
including andesite and andesitic breccia tuff, which were mainly formed between 131 and
152 Ma [35,36]. Numerous dikes and stocks occurred in the study area, such as granite
porphyry, quartz porphyry, monzoporphyry, diorite porphyrite, and rhyolite porphyry.
These dikes intruded into the Baiyingaolao and Manitu formations in NNE-trending and
nearly NS-trending, indicating that they were mainly formed during the Early Cretaceous.
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vicinity; modified after Yang, Niu [27] and reference therein; the blue filled circle is the peralkaline 
rhyolite sampling location; the green one is peralkaline granite porphyry and the yellow one is the 
peralkaline miarolitic granite; 801 in the figure represents the Baerzhe granite, which is also the 
Baerzhe deposit. 
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the west body (ca. 0.11 km2) at the surface (Figure 1a). The west body is characterized by 
miarolitic texture with weak mineralization, whereas the east body with strong albitiza-

Figure 1. (a) Tectonic sketch map of NE China; (b) Geological map of Baerzhe ore district and its
vicinity; modified after Yang, Niu [27] and reference therein; the blue filled circle is the peralkaline
rhyolite sampling location; the green one is peralkaline granite porphyry and the yellow one is the
peralkaline miarolitic granite; 801 in the figure represents the Baerzhe granite, which is also the
Baerzhe deposit.

The peralkaline granites at Baerzhe are divided into the east body (ca. 0.24 km2) and
the west body (ca. 0.11 km2) at the surface (Figure 1a). The west body is characterized by
miarolitic texture with weak mineralization, whereas the east body with strong albitization
and silicification is the main ore-bearing body in the Baerzhe deposit. The east body is
composed mainly of a strongly mineralized granite (which we call Baerzhe mineralized
granites in this study) in the upper part, and a barren granite (which we call Baerzhe barren
granites in this study) in the lower part [21,24]. The Baerzhe mineralized granites mainly
consist of K-feldspar, quartz, sodic-amphiboles, and albites, characterized by the extensive
development of sodium alteration; the mineralization intensity is positively correlated
with the degree of albitization [37]. The Baerzhe barren granites have similar mineral
assemblages with Baerzhe mineralized granites except for albites. Moreover, barren granite
occurred at the top of the pluton, with unidirectional solidification textures, which is usually
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evidence of saturated volatiles in magma [38]. The Baerzhe mineralized granites have been
previously dated, yielding the relatively consistent results of 123–127 Ma [21,23,39].

About 1.5–2 km north of the Baerzhe granites, a larger peralkaline granitic pluton
(also referred to as 802 granitic pluton; [26]) with an exposed area of 1.25 km2 was exposed
(Figure 1b). Previous studies show that the 802 granitic pluton is barren; although, it shares
similar geochemical characteristics and a magma source with the Baerzhe granites [26].
According to our field investigation, the 802 granitic pluton is mainly composed of felsic
volcanic and subvolcanic rocks such as rhyolites, rhyolitic crystal fragment tuff, rhyolite
porphyries, and granite porphyries, and a series of peralkaline granitic dikes. The peral-
kaline granitic dikes are generally NE-NNE trending with variable scales ranging from
several to hundreds of meters in length Figure 1b. Compared with the Baerzhe granites, the
occurred altitude of these peralkaline granitic dikes is generally higher, ranging between
950 and 1073 m.

2.2. Petrography

Based on the petrographic characteristics, we divided the investigated peralkaline
granitic rocks in the Baerzhe area into three types: peralkaline granite porphyry, peralkaline
rhyolite, and peralkaline miarolitic granite.

The peralkaline rhyolite can be divided into two types and both of them are crystal-
poor rhyolites. One of them exhibits porphyritic texture and flow structure (Figure 2a,b,d,e).
Their phenocrysts comprise about 5%–10% of the rock by volume and are mainly composed
of quartz and alkali feldspar. The groundmass consists of sodic amphibole, quartz, and
K-feldspar (Figure 2d). The other type of the peralkaline rhyolite develops a spherulite
structure (Figure 2c,f). The spherulites are mainly composed of radial sodic amphibole and
K-feldspar, with a content of about 35%–40%. The groundmass consists of minor felsic
particles and acicular sodic amphibole.
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Figure 2. Photographs and photomicrographs of the peralkaline rhyolite dikes in the Baerzhe area. (a)
Peralkaline rhyolite with flow structure; (b) Glomeroporphyritic in peralkaline rhyolite; (c) Peralkaline
rhyolite with spherulite structure; (d) Different bands in the peralkaline rhyolite with flow structure;
(e) Phenocrysts in the peralkaline rhyolite; (f) Photomicrographs of the spherulite in peralkaline
rhyolite. Abbreviations: Q = Quartz; Arf = Arfvedsonite; Sa = Sanidine.
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The peralkaline granite porphyry comprises phenocrysts of K-feldspar and quartz
(vol. 20%–25%; Figure 3a,b). The glomeroporphyritic aggregates have a similar mineral
composition to that of peralkaline rhyolite (Figure 3c). The groundmass exhibits fine- to
micro-grained textures and consists of sodic amphibole, K-feldspar, and quartz.
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3. Analytical Methods 

Figure 3. Photographs and photomicrographs of the peralkaline granite porphyry and peralkaline
miarolitic granite dikes in the Baerzhe area. (a) Photograph of hand specimen of the peralkaline
granite porphyry; (b) Photomicrograph of peralkaline granite porphyry; (c) Glomeroporphyritic in
peralkaline granite porphyry; (d) Cativities in peralkaline miarolitic granite; (e) The arfvedsonite in
cativities of peralkaline miarolitic granite were altered to aegirine; (f) Photomicrograph of cativities in
peralkaline miarolitic granite; (g) The field photograph of peralkaline granite porphyry dike; and (h,i)
Contact relationship between the peralkaline rhyolite and the surrounding rocks (The black solid line
is the boundary line of the dike). Abbreviations: Q = Quartz; Arf = Arfvedsonite; Kfs = K-feldspar;
Aeg = Aegirine.

The cavities of the peralkaline miarolitic granite are usually filled with granular quartz,
K-feldspar, and sodic amphibole (Figure 3d–f). Sodium alteration occurs in some samples,
which shows that the sodic amphiboles in both the cavities and the groundmass were
partially altered to aegirine (Figure 3e). This type of rock is mainly composed of fine-
grained K-feldspar, quartz, and euhedral acicular sodic amphibole, with a grain size of
0.5–1.0 mm. The intergrowth of quartz and K-feldspar constitutes a micrographic texture
(Figure 3f).

The sodic amphiboles in the samples are typically magmatic. Most of them are
euhedral–subhedral acicular or acicular columnar in shape and coexist with felsic minerals
(Figure 3b,c,f). Only in one of the peralkaline miarolitic granite samples were the sodic
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amphiboles partially altered to aegirine (Figure 3e), which may be related to the sodic
alteration [21]. In all types of rock, the accessory minerals are mainly composed of zircon
and Fe-Ti oxide; the peralkaline miarolitic granite contains a small amount of rare earth
carbonate minerals (Figure 4a,c). The zircon in all types of rock is mainly filled in the
interstices of the main rock minerals, indicating that it crystallized late (Figure 4b).
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Figure 4. BSE of the accessory minerals in peralkaline miarolitic granite. (a) The rare earth carbonates
and Fe-Ti Oxide in peralkaline microlitic granite; (b) Interstitial zircons in peralkaline microlitic
granite; (c) the rare earth carbonates and Fe-Ti Oxide in peralkaline microlitic granite.

3. Analytical Methods
3.1. Whole-Rock Major and Trace Elements

Whole-rock major and trace element contents for 18 peralkaline granitic samples in this
study were analyzed at the Key Laboratory of Mineral Resources Evaluation in Northeast
Asia, Ministry of Natural Resources, China; the data are listed in Supplementary Table S1.
All fresh samples were powdered in an agate ring mill to less than 200 mesh. X-ray
fluorescence (XRF) and ICP–MS (Agilent 7500a) were used to measure the major and trace
elements compositions, respectively. The national standard sample 07103 (granite) and
sample 07105 (basalt) were used as standard samples to monitor the accuracy and error of
analysis. The method for X-ray fluorescence analysis of major elements was established
by pressing the powder into disks directly, with analytical errors within 5% [40]. As for
trace element analysis, about 60 mg of sample powder was digested by HF + HNO3 in
Teflon bombs, then they were analyzed in an Agilent 7500a ICP-MS [41]. When the content
of trace elements exceeds 10 µg/g, the relative deviation is less than 5%; otherwise, the
relative deviation is less than 10%.

3.2. Zircon U-Pb Dating, Trace Elements, and Hf Isotope Analyses

The zircons were separated at the Langfang Geological Service Co. Ltd., Langfang,
China. The age and trace elements of all zircons were measured using laser ablation-
inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the Key Laboratory of
Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources of China,
China. Laser sampling was conducted using a GeoLas 200 M 193 nm ArF excimer laser
ablation system, and its spot diameter is 32 µm. The detailed analytical procedures were
given in Liu, Gao [42]. Standard zircon 91,500 [43] was analyzed every other five-spot
analysis for external correction of isotope ratio, NIST SRM 610, and Plešovice [44] were
analyzed every other ten-spot analysis as the external standard and the monitoring blind
sample, respectively. Isotope ratios were calculated via the Glitter software (Macquarie
University, Sydney, Australia), and common Pb was corrected based on the method pro-
posed by Andersen [45]. The Isoplot v. 3.0 software [46] was used to calculate the weighted
mean average age.

Zircon Hf isotopes were analyzed using a GeoLas Pro UP193nm laser-ablation mi-
croprobe, attached to a Neptune multi-collector ICP-MS in the MNR Key Laboratory of
Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy
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of Geological Sciences (CAGS), Beijing. Detailed instrumental conditions, experimen-
tal procedures, and data acquisition were introduced in Hou, Li [47]. The analysis was
performed using 44 µm diameter spot at 8 Hz and a fluence of 8–10 J/cm2. In order to
correct for the isobaric interferences of 176Lu and 176Yb on 176Hf, 176Lu/175Lu = 0.02658 and
176Yb/173Yb = 0.796218 ratios were determined [48]. We normalized Yb isotope ratios to
172Yb/173Yb of 1.35274 and Hf isotope ratios to 179Hf/177Hf of 0.7325 by using the exponen-
tial law [48] for instrumental mass bias correction. Zircon GJ-1 was used as the reference
standard, with a weighted mean 176Hf/177Hf ratio of 0.282018 ± 0.000020 (2σ, n = 3) during
our routine analysis, which is essentially the same as the weighted mean 176Hf/177Hf ratio
of 0.282013 ± 0.000019 (2σ) by Elhlou, Belousova [49].

One peralkaline miarolitic granite sample (20S50-6), one peralkaline granite porphyry
sample (20S51-1), and three samples of peralkaline rhyolite (21S64-1/21S74-3/20S43-3)
were chosen for in situ single-spot zircon U-Pb dating and Hf isotope analysis, the data are
summarized in Supplementary Tables S2 and S3, respectively; the trace elements analysis
data of selected zircons are given in Supplementary Table S4.

3.3. Mineral Chemistry

Mineral composition analysis of amphiboles was performed at the State Key Lab-
oratory of Ore Deposit Geochemistry, Chinese Academy of Sciences at Guiyang with a
JXA8230 microprobe. According to the size of the amphiboles, the operating conditions of
the microprobe were a 1–10 µm electron beam, 25 kV of accelerating voltage, and a sample
current of 10 nA. The analytical uncertainties are within 2%. The mineral formulae were
calculated on the basis of O + OH + F = 24 atoms per formula unit (apfu) and OH = 2-2Ti,
using the amount of Ti4+ as a proxy for the (maximum) oxy-component in the mineral
structure [50]. The formula calculation was performed following the latest IMA 2012 rec-
ommendations [50,51] using the Excel spreadsheet of Locock [52]. We selected unaltered
amphiboles in different types of rocks for major elements analyses, the analysis data of
them are listed in Supplementary Table S5.

4. Results
4.1. Major- and Trace-Elements Geochemistry

All of the samples have high SiO2 contents of 73.69 to 76.35 wt%, high total alkali
content (ALK) of 6.94–8.96 wt%, low P2O5 (0.01–0.03 wt%), TiO2 (0.13–0.21 wt%), MgO
(0.01–0.10 wt%), and CaO (0.07–0.45 wt%) contents. All the samples show the characteristics
of peralkaline (Figure 5a) and alkalic to alkali-calcite features (Figure 5b). The Fe-index
versus SiO2 diagram (Figure 5c) shows that these samples are ferroan granites. On the
chondrite-normalized REE distribution diagram (Figure 5d), all of the studied samples
show a light LREE enrichment, nearly flat HREE curve, and obvious negative Eu anomalies
(δEu = 0.02–0.05), which are characterized by a V-shaped pattern. The contents of ∑REE
range from 316 to 957 ppm with (La/Yb)N ratios of 4.26 to 11.19. On the primitive mantle
normalized multi-element diagram (Figure 5e), all the samples are commonly characterized
by high concentrations of high field strength elements (HFSEs) such as Th, U, and Zr but
marked depletion in Cs, Ba, K, and Ti.

The diagrams of Zr/δEu versus Al2O3 (Figure 5f,i) show that these samples exhibit a
well-defined chemical variation trend. With Al2O3 contents decreasing, the Zr gradually
enriched from Baerzhe barren granites to the peralkaline granitic dikes; the δEu values
decreased with the reduction of Al2O3 contents, which is consistent with the evolution
trend of magma differentiation. Moreover, the contents of REE and Zr show a gradually
increasing trend from Baerzhe barren granite, peralkaline granite porphyry, and peralkaline
rhyolite to peralkaline miarolitic granite (Figure 5h,i). The Baerzhe barren granites with
the highest Al2O3 contents and δEu values were formed by magma with a relatively low
evolution degree; the peralkaline granitic dikes were formed by a more evolved melt.



Minerals 2022, 12, 1532 8 of 21Minerals 2022, 12, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 5. (a) A/NK (molar Al2O3/(Na2O + K2O)) versus A/CNK (molar Al2O3/(CaO + Na2O + K2O)); 
fields after Shand [53] for studied samples; (b) Na2O + K2O-CaO (wt%) versus SiO2 (wt%); fields 
after Frost and Frost [54]; (c) Fe-index ((FeO + 0.9Fe2O3)/(FeO + 0.9Fe2O3 + MgO)) versus SiO2 
(wt%); fields after Frost and Frost [54]; (d) Chondrite-normalized REE patterns of the peralkaline 
granitic rocks and (e) Primitive mantle-normalized multi-element variation diagrams of the per-
alkaline granitic rocks; the normalization values for primitive mantle and chondrite are from Sun 
and McDonough [55]; (f) Zr versus Al2O3 and (g) δEu versus Al2O3 for the peralkaline granitic 
dikes and Baerzhe barren granite; Box chart of Zr (h) and ΣREE (i) of the peralkaline granitic dikes 
and Baerzhe barren granite (Horizontal line within the box and square represent median and 
mean respectively); data sources of the Baerzhe barren granite: Bor-ming Jahn [20]; Yang, Shan 
[26]; Su, Jiang [24], the following are the same. 

4.2. Zircon U-Pb-Hf Isotopes and Trace Elements. 
4.2.1. Zircon U-Pb-Hf Isotope Composition 

The subsets of the isotopic ages are illustrated on the Concordia diagram in Figure 
6. All of the analyses of zircons from the peralkaline rhyolites (21S64-1/20S43-3/21S74-3) 
are concordant (Figure 6), with 9 spot analyses from sample 21S64-1 yielding a weighted 
mean 206Pb/238U age of 123.3 ± 3.3 Ma (MSWD = 1.8); 19 spot analyses from sample 
21S74-3 yielding a weighted mean 206Pb/238U age of 122.5 ± 1.4 Ma (MSWD = 0.36); and 22 
spot analyses from sample 21S74-3 yielding a weighted mean 206Pb/238U age of 121.3 ± 1.2 
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Figure 5. (a) A/NK (molar Al2O3/(Na2O + K2O)) versus A/CNK (molar Al2O3/(CaO + Na2O + K2O));
fields after Shand [53] for studied samples; (b) Na2O + K2O-CaO (wt%) versus SiO2 (wt%); fields
after Frost and Frost [54]; (c) Fe-index ((FeO + 0.9Fe2O3)/(FeO + 0.9Fe2O3 + MgO)) versus SiO2

(wt%); fields after Frost and Frost [54]; (d) Chondrite-normalized REE patterns of the peralkaline
granitic rocks and (e) Primitive mantle-normalized multi-element variation diagrams of the peralka-
line granitic rocks; the normalization values for primitive mantle and chondrite are from Sun and
McDonough [55]; (f) Zr versus Al2O3 and (g) δEu versus Al2O3 for the peralkaline granitic dikes and
Baerzhe barren granite; Box chart of Zr (h) and ΣREE (i) of the peralkaline granitic dikes and Baerzhe
barren granite (Horizontal line within the box and square represent median and mean respectively);
data sources of the Baerzhe barren granite: Bor-ming Jahn [20]; Yang, Shan [26]; Su, Jiang [24], the
following are the same.

4.2. Zircon U-Pb-Hf Isotopes and Trace Elements
4.2.1. Zircon U-Pb-Hf Isotope Composition

The subsets of the isotopic ages are illustrated on the Concordia diagram in Figure 6.
All of the analyses of zircons from the peralkaline rhyolites (21S64-1/20S43-3/21S74-3) are
concordant (Figure 6), with 9 spot analyses from sample 21S64-1 yielding a weighted mean
206Pb/238U age of 123.3 ± 3.3 Ma (MSWD = 1.8); 19 spot analyses from sample 21S74-3
yielding a weighted mean 206Pb/238U age of 122.5 ± 1.4 Ma (MSWD = 0.36); and 22 spot
analyses from sample 21S74-3 yielding a weighted mean 206Pb/238U age of 121.3 ± 1.2 Ma
(MSWD = 1.2). The initial 176Hf/177Hf ratios of 21S64-1 and 21S74-3 range from 0.282850
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to 0.282960 and 0.282810 to 0.282910, with εHf(t) values from +5.2 to +9.0 and +3.8 to +7.2
respectively. The εHf(t) of 20S43-3 range from +7.4 to +10.5.
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rocks and the CL image of two types of zircons.

The 206Pb/238U ages of peralkaline granite porphyry (20S51-1) range from 118 to 132 Ma,
giving a weighted-mean 206Pb/238U age of 125.4 ± 2.5 Ma (mean square of weighted
deviations (MSWD) = 1.4, n = 13). The initial 176Hf/177Hf ratios of 20S51-1 range from
0.282800 to 0.282900, with corresponding εHf(t) values from +3.4 to +7.0.

The weighted mean age of the peralkaline miarolitic granite sample (20S50-6) is
121.3 ± 1.6 Ma (MSWD = 1.3, n = 20). Its initial 176Hf/177Hf ratio varies from 0.282870 to
0.282920 and the corresponding εHf(t) values range from +5.9 to +7.9. All the peralkaline
granitic samples display consistent zircon U-Pb ages (Figure 6) and Hf isotopic compositions
(Figure 7a).

4.2.2. Zircon Trace Elements

The zircon grains from peralkaline granite porphyry and peralkaline rhyolites can
be divided into two types according to their different crystal form and internal structural
domains (Figure 6). The first type (Type I) zircons range in size from 50 to 100 µm, having
well-developed {101} pyramids. The CL images of zircon usually show clear oscillatory
zonation and CL-bright occurring as the rim of the dark core. The second type (Type II)
zircons have euhedral short-prismatic forms, ranging in size from 100 to 150 µm, with
well-developed {101} pyramids and {100} prisms, which are similar to the zircon crystalized
in the alkaline magma [56]. The zircon grains are dark in CL images with no obvious
oscillatory zonation, and most of them contain abundant mineral inclusions.
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Zircon Ti temperatures were calculated based on the equation proposed by 
Kirkland, Smithies [58]. All samples have high SiO2 contents and are quartz-bearing, in-
dicating that silica was saturated during the zircons’ crystallization. Therefore, we as-
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Figure 7. (a) Compilation of zircon εHf(t) versus age for the peralkaline granitic rocks; (b)
TDM2 age data histograms of the peralkaline granitic rocks; (c) Chondrite-normalized REE pat-
terns of the two types of zircon; the normalization values for chondrite are from Sun and Mc-
Donough [55]; (d) (Sm/La)N versus La of the two types of zircon; data source of the Baerzhe
magmatic/metamict/hydrothermal zircons is from Yang, Niu [27]; (e,f) Box chart of Ti and ΣREE
of the two types of zircon from peralkaline granite porphyry and peralkaline rhyolite (Horizontal
line within the box, orange square and black diamond represent median, mean, and far outliners,
respectively); (g) Zr/Hf versus Eu/Eu*; (h) Sm/Gd versus Y and (i) Th/U versus TTi-in-zircon diagram
of the two types of zircon.

Both Type I and Type II zircons have pronounced positive Ce anomalies and negative
Eu anomalies in the REE patterns diagram, which is consistent with the Baerzhe magmatic
zircons (Figure 7c). Type I zircon grains with oscillatory zonation have a total REE content
of 490–3006 ppm and show enrichments in HREE (LREE/HREE = 0.02–0.21), with Ti
content of 3.25–19.39 ppm; the ratio of Eu/Eu* of type I is 0.08–0.32 and the Th/U ratios
is 0.43–2.80. Type II zircon grains have higher total REE concentrations ranging from
1030 to 4984 ppm and lower Eu/Eu* ratios of 0.01–0.02 compared with Type I. Type II
zircon also show enrichments in HREE (LREE/HREE = 0.02–0.16), with low Ti content of
1.45–12.51 ppm and Th/U ratios of 0.29 to 0.82. Based on the morphology and Th/U ratios,
all the studied zircons are consistent with the characteristics of the magmatic zircon. In the
(Sm/La)N versus La diagram (Figure 7d), some data points are plotted in the transition
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area between magmatic zircon and hydrothermal zircon. The development of inclusions in
the studied zircons would be the cause of La concentrations and (Sm/La)N ratios reduction,
resulting in magmatic zircon that shows the “characteristics” of hydrothermal zircon [57].

Zircon Ti temperatures were calculated based on the equation proposed by Kirkland,
Smithies [58]. All samples have high SiO2 contents and are quartz-bearing, indicating that
silica was saturated during the zircons’ crystallization. Therefore, we assumed the aSiO2 = 1.
The aTiO2 of most granitic rocks varies between 0.6 and 0.9 [59]. No rutile was found in the
studied samples, and the Ilmenite was mainly of late-altered minerals rather than magmatic
crystallization [22], indicating that the Ti is undersaturated. We assumed aTiO2 = 0.75 for
calculation. In the same magmatic system, aTiO2 is constant with zircon crystalizing. We
only use the zircon Ti temperatures to reflect the magma evolution process with decreasing
temperature, so, a loosely constrained aTiO2 should be workable. The results of Type I
zircon crystallized between 673 and 844 ◦C, with an average temperature of 756 ◦C; and the
Type II crystallized between 612 and 796 ◦C, with an average of 660 ◦C, lower than Type I.

4.3. Mineral Chemistry of Amphibole

The chemical compositions, site assignments, and species names of amphiboles are
listed in Supplementary Table S5. Almost all of them in this study are of the sodic subgroup
(riebeckite or arfvedsonite). The type of amphibole in peralkaline miarolitic granite is
mainly arfvedsonite (A(Na + K) ≥ 0.5), while the type of amphibole in peralkaline rhyolite
is riebeckite (A(Na + K) < 0.5) [60].

Typical core-rim compositional profiles are presented in Figure 8. They show a rela-
tively consistent element variation. From core to rim, F, Na+ and (Na + K)/Al ratios increase
with Ca2+ and Al contents decreasing. The Fe3+ content gradually increases at first, and
then decreases sharply at the rim. The variation in Fe2+ is actually the opposite. Because of
the lack of calcic compositions, the sodic amphiboles show relatively short and evolved
compositional trends in the Ca + AlIV versus Si + Na + K diagram (Figure 9; Strong and
Taylor [61]). They crystalized under progressively (alkali, Si)-rich and Ca-poor conditions,
which is consistent with the magmatic trends. Compared with the sodic amphiboles in
peralkaline rhyolite, the composition of sodic amphiboles in the groundmass of peralka-
line miarolitic granite has more evolved features with relatively low CaO and high alkali
contents (Figure 9).
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Figure 8. Rim–core cationic (apfu) profiles describing the main compositional variations in selected
arfvedsonite of peralkaline miarolitic granite. The color in the rim–core cationic (apfu) profiles is
consistent with that in BSE. Q = Quartz; Arf = Arfvedsonite; Kfs = K-feldspar.
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5. Discussion
5.1. Genesis of the Peralkaline Granitic Rocks

The development of arfvedsonites in all of the samples and their high Zr + Nb + Ce + Y
(1055~3932 ppm) contents, 10,000 × Ga/Al (3.6~6.9) ratios (Figure 10a), large-ion lithophile
elements (LILE) abundances (e.g., Rb, Th, U, and K), low CaO and P2O5 contents, and
depletion in Eu, Ba, Sr, Ti, and P indicates that the peralkaline granitic rocks are typical
peralkaline A-type granite [63,64].Minerals 2022, 12, x FOR PEER REVIEW 14 of 24 
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Figure 10. (a) (K2O + Na2O)/CaO versus (Zr + Nb + Ce + Y) diagram of Whalen, Currie [64]; (b)
FeOt/(FeOt + MgO) versus Al2O3; fields after Dall’Agnol and de Oliveira [65]; (c) K2O/Na2O versus
SiO2; Data sources of experimental melts are from Patiño Douce [66]; (d) U/Yb versus Y; and (e) U/Yb
versus Hf; fields after Grimes, John [67]; (f) Yb/Ta versus Y/Nb; fields after [Rehman, Khan [68],
Schiller and Finger [69]]; (g) Nb + Y versus Nb/Y; fields after Whalen and Hildebrand [70].
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A-type granite has commonly been proposed to be generated from (1) mantle-derived
alkaline mafic rocks with extensive differentiation [71–74], (2) partial melting of various
crustal rocks [54,64,66,75–82], and (3) a mixture of both mantle and crustal materials [83–88].
Although the whole-rock geochemical characteristics of the studied sample are close to
the Ferroan Granitoids derived by the fractionation of a mafic magma (Figure 5b,c), the
diagram (Figure 10b) shows that the samples in this paper belong to reductive A-type
granite. In addition, if the high-silica magma derives from mantle-derived magma directly,
then the high-silica magma only represents the last <5% of differentiation [11]. However,
rare basic rocks occurred in the study area, indicating that the peralkaline granitic dikes
were not formed by the fractional crystallization of mantle-derived magma. Because of
the homogeneous Hf isotopic compositions and low calcium and magnesium contents,
coupled with the lack of mingling textures in the peralkaline granitic dikes, we suggest that
the peralkaline granitic dikes were formed by the partial melting of crustal materials rather
than magma mixing between crust- and mantle-derived magmas.

In crust partial melting models, a diversity of crustal protoliths was proposed, includ-
ing (1) residual felsic granulite after the extraction of I-type magmas [89,90]; (2) metasedi-
mentary rocks under high temperature [75]; (3) dehydration melting of calc-alkaline rocks
at low pressure [77,91]; (4) dehydrated charnockite [76,90,92]; and (5) hydrothermal-altered
residual oceanic crust [35].

Residue felsic granulitic origin for A-type peralkaline granitic dikes is considered
impossible because this type of magma will be enriched in Ca and A1 (in plagioclase) and
Mg and Fe (in pyroxenes ± amphibole) and depleted in K and Si relative to the original
protolith, which contrasts with the observed peralkaline granitic samples (high SiO2 and
Na2O + K2O content, low CaO and MgO content as mentioned above). Moreover, the
samples in this study have relatively high (K + Na)/Ca and Fe/Mg ratios, which is also
opposite to the geochemical characteristics of rocks formed by the partial melting of residue
felsic granulite [54,66,93]. The high positive εHf(t) values in this study also preclude the
origin of metasedimentary rocks [75]. Patiño Douce [66] proposed that dehydration melting
of calc-alkaline rocks (hornblende- and biotite-bearing granitoids) under low pressure
(P ≤ 4 kbar, depth ≤ 15 km) are consistent with the geochemical characteristics of A-type
granitic rocks. However, the numerical simulation results show that the underplating
basaltic magma cannot provide sufficient heat for the remelting of crustal material at
depths less than 17 km [94,95]. Moreover, the studied samples have a high Fe-index
(Figure 5c) and lower K2O/Na2O ratios (Figure 10c), which is distinct from the experiment
results proposed by Patiño Douce [66].

The δ18O values of magmatic zircons from 801 barren granites range from +2.79‰ to
+5.10‰, slightly lower than the mantle zircon (δ18O = 5.3‰ ± 0.3‰), which was considered
to be related to the partial melting of the oceanic crust that underwent high-temperature
seawater hydrothermal alteration [27,35]. In the late Early Cretaceous, the extensional
tectonic setting of the Great Xingan Range is generally recognized [82,96,97], and the source
of the partially melted oceanic crust is unknown. The discrimination diagrams of the zircon
genetic type (Figure 10e,f) show a continental crust origin. Some studies suggested that the
change in oxygen isotope composition during the evolution from a magmatic system to a
hydrothermal system may follow the mechanism of isotope fractionation [98,99], and the
reduction of oxygen isotope of magmatic zircon may be caused by following the Rayleigh
fractionation. According to previous studies, the whole rock REE distribution of Baerzhe
granite shows the tetrad effect of REE, which is most visible in late magmatic differen-
tiates with strong hydrothermal interactions or deuteric alteration [20]. Hydrothermal
zircons, which are obviously different from magmatic zircons in morphology and trace
element characteristics, are believed to be crystallized in hydrothermal fluids [21], and
many economic minerals are also believed to be precipitated in the hydrothermal stage [22],
indicating that the Baerzhe granite has suffered the hydrothermal stage. Therefore, we
believe that the partial melting of altered oceanic crust is not a possible magma source.
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A-type granites derived from dehydrated charnockite lower crust usually show pos-
itive zircon εHf(t) values, which are generally related to the remelting of juvenile crustal
rocks in an arc-related environment [100]. The Hf isotopic data of all the peralkaline granitic
samples are plotted between the depleted mantle and chondrites (Figure 7a); two-stage Hf
model ages (TDM2) are mainly concentrated between 700 and 800 Ma (Figure 7b), indicating
that the partial melting of dehydrated charnockite may be the magma source for rocks in
this study. The negative anomalies of Ba, Sr, and Eu of the A-type peralkaline granitic dikes
in this study indicate that there are plagioclase residues in the magma source or that the
original magma has undergone plagioclase fractionation, which can preferably extract Al
over Na in the magma, and lead to the production of peralkaline granitic magma [93]. In
addition, the fluorine will increase the incompatibility of Na in the magma, which also
causes the magma to evolve toward peralkaline affinity [101]. The high F contents of sodic
amphiboles in the cavities of the peralkaline miarolitic granite indicate that the magma
contains F-rich volatiles, which promotes the evolution of peralkaline magma.

Above all, we propose that parental magma of the peralkaline granitic dikes may be
formed by the partial melting of dehydrated charnockite, and the fractionation of feldspar
and the enrichment of F-rich volatiles jointly promoted the evolution of the residual melts
to peralkaline magma.

5.2. Possible Relationship between Baerzhe Granites and Peralkaline Granitic Dikes: Magma Evolution

A possible genetic connection between the Baerzhe granites and the peralkaline
granitic dikes in this study has been suggested because of their close temporal and
spatial association, similar mineral assemblages, and geochemical features. Temporally,
the peralkaline granitic dikes have consistent U-Pb ages with the Baerzhe granites; spa-
tially, the peralkaline granitic dikes and Baerzhe mineralized granites commonly occur
together, forming a subvolcanic–plutonic association. Both in the peralkaline granite por-
phyry and peralkaline rhyolite, we found that glomeroporphyritic texture is developed
(Figures 2b and 3c). The glomeroporphyritic aggregates are coarse-grained K-feldspar,
quartz, and sodic-amphiboles, which are similar to the Baerzhe barren granite. Such
glomeroporphyritic aggregates are generally considered to be related to the physical accu-
mulation of minerals [102], indicating that the Baerzhe barren granites might be residual
mineral aggregates. The diagrams of TFe2O3/δEu versus Al2O3 (Figure 5f,g) show a
consistent evolution trend from Baerzhe barren granite to peralkaline dikes.

For better constraint of the magma evolution between the Baerzhe barren granites
and the peralkaline granitic dikes in the study area, we use FC–AFC–FCA and a mixing
modeler [103] to simulate the magma evolution (results in Figure 11). In an alkali system,
the solubility of Zr is really high (up to 7250 ppm at molar [(Na2O + K2O)/Al2O3] = 1.18)
and positively correlated with NK/A ((Na2O + K2O)/Al2O3 molar) [104], so Zr can be
highly enriched in alkali magma [105]. The NK/A ratios of most of the studied samples
are >1, indicating that they crystallized from a peralkaline magma system. According to
the geochemical profiles of the arfvedsonite in peralkaline miarolitic granite, the magma
is gradually rich in F and alkali with ongoing of differentiation. In the Si + Na + K
versus Ca2+ + Aliv diagram (Figure 9), the amphibole geochemical variations partially
overlap the evolved trend that was found in the Serra da Graciosa Alkaline Association 2,
Graciosa Province, where crystallization took place under reducing conditions with high
alkalinity [62], also indicating a peralkaline magma system. In addition, the fractionation
of zircon will lead to a decrease in the Zr/Hf ratios [106], while the Zr/Hf ratios of the
samples in this paper are relatively uniform (30–40, Figure 11a), indicating that there was
no zircon fractionation. Therefore, zirconium can be the indicator of the evolution of
magma. During fractionation, Zr is gradually enriched in the residual melts. The used
mineral/melt partition coefficients of trace elements are listed in Supplementary Table S6.
Sample B2–8 with the lowest Zr content was chosen to represent the parent melt. According
to the mineral composition of the Baerzhe barren granite, we assumed the fractionated
minerals were composed of 30% amphiboles and 60% K-feldspar, with minor plagioclase
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(7%), magnetite (2%), and Ilmenite (1%) (due to the low contents of trace elements in quartz,
we did not evaluate the fractionation of quartz). Our model shows that the wide range
of Nb and Ta contents and K/Rb ratios of the peralkaline granitic rocks from the Baerzhe
area can be generated by the parental melt (B2–8) after 55%–85% fractionation. These
model results confirm a magmatic connection between the Baerzhe barren granites and
the peralkaline granitic dikes. The peralkaline granitic dikes can be generated by Baerzhe
barren granitic magma after the extreme fractionation of K-feldspar and amphiboles.
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Zircon trace elements can be used to reveal crystallization conditions and magmatic
processes [58,59]. For example, the zircon Sm/Gd value changes little with fractional crys-
tallization because of similar zircon-melt partition coefficients, reflecting the evolving melt
Sm/Gd value [59]; the positive correlation between zircon Th/U and T likely reflects the
combined effect of the temperature and co-crystallization of monazite [58]. The existence of
the two types of zircons indicated that they were crystallized in different magma conditions.
The Sm/Gd versus Y and Th/U versus T diagrams (Figure 7h,i) show that the Type II
zircons crystallized in more evolved melts. The Eu anomalies of zircon are controlled by
the redox state of the magma and the fractional crystallization of feldspar [107,108]. The
lack of a positive correlation between the Eu/Eu* and Ce/Ce* anomalies for the studied
zircons suggests that fractionation was the main dominant factor for Eu anomalies. In the
Zr/Hf versus Eu/Eu* diagram (Figure 7g), the Eu/Eu* values of Type I and II zircon are
higher and lower than that of the whole rock, respectively. The lower Eu/Eu* values can be
explained by the crystallization of zircon after/together with plagioclase, whereas higher
values suggest that zircon crystallized before the plagioclase fractionation [109]. Moreover,
there is an obvious gap between these two types of zircons, which is inconsistent with a
continuous magma evolution. Based on the above discussion, we suggest that these two
types of zircons were crystallized in different magmatic environments: the Type II zircons
were crystallized in the more evolved melt and were rapidly crystallized during magma
eruption. This is also supported by their undeveloped zoning. Type I zircon is the product
of intergrowth with accumulated crystals in the magma chamber.
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The Type II zircons mainly occurred in the peralkaline rhyolites; these zircons have
a low Ti content (Figure 7e), indicating that they crystalized in cold conditions during
the late stage of magma evolution, which is consistent with the interstitial structure we
observed (Figure 4b). The incompatible elements gradually enriched in the residual and
more evolved melt, which may also be the reason for the relatively high LREE content of
Type II zircons. The peralkaline rhyolites, which have few phenocrysts, may have been
formed by the residual melt. Compared with type II zircons, type I zircons have a relatively
lower evolution degree and mainly exist in peralkaline granite porphyry, which contained
more phenocrysts. Type I zircons and phenocrysts may represent accumulated crystals
captured from magma chambers during magma eruption.

When considering the petrographic evidence, whole-rock geochemical characteristics,
and zircon trace elements, we suggest that the magma for the Baerzhe barren granites
represents the residual mineral phases, and the peralkaline granitic dikes are formed by the
eruption of interstitial melts concentrating in the upper magma chamber (Figure 12). The
peralkaline granite porphyry may contain more cumulate minerals, and the peralkaline
rhyolites consist of more melt components. The peralkaline miarolitic granite may be
formed by the melt with more advanced evolution, which is evidenced by the youngest
weighted mean 206Pb/238U age. From Baerzhe barren granite, peralkaline granite porphyry,
and peralkaline rhyolite to peralkaline miarolitic granite, the incompatible elements (such
as REE, Zr, Nb, and Ta) gradually enriched in the residual melts, accompanied by the
enrichment of volatiles. The development of sodium alteration in the peralkaline miarolitic
granite may have been caused by metasomatism of immiscible F-rich melt during the late
stage of magma evolution [110].
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A-type granites typically represent an extensional tectonic setting [64,96]. Early Creta-
ceous A-type granites in the Great Xingan Range were emplaced within NNE–NE exten-
sional faults, implying an extensional environment in the area at this time [111–114]. In
the Yb/Ta versus Y/Nb and Nb/Y versus (Nb + Y) diagrams (Figure 10f,g), all samples
are plotted in the A1 type rock area, which also supports that the rocks were within an
intraplate extensional setting. In the extensional tectonic setting of the late Early Cretaceous,
the involvement of the upwelling mantle magma not only induced the melting of the lower
crust to form the peralkaline granitic dikes with A-type affinities, but the continuous input
of heat also reactivated or prolonged the evolutionary process of the previously formed
crystal mush chamber that was either solidified or partially solidified, so that it can highly
evolve and form the peralkaline A-type granitic dikes at Baerzhe.
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6. Conclusions

(1) The newly discovered peralkaline granitic dikes in the Baerzhe area were formed
during the late Early Cretaceous (121–125 Ma), with peralkaline A-type affinities. These
peralkaline granitic dikes were formed by the partial melting of dehydrated charnockite in
the young lower crust with plagioclase-dominated crystal fractionation.

(2) The peralkaline granitic dikes and coeval Baerzhe plutons were formed in a uniform
magma chamber. The simulation results show that the peralkaline granitic dikes can be
generated by the Baerzhe barren granitic magma after extreme crystal fractionation of
K-feldspar and sodic amphiboles.

(3) We suggest that the Baerzhe barren granite is from the residual mineral phases, and
the peralkaline granitic dikes represent more evolved melts in the upper magma chamber.
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.3390/min12121532/s1, Table S1: Whole-rock major and trace element data of the peralkaline granitic
dikes and 801 barren granites from Baerzhe area, Inner Mongolia; Table S2: LA-ICP-MS zircon data
of the study samples; Table S3: Zircon Hf isotopic composition of the study samples; Table S4: Zircon
trace elements of the study samples; Table S5: Compositions and formulae of the amphibole group
minerals of the peralkaline granitic dikes; Table S6: Used partition coefficients of elements between
mineral and melt in FC-AFC-FAC-Mixing modeling.
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