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Abstract: Controversy surrounds the genetic relationship between gold mineralization and magma-
tism, especially in deposits in granite. Jiaodong Peninsula is the leading gold province in China,
and most deposits are in Mesozoic granites; moreover, debate on the genesis persists. In eastern
Jiaodong, the Muping–Rushan gold belt produces mainly quartz–sulfide vein-type gold, and the
Upper Jurassic Kunyushan granite and Late Lower Cretaceous Sanfoshan granite are the wall rock.
Precise mineralization ages should be identified to determine whether gold is related to the intrusion.
In this study, three gold deposits (Sanjia, Yinggezhuang, and Xipo) from two ore-controlling faults
were considered. Muscovites from quartz–sulfide veins and beresite were selected for Argon–Argon
dating. The results obtained were 116.51 ± 0.47 Ma, 120.02 ± 0.38 Ma, and 121.65 ± 0.48 Ma for
the three deposits, respectively. The mineralization lasted about 5 Ma in the Muping–Rushan gold
belt. The test results showed that the mineralization was 16 Ma later than the intrusion time of
Kunyushan granite and was earlier than that of Sanfoshan granite. Only the cooling age overlapped
with the mineralization age. Previous studies have demonstrated that the ore fluid is of medium–low
salinity and medium–low temperature. No typical high–low temperature mineral assemblage exists
in the Muping–Rushan gold belt. Hence, gold deposits in Muping–Rushan gold belt could not be
categorized as intrusion-related gold type.

Keywords: muscovite; Ar–Ar dating; magmatism; mineralization

1. Introduction

Jiaodong peninsula is a well-known gold province with 5000 t of proven gold resources
in China [1–3]. Most gold deposits are located in the Late Jurassic granite, and several
studies have categorized these deposits into the magmatic–hydrothermal and intrusion-
related gold deposits [4]. In terms of structural control and quartz–pyrite–muscovite–
carbonate alteration assemblages, gold deposits in Jiaodong share similar features with
orogenic gold deposits [5,6]. Anorogenic and decratonic gold deposit models [7,8] have
been proposed based on tectonic setting. The Jiaodong type gold deposit is also used to
cover the features [9,10]. The Muping–Rushan gold belt lies in Eastern Jiaodong and mainly
produces the quartz–sulfide vein type ore [11]. Previous studies have used isotope tracing
or microthermometry to categorize the gold deposit as magmatic–hydrothermal [12–22].

The time limit of mineralization and magmatism can be determined to solve the
problem of genesis. Many geochronology studies have been conducted in the Jiaodong
Peninsula, using different methods on altered or accessory minerals, and varying results
have been reported, but they mainly tend to 120 Ma [1,23]. Geochronology studies in the
Muping–Rushan gold belt have reported a wide range of results [15,24–30]; however, the
dating method and samples used must be considered to determine the relationship between
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mineralization and magmatism. More geochronological studies on the gold deposits are
required to clarify the genesis of gold deposits in the Muping–Rushan gold belt.

Recent studies have investigated multiple dating methods and minerals to determine
mineralization time [31,32]. Muscovite is an ideal alteration mineral and is likely related to
mineralization. Muscovite is not easily affected by hydrothermal activity after mineraliza-
tion, and the closure temperature of muscovite in Ar–Ar dating is around the mineralization
temperature (~350 ◦C ± 50 ◦C) [1]. As the influence of thermal disturbance on 40Ar–39Ar
dating can be ignored, the 40Ar–39Ar ages of muscovite can accurately show the time limit
of gold mineralization.

In this study, muscovites from three gold deposits in the Muping–Rushan gold belt
were selected for the Argon–Argon (Ar–Ar) dating to determine the mineralization age.
Next, the mineralization age was compared with the duration of magmatic activity to deter-
mine the relationship between magmatism and mineralization. This work is expected to fill
the gap in the study of mineralization dating in the Muping–Rushan gold belt and provide
a deeper understanding of the metallogenic background in the Eastern Jiaodong Peninsula.

2. Regional Geological Setting

The Jiaodong Peninsula can be divided into the Jiaobei and Sulu Terranes by the
Wulian–Qingdao–Yantai fault [33], as shown in Figure 1a. More than 4000 t of proven
reserves and 150 gold deposits have been discovered [34,35]. The NNE-trending and
detachment faults determine the occurrence of gold deposits [10,35]. Mesozoic granites host
most of the gold deposits, and only a minor amount is located in the Archean metamorphic
rocks [10,35]. Continental collision and subduction of the oceanic lithosphere occurred in
Jiaodong, Yangtze Craton, and the Pacific Plate subducted below the North China Craton
during the Triassic and Jurassic, respectively [24,36–38].
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The Archean tonalite–trondjemite–granodiorite (TTG, 2.9–2.5 Ga) gneisses are the
regional basement [39], which is overlaid by the Neoarchean Jiaodong Group and the
Proterozoic Fenzishan, Jingshan, and Penglai Groups. The Jiaodong Group is composed
of meta-igneous and metasedimentary rocks [40,41]; the Fenzishan and Jingshan Groups
are made up of calc–silicates, schist, amphibolite, and marble [42–44]. The Neoproterozoic
Penglai Group is composed of slate, quartzite, and marble [45].

In the Mesozoic, magmatic activity is categorized into the Late Triassic, Late Jurassic
(165–150 Ma), Early Cretaceous (132–123 Ma), and Late Early Cretaceous [35,46,47]. Only
the Late Jurassic and Late Early Cretaceous intrusions are found within the gold belt [1].

The Late Jurassic Kunyushan granite derived from the partially molten Neoarchean
lower crust [48,49] is the main wallrock in the gold belt, as shown in Figure 1b. Kun-
yushan granite can be sub-divided into Duogushan, Wuzhuashan, and Washan granites,
which have sensitive high resolution ion microprobe (SHRIMP) zircon ages of 161 ± 1 Ma,
160 ± 3 Ma, and 138–146 Ma [50] as well as 40Ar/39Ar biotite cooling ages of 135–147 Ma,
120–123 Ma, and 126–131 Ma, respectively (Table 1) [29]. The Duogushan granite is a
medium grained weak gneissic granidiorite containing epidote. The lithology of Washan
granite is medium grained weak gneissic monzogranite. The Wuzhuashan granite is a
fine-medium grained weak gneissic monzogranite. No sharp boundary exists between the
Wuzhuashan and Washan monzogranite.

Table 1. Age of the wallrock in the Muping–Rushan gold belt.

Intrusion time Granite Mineral Method Age (Ma) References

Late Jurassic (Kunyushan)

Duogushan
Zircon SHRIMP 161 ± 1 [50]

Biotite 40Ar/39Ar 147–135 [29]

Washan
Zircon SHRIMP 146–138 [50]

Biotite 40Ar/39Ar 131–126 [29]

Wuzhuashan
Zircon SHRIMP 160 ± 3 [51]

Biotite 40Ar/39Ar 123–120 [29]

Late Early Cretaceous

Liudusi Zircon LA–ICP–MS 113 ± 2 [51]

Sanfoshan Zircon

SHRIMP
114 ± 1 [51]

111 ± 3 [51]

LA–ICP–MS
113 ± 1 [50]

118 ± 1 [52]

Xiamashan Zircon LA–ICP–MS 111 ± 2 [51]

The Late Early Cretaceous Aishan monzogranite intrusions derived from mixed crust–
mantle and partly depleted mantle [50] are shown in Figure 1b. Within the gold belt, the
Aishan intrusion can be sub-divided into the Sanfoshan, Liudusi, and Xiamashan granites,
which have laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS)
zircon ages of 113 ± 1 Ma–118 ± 1 Ma, 113 ± 2 Ma, and 111 ± 2 Ma, respectively [50–52].
The Sanfoshan granite has a SHRIMP zircon age of 111 ± 3 Ma–114 ± 1 Ma [51]. Only a
few gold deposits are within the Sanfoshan monzogranite.

Lamprophyre dikes in the Sulu region provided zircon U–Pb ages of 118.5 ± 2.9 Ma
and 119.3 ± 0.8 Ma [53]. Zhu et al. [54] reported that the zircon U–Pb ages of lamprophyre
in Denggezhuang were mainly 120 ± 2 Ma and 153 ± 2 Ma. The age of lamprophyres in
the Jiaodong Peninsula lasted from pre- to post-mineralization [53].

Four main ore-controlling faults, namely, the Hezi–Gekou, Jiangjunshi–Quhezhuang,
Jinniushan, and Qinghushan–Tangjiagou faults, control over 20 gold deposits, as shown in
Figure 1b. Muscovite samples from the fault gouge in the Denggezhuang and Jinqingding
gold deposits were chosen for the Ar–Ar chronology study; the results show that the brittle
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deformation age of the Muping–Rushan shear zone is 119.6 ± 1.2 Ma–115.8 ± 1.4 Ma [55].
Sulfide–quartz vein and beresite are the main ore types.

3. Ore Deposit Geology

The Sanjia gold deposit (121◦36′13′′–121◦37′28′′ E, 36◦56′31′′–37◦00′1′′ N) is located
approximately 12 km northeast of Rushan City with an area of 9.95 km2. The main ore-
controlling fault is Chahe–Sanjia (Figure 2). The main orebody is No. I−1, which occurs
between +180 m and −840 m, strikes NNW, and is up to 520 m long along the strike and
up to 1040 m long along the dip. The thickness of orebody No. I−1 is 0.3–5.83 m with an
average of 1.73 m. The grade is typically 2.00–16.00 g/t with an average of 5.07 g/t. The
ore types are quartz pyrite vein and beresite.
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The Yinggezhuang gold deposit (121◦33′43′′–121◦34′13′′ E, 37◦2′19′′–37◦3′6′′ N) is
located 14 km northeast of Rushan City with an area of 0.85 km2 and a proven reserve
of 9 t. The Jinniushan fault is the ore-controlling fault (Figure 2), and its general trend is
North–South dipping to the East with a dip angle of 51◦–88◦. The orebodies occur at depths
between +163 m and −410 m, strike north–south, and are up to 50–450 m long along the
strike and up to 520 m long along the dip. The grade is typically 1.54 to 19.00 g/t. The
ore is mainly the quartz sulfide vein and beresite types. Amphibolite and gneiss occur
as xenoliths in the mining area. Dikes are also present. A sample was collected from
orebody No. IV.

The Xipo gold deposit (121◦33′50′′–121◦34′20′′ E, 37◦0′44′′–37◦1′15′′ N) is a small
gold deposit south of the Yinggezhuang gold deposit. The Jinniushan fault controls the
occurrence of the orebodies (Figure 2). The orebodies strike almost north–south, are
approximately 700 m long along the strike and up to 280 m long along the dip, and dip to
eastward with a dip angle of 53◦–61◦. In the north, the 10 m wide orebody No. I–1 was
selected for sample collection.

In the Muping–Rushan gold belt, potassium alteration, silicification, sulfidation, and
sericitization are the main alteration types; quartz and pyrite are the main gold-bearing
minerals; muscovite is the most common alteration mineral. Other sulfides, such as
chalcopyrite and galena, are also common gold-bearing minerals. The paragenesis is shown
in Figure 3 [11].
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4. Sampling and Analytical Methods

In this study, samples from the Sanjia, Xipo, and Yinggezhuang gold deposits were
selected for dating (Figure 2). The gold deposits are located on the Jinniushan and Chahe–
Sanjia faults, which can improve and validate the dating result in this gold belt.

The beresite sample collected for the Ar–Ar test in the Sanjia gold deposit was from a
depth of −226 m, as illustrated in Figure 4a,b. The hand sample was grayish green and
medium-coarse grained with an unequal grain texture and a massive structure as shown in
Figure 4b. The main minerals were muscovite, quartz, and pyrite. In the hand sample, the
quartz (30% content) was grayish white, medium-coarse grained, and of a greasy luster.
The muscovite (50% content) appeared grayish green, and the pyrite (15% content) was
sparsely distributed.

The quartz sulfide vein collected for the Ar–Ar test in the Xipo gold deposit was
from a depth of +35 m as shown in Figure 4d,e. The hand sample was grayish white,
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medium-fine grained, and had an unequal grain texture and veinlet structure as shown in
Figure 4e. The main minerals were quartz, muscovite, pyrite, and potassium feldspar. In the
hand sample, the quartz (50% content) was smoke gray and medium–coarse-grained. The
muscovite (30% content) was grayish-green and fine-grained, and the pyrite (15% content)
was light copper with a net vein output; the potassium feldspar (5% content) was flesh red,
plate-shaped, and of a greasy luster.

The quartz-sulfide vein collected for the Ar–Ar test in the Yinggezhuang gold deposit
was from a depth of −335 m in orebody the No. IV as shown in Figure 4g,h. The sur-
rounding rock was altered with potassic feldspar, and the occurrences of the upper and
lower walls of the orebody were 65◦∠64◦ and 80◦∠72◦, respectively. The hand sample
appeared smoke gray and had a medium-fine grained texture and vein structure; the
main minerals were quartz, muscovite, and pyrite as shown in Figure 4h. In the hand
sample, quartz (55% content) was smoke gray and medium-coarse grained. The muscovite
(25% content) was light green or dark green. The pyrite (15% content) was categorized into
two types based on particle size: the coarse particles were mostly distributed, whereas the
fine particles mostly had vein shapes.
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Figure 4. Sampling location and microscopic image showing the relationship between muscovite
and mineralization in the Sanjia, Xipo, and Yinggezhuang gold deposits: (a) sampling location of
the beresite in the Sanjia gold deposit, (b) hand sample of beresite, (c) muscovite coexists with
pyrite, (d) sampling location of the quartz–sulfide vein in the Xipo gold deposit, (e) hand sample of
quartz–sulfide vein, (f) muscovite coexists with pyrite, (g) sampling location of the quartz–sulfide
vein in the Yinggezhuang gold deposit, (h) hand sample of quartz–sulfide vein, (i) muscovite coexists
with pyrite. Py—pyrite; Ser—muscovite; Q—quartz. The yellow square shows the sampling location.

The pyrite, quartz, and muscovite coexist, and muscovite had a fine-grained structure,
as shown in Figure 4c,f,i when viewed under a microscope. The selected muscovite was
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light green and occurred in a small aggregate, and the small muscovite aggregate did not
contain any obvious crushing and deformation.

Before the experiment, the muscovite particles were sorted at Geoscience Exploration
Technology Service Co., Ltd., Langfang, China. After screening and purification, the sorted
muscovite was sent to Oregon State University, Corvallis, in the United States for the Ar–Ar
test. The samples were sealed in a quartz bottle with the standard sample American Fish
Canyon Tuff (28.201 ± 0.023 Ma; [56]) in separate vessels. Irradiation was performed in the
CLICIT (Cd-Lined Inner-Core Irradiation Tube) for 75 h.

For the 40Ar/39Ar experiment, the traditional furnace stage heating method (heat-
ing for 77 s and separation for 3 min) was adopted. The experimental steps were ob-
tained from [57,58]. The reported Ar isotope data were corrected using the system
background, quality discrimination, radioactive decay, reactor-induced interference re-
action, and atmospheric Ar. The decay constant was 5.530 ± 0.048 × 10−10 α as reported
in [59]. The isotope correction coefficient obtained using an ARGUS–VI–D mass spectrom-
eter was (36Ar/37Ar)Ca = 0.0002663 ± 0.0000004, (39Ar/37Ar)Ca = 0.0006756 ± 0.0000089,
(40Ar/39Ar)K = 0.003823 ± 0.000102, and (38Ar/39Ar)K = 0.012031 ± 0.000019. The atmo-
spheric 40Ar/36Ar isotope ratio used for the age calculation was 295.50. The plateau age
was defined as having at least 30% of 39Ar release cumulates, and at least three consecutive
plateaus existed. The 40Ar/39Ar ratio of these plateaus should be consistent with their
average value within the 95% confidence interval. Ar–Ar Calc was used to calculate and
plot the plateau age [1].

5. Ar–Ar Dating Results

The experimental results are presented in terms of the plateau and inverse isochron
ages as shown in Figure 5 and Tables S1–S3. The muscovite plateau age diagram of the
Sanjia and Xipo gold deposits shows that Ar was slightly disturbed in the low-temperature
heating stage but not significantly affected in the high-temperature stage as shown in
Figure 5a,c. The selected Ar release part was approximately 19.65% of the total gas age,
and the plateau age was 116.51 ± 0.47 Ma, MSWD = 1.97, and P = 3%. The amount of
Ar released was small, and the total gas age was 114.31 ± 0.44 (2σ), MSWD = 1.42, and
P = 16%. The inverse isochron age figure shows that the error in the data points was
small. The inverse isochron age was 116.05 ± 0.61 Ma, MSWD = 1.42, and P = 16%, as
shown in Figure 5b.

In the Xipo gold deposit, the selected Ar release part was approximately 33.59% of the
total gas age, and the plateau age was 121.65 ± 0.48 Ma, MSWD = 2.05, and P = 1%. The
total gas age was 120.62 ± 0.47 Ma (2σ). Because of the small amount of the Ar release part,
the age might better reflect the age of the sample. In the inverse isochron age figure, the
data point error was small. The inverse isochron age was 121 ± 0.53 Ma, MSWD = 1.37,
and P = 17%, as shown in Figure 5d.

The muscovite plateau age of the Yinggezhuang gold deposit showed no obvious Ar
loss or excess, and the selected samples were suitable for dating as shown in Figure 5e. The
selected Ar release part was approximately 50.19%; the plateau age was approximately
120.02 ± 0.38 Ma, MSWD = 3.45, P = 0%, and the total gas age was 120.01 ± 0.36 (2σ). In
the inverse isochron age figure, the data point error was small. The inverse isochron age
was 119.24 ± 0.79 Ma, MSWD = 2.30, and P = 2%, as shown in Figure 5f.
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Figure 5. 40Ar/39Ar plateau ages (2σ) and the inverse isochron ages of the hydrothermal muscovite
obtained from the Sanjia, Xipo, and Yinggezhuang gold deposits: (a) plateau age of the Sanjia gold
deposit, (b) inverse isochron age of the Sanjia gold deposit, (c) plateau age of the Xipo gold deposit,
(d) inverse isochron age of the Xipo gold deposit, (e) plateau age of the Yinggezhuang gold deposit,
and (f) inverse isochron age of the Yinggezhuang gold deposit. The black line means the atmospheric
argon, and the purple line means the trapped argon in (b,d,f).
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6. Discussion
6.1. Regional Metallogenic Time

Ar–Ar muscovite, SHRIMP zircon, Rb–Sr pyrite, and other ages have been reported
by previous studies. The test results ranged from 107.7 ± 0.5 Ma to 128.8 ± 0.1 Ma as
illustrated in Table 2.

Table 2. Mineralization age in the Muping–Rushan gold belt.

Deposit Sample Method Age (Ma) Reference

Jinqingding

Muscovite 40Ar–39Ar 107.7 ± 0.5–109.3 ± 0.3 [24]

Zircon in the quartz vein Shrimp U–Pb 117 ± 3 [25]

Muscovite 40Ar–39Ar 128.8 ± 0.1 [15]

Beresite Rb–Sr 104.8 ± 1.5 [27]

K–feldspar Rb–Sr 121.3 ± 0.587 [26]

Beresite Rb–Sr 113.3 ± 4.4 [26]

Muscovite 40Ar–39Ar 119.7 ± 0.2 [1]

Hubazhuang Muscovite Rb–Sr 126.5 ± 5.6 [20]

Denggezhuang
Fluid inclusion in the quartz 40Ar–39Ar 117.5 [28]

Beresite Rb–Sr 118 ± 9 [29]

Yinggezhuang
K–feldspar 40Ar–39Ar 111.24 ± 0.71 [30]

Muscovite 40Ar–39Ar 119.24 ± 0.79 This study

Sanjia Muscovite 40Ar–39Ar 116.05 ± 0.61 This study

Xipo Muscovite 40Ar–39Ar 121.65 ± 0.48 This study

A wide range of dating results have been obtained from studies on the Jinqingding
gold deposit. Li et al. [24] reported 107.7 ± 0.5–109.3 ± 0.3 Ma using 40Ar/39Ar on
muscovite. Hu et al. [25] obtained 117 ± 3 Ma using SHRIMP U–Pb zircon in quartz veins.
Zhang et al. [26] and Zhai and Hu [27] reported 104.8 ± 1.5 Ma and 113.3 ± 4.4 Ma using
Rb–Sr on muscovite, respectively. Hu et al. [15] obtained 128.8 ± 0.1 Ma using 40Ar/39Ar
on muscovite from beresite. Zhang et al. [26] reported 121.3 ± 0.587 Ma using Rb–Sr
on K–feldspar. Zhang et al. [1] reported 119.7 ± 0.2 Ma using 40Ar/39Ar on muscovite.
Cai et al. [20] obtained 126.5 ± 5.6 Ma using Rb–Sr on muscovite in the Hubazhuang gold
deposit. In the Denggezhuang gold deposit, Zhao and Wu [28] reported 117.5 Ma using
40Ar/39Ar on inclusions in quartz; Zhang and Xu [29] obtained 118 ± 9 Ma using Rb–Sr on
muscovite. In the Yinggezhuang gold deposit, Cui [30] obtained 111.24 ± 0.71 Ma using
40Ar/39Ar on K–feldspar.

The dating results differ for various reasons. Samples for dating, such as beresite and
fluid inclusion, are easily contaminated by later hydrothermal activities, which may cause
mixed results. The initial value of the sample for Rb–Sr isochron dating was uneven, which
produced uncertainty in the result. This evidence indicated that K-feldspar could not be
related to mineralization.

Muscovite from the Jinqingding gold deposit (Figure 1) coexists with gold in the
fracture of pyrite, which showed a strong relationship between muscovite and miner-
alization [11]; thus, 40Ar/39Ar on muscovite appeared reliable in terms of systematics.
The hydrothermal muscovite 40Ar/39Ar age of 128.8 ± 0.1 Ma was considered as a pre-
mineralization alteration age [15]. The 40Ar/39Ar ages of 109.3 to 107.7 Ma [24] apparently
represented a late local thermal reset by intrusion of the Aishan granite dike swarms (mini-
mum age of 108 Ma). Except for the data from Li et al. [24] and Hu et al. [15], the age of
40Ar/39Ar on muscovite ranged from 116.05 Ma to 121.65 Ma.
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Zhang [60] found three stages of gold mineralization in the northwest of the Jiaodong
Peninsula. The early-stage gold mineralization occurred in the Late Jurassic (~162 Ma),
which came from the Pinglidian gold deposit in the Jiaojia fault zone [60]. The middle-
stage gold mineralization occurred at approximately 130 ± 4 Ma and mainly came from
the Dayingezhuang and Xiadian gold deposits in the Zhaoyuan–Pingdu fault zone [35].
The early and middle stages of gold mineralization were less developed. The main gold
mineralization occurred at approximately 120 Ma [1].

The gold deposits selected for this study were located in the Jinniushan and Sanjia
faults. Three dating results were in the range of 120 ± 5 Ma. The existing dating data of the
Muping–Rushan gold belt were approximately 120 Ma.

6.2. Relationship between Mineralization and Magmatism

The Yanshan Movement in eastern China lasted from the Middle–Late Jurassic to the
Early Cretaceous (170–130 Ma); the tectonic regimes transformed from the Paleo–Asian
and Tethyan tectonic domains to the Paleo–Pacific tectonic domain [61–64].

In the Late Jurassic, intraplate syntectonic calc-alkaline granites intruded into Linglong,
Kunyushan, Queshan, and Wendeng from west to east [35], as shown in Figure 6. This
phenomenon might be related to the intracontinental compression deformation caused
by the subduction and convergence of the Paleo-Pacific Plate and the strong sinistral
strike slip of the Tancheng–Lujiang fault [65]. Subsequently, the Jiaodong Peninsula has
experienced NWW–SEE extension (110–100 Ma), NW–SE compression (100–85 Ma), NNW–
SSE extension (80–65 Ma), NE–SW compression (65–50 Ma), and NW–SE compression
(50 Ma to date) [35].
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Correspondingly, the Muping–Rushan gold belt has experienced a thermal history of
rapid cooling, heat setting after a slight rise in temperature, medium speed cooling and
heat setting, and monotonic cooling, which have slowly reduced to the current tempera-
ture [66]. The metallogenic depth of the Muping–Rushan gold belt may be slightly less
than 7.1–14.2 km, the shallow part (5.5–7.2 km) has been eroded after mineralization, and
the deep part still contains a considerable amount of resource potential [66].

The magmatic–hydrothermal activity was closely related to the intrusion and only
lasted for a short time. Although multiple intrusions would cause hydrothermal circulation,
the associated pulse can only last for about 1 Ma [67]. The Kunyushan and Aishan granites
formed the main wall rock in the Muping–Rushan gold belt; the youngest zircon SHRIMP
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age of the Kunyushan granite was 16 (138–122) Ma earlier than the mineralization age, and
only the youngest cooling biotite 40Ar/39Ar age overlapped the mineralization, whereas
the gold deposits were not located in the Washan granite. No Early Cretaceous granite
(132–123 Ma) was found in the study area, although the intrusion time overlapped the
mineralization age, which could remove the impact of the Early Cretaceous granite. The
mean intrusion time of the Aishan granite was approximately 115 Ma [1], and the Sanfoshan
granite was several kilometers away from the deposit.

The freezing temperature of the ore fluid ranged from −0.1 ◦C to −9.8 ◦C, the ho-
mogenization temperatures varied between 170 ◦C and 350 ◦C, the calculated salinity was
from 0.2 wt% to 13.73 wt% NaCl eq., and no salt daughter minerals were found [68]. This
result is largely inconsistent with that of magmatic-hydrothermal fluid (>500 ◦C, high salin-
ity [69–72]). Additionally, no metal zonation from proximal Au−Bi−Te to distal Ag–Pb–Zn
assemblages was found in the Muping–Rushan gold belt, which is typical of granite-related
deposits [73–75]. Therefore, the gold deposits in the Muping–Rushan gold belt could not
be classified as an intrusion-related gold system.

6.3. Orogenic Gold Deposit in the Muping–Rushan Gold Belt

The integrated mineral system model in Jiaodong has been summarized in previ-
ous studies [2,23,76]. The gold mineralization in the Muping–Rushan gold belt was
1.8~1.7 billion years after orogenesis and regional metamorphism in Jiaodong [1,2], which is
different from the typical orogenic gold deposit. The gold deposits in the Muping–Rushan
belt share similar features with orogenic gold deposits, such as the feature of the ore fluid,
structural control, and quartz–pyrite–muscovite–carbonate alteration assemblages [5,6,11].

In the Jurassic, the Pacific Plate subducted below the North China Craton and re-
treated [24,36–38], and brittle deformation in the ore-controlling faults occurred in the Early
Cretaceous [55]. Advances in the orogenic gold deposit model have attempted to explain
the gold deposit in Jiaodong [77], and ore fluids are ascribed directly to the devolatiliza-
tion of either the subducting slab, overlying sediment wedge, or lithosphere [23,76,77].
The mineralization in the Muping–Rushan gold belt may be related to the retreat of the
Paleo-Pacific Plate, and the mantle wedge could provide the necessary ore fluid [77]. Thus,
gold deposits in the Muping–Rushan gold belt should be categorized into the orogenic
gold system.

7. Summary

(1) Ar–Ar tests were performed on the muscovite from quartz–sulfide veins and bere-
site from the Sanjia, Yinggezhuang, and Xipo gold deposits. The metallogenic
ages of the Sanjia, Yinggezhuang, and Xipo gold deposits were 116.51 ± 0.47 Ma,
120.02 ± 0.38 Ma, and 121.65 ± 0.48 Ma, respectively.

(2) By combining the mineralization and magmatism ages and ore fluid feature, gold
deposits in the Muping–Rushan gold belt should be categorized into the orogenic
gold system rather than an intrusion-related gold system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min12030278/s1: Table S1: 40Ar/39Ar data of muscovite furnace stage heating in beresite
of the Sanjia gold deposit. Table S2: 40Ar/39Ar data of muscovite furnace stage heating in quartz–
sulfide vein of the Xipo gold deposit. Table S3: 40Ar/39Ar data of muscovite furnace stage heating in
quartz–sulfide vein of the Yinggezhuang gold deposit.
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