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Abstract: The synthesis and characterization of a new aluminophosphate, Na2Al2O(PO4)2·0.12H2O
obtained as single crystals, is reported. Centrosymmetric tetramers built from AlO5 polyhedra sharing
edges and vertices, represent the distinguished feature of the compound. These tetrameric units of
AlO5 bipyramids are cross-linked by PO4 tetrahedra to form two-periodic slabs alternating with Na+

ions and a small amount of H2O molecules. The Na2Al2O(PO4)2·0.12H2O with an original crystal
architecture is chemically and structurally related to the mineral tinsleyite, KAl2(PO4)2(OH)·2H2O.
Similar clusters of Al-centered polyhedra are essential building blocks of both monoclinic structures.
The main difference between them consists of the type of the Al coordination by O atoms: in tinsleyite,
the clusters are designed from AlO4(OH)2 and AlO4(OH)(H2O) octahedra. In both cases, alkali Na or
K atoms significantly distinct in size, act as structure regulating agents, determining the character of
the developing crystal architecture. The flexibility of aluminophosphate constructions allows them to
self-organize around structure-forming Na+ or K+ ions into anionic layers in Na2Al2O(PO4)2·0.12H2O
or a framework (tinsleyite). The synthesis of sodium aluminophosphate under mild hydrothermal
conditions and the topological resemblance of its structure with that of the mineral tinsleyite suggest
a high probability of a mineral equivalent of the Na2Al2O(PO4)2·0.12H2O in nature.

Keywords: aluminophosphate; crystal structure; low-temperature X-ray diffraction; hydrothermal
synthesis; tinsleyite; crystal chemical relations

1. Introduction

Most rocks are formed by oxosalts, minerals containing complex anions, including
phosphate anions, crystallized under the conditions of a lithophilic geochemical system.
The latter is characterized by an excess of oxygen in it, both in the bound forms, and in
the free forms of O3, O2−, O2, etc. Rocks, as a rule, contain different types of water—from
hydroxyl and crystallization in minerals to capillary, etc. It is with the active participation of
water in rocks that various processes of their transformations occur. Statistical data on the
chemical composition of natural oxosalts show that most of them are typical metals with
amphoteric properties. These are, first of all, iron and aluminum, as well as manganese, cop-
per, beryllium, zirconium, and some others. In high-alkaline medium- and low-temperature
natural systems (late pegmatites and hydrothermalites), complexes of these elements often
play the role of anion formers, creating, together with acid groups, anionic structures of a
mixed crystal chemical nature, for example, aluminophosphate. Under these conditions,
zeolite-like macro- and microporous minerals are quite common, which have the properties
of sorbents, molecular sieves, ion exchangers, etc. Simulation of such environments in the
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laboratory and subsequent detailed study of synthetic analogs of minerals allows, on the
one hand, to trace the regular relationships between the physicochemical parameters of
the crystallization system and the specific features of the crystal structures of the forming
phases (structural typomorphism), and, on the other hand, to obtain new compounds with
promising properties.

The mineral tinsleyite, KAl2(PO4)2(OH)·2H2O is a member of the leucophosphite group,
with the general formula AB2(PO4)2(OH)·2H2O (A = NH4, K; B = Al, Fe). This mineral group
apart from leucophosphite, KFe2[PO4]2(OH)·2H2O [1] and tinsleyite, also includes sphenscidite,
NH4Fe2(PO4)2(OH)·2H2O [2] and ammoniotinsleyite, (NH4)2Al2(PO4)2(OH)2·2H2O [3]. The
above-mentioned species are known to occur in two different paragenetic associations: late
products of the hydrothermal alteration of primary phosphates in granitic pegmatites, or
biominerals. Tinsleyite was first described from the Tip Top granitic pegmatite, in South Dakota.
It is found in pods of highly altered triphylite in the intermediate zone of the pegmatite in associ-
ation with leucophosphite, on which it commonly occurs as a morphologically continuous over-
growth [4]. Its crystal structure was established and refined by Dick [5], who used a synthetic
crystal, obtained by the reaction of gibbsite with a potassium phosphate solution of pH = 7 at
423 K. Two steps in the thermal loss of water, at 341 and 471 K, were observed. A potassium-
rich variant of tinsleyite was synthesized under hydrothermal conditions at 553 K from the
water solution of KH2PO4 and Al(OH)3 [6]. Compared to the mineral tinsleyite, the new
variant with the crystal chemical formula |K1.5(H2O)0.5|[Al2(OH){(OH)0.5(H2O)0.5}(PO4)2]
differs not only in the quantity of K+ cations in the framework channels, but also in the amount
of H2O and in the way it is distributed in the structure. It was suggested that the capacity of
the minerals of the leucophosphite group to accommodate the K+ (or NH4

+) ions is coupled
with the H2O content in the framework interstices, which is, therefore, variable. As it happens,
the synthetic NH4,Al end member of ammoniotinsleyite called AlPO4-15 has been obtained
and investigated [7,8] 25 years before the mineral was discovered. This material was stud-
ied by means of a charge-density analysis [9] and first-principal calculations [10]. The same
compound was obtained later and described in [11]. The crystal structure of leucophosphite,
KFe2[PO4]2(OH)·2H2O was refined by Dick and Zeiske [12] using a synthetic crystal. They
found hydrogen atom positions by Rietveld refinement based on powder neutron-scattering
data. The structure of the NH4,Fe end-member sphenscidite, (NH4)Fe2[PO4]2(OH)·2H2O,
was refined by Yakubovich and Dadashov [13] with crystals grown at 423 K from a hydrogel
containing an organic compound, urea or carbamide CO(NH2)2, which is found in the urine of
mammalia, birds, and some reptiles. In the presence of water, the urea gives off ammonia that
enters the forming crystal structure. This is a usual way in which sphenscidite crystallizes in
nature [2]. As part of our experimental study of synthetic analogues of minerals [14], we report
here the new aluminophosphate, Na2Al2O(PO4)2·0.12H2O, with original crystal architecture
chemically and structurally related to tinsleyite and might be considered as its hypothetical
alteration product of Na metasomatism.

2. Materials and Methods
2.1. Hydrothermal Synthesis and Crystallization

Single crystals of the new compound were synthesized under hydrothermal conditions.
Chemical compounds of analytical grade were taken in the mass ratio NaCl:Al(OH)3 = 2:3,
which corresponds to 1g (17 mmol) NaCl and 1.5 g (19 mmol) Al(OH)3. This starting mix-
ture was melted in a 10% solution of H3PO4 (5.6 mL), sealed in a poly(tetrafluoroethylene)
(PTFE)-lined stainless steel pressure vessel of 7 mL in volume (fill factor 80%). It was kept
in a furnace at a temperature of 553 K and a pressure of 7 MPa for 10 days, followed by
slow cooling to room temperature. The reaction products were colorless crystals with an
irregular shape up to 0.3 mm long (Figure 1). They were washed with water, dried and
subjected to a SEM-EDX analysis and to single-crystal X-ray diffraction. The SEM-EDX
analysis was carried out on a Jeol SEM (JSM-6480LV) Oxford X-MaxN equipped with an
energy-dispersive diffraction spectrometer (Laboratory of Local Methods for Studying
Materials, Department of Petrology, Faculty of Geology, M. V. Lomonosov Moscow State



Minerals 2022, 12, 542 3 of 11

University). The measurements were performed at 20 kV and 0.7 nA using the sample
covered by a carbon film with a thickness of about 25 nm. The crystals were stable under
these conditions. X-ray spectral semiquantitative analysis of unpolished samples revealed
Na, P, Al, and O atoms in their composition with the P:Al:Na ratio close to 1:1:1, which is
consistent with the data of our X-ray diffraction structural study.
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Figure 1. SEM image (a), showing the sample morphology, and photograph (b) of the crystals.

2.2. X-ray Diffraction and Crystal Structure Determination

X-ray diffraction data were collected from the crystal of 0.05 × 0.15 × 0.26 mm in size
at T = 150 K on an Oxford Diffraction Gemini single crystal diffractometer equipped with a
CCD detector; Mo Kα radiation (λ = 0.71073 Å). The dataset was corrected for background,
Lorentz and polarization effects, and absorption [15]. All calculations were performed
within the WinGX program system [16]. The monoclinic crystal structure was solved by
direct methods in the space group P21/c and refined in anisotropic approximation with
the SHELX programs [17,18] using the F2 data to residual R = 0.0221 [for 2063 reflections
with I > 2σ(I)], S = 1.177. In Table 1, we report the crystallographic characteristics of the
new aluminophosphate and the experimental conditions of data collection and refine-
ment. Table S1 presents the final results of the atom positions and equivalent isotropic
displacement parameters. Characteristic distances are given in Table 2. A bond-valence
calculation (Table 3) was performed using the algorithm and parameters given by Brown
and Altermatt [19]. Data from Table 3 clearly confirm the assignment of O and the absence
of OH ligands. CDS 2167937 contains the supplementary crystallographic data for this
paper. The data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif,
accessed on 21 April 2022, or by emailing data_request@ccdc.cam.ac.uk, or by contacting
The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK,
fax: +44 1223 336033.

Table 1. Na2Al2O(PO4)2·0.12H2O: crystal data and details of X-ray diffraction and structure refinement.

Crystal Data

Absorption µ (mm−1) 0.933
Space group, Z P21/c, 4

a, b, c (Å) 9.9927(3), 8.8811(2), 9.7005(3)
β (o) 116.155(4)

V (Å3) 772.73(4)
Dcalc (g/cm3) 2.629

Crystal size (mm) 0.046 × 0.147 × 0.262

www.ccdc.cam.ac.uk/data_request/cif
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Table 1. Cont.

Data Collection

Diffractometer Oxford Diffraction Gemini, CCD detector
Radiation Mo Kα (λ = 0.71073 Å)

Temperature (K) 150(2)
Scanning mode Omega scans

Measuring range, Θ (o) 2.271–29.996
Reflections (total) 24749

Rint 0.0365
Rσ 0.0162

Refinement

Reflections unique 2254
Reflections observed [I > 2σ(I)] 2063

Parameters 147
Absorption correction Numerical

Tmax, Tmin 0.958,0.792
Residuals

R (observed reflections) 0.0221
R, wR (all reflections) 0.0253, 0.0630

S 1.177
∆ρ (max)/(min) (e/Å3) 0.495/−0.373

Table 2. Na2Al2O(PO4)2·0.12H2O. Characteristic distances, Å.

P1—Tetrahedron Al1—Bipyramid Na1—Octahedron

P1—O2 1.5289(11) Al1—O1 1.7744(11) Na1—O8 2.190(2) Na1—O5 2.448(3)
O4 1.5291(11) O9 1.7985(11) O3 2.316(1) O9 2.996(3)
O3 1.5402(11) O5 1.8313(11) O4 2.366(1) O2 3.033(3)
O5 1.5466(11) O1’ 1.8798(11) <Na1—O> 2.556

O4 1.8980(11)
<P1—O> 1.536 <Al1—O> 1.836 Na1’—octahedron

Na1′—O8 2.18(2) Na1′—O2 2.69(3)
P2—tetrahedron Al2—bipyramid O3 2.30(1) O5 2.85(3)

P2—O8 1.5050(11) Al2—O7 1.8158(11) O4 2.36(2) O7 3.09(3)
O6 1.5206(11) O3 1.8248(11) <Na1′—O> 2.58
O7 1.5465(11) O1 1.8277(11)
O9 1.5543(11) O2 1.8426(11) Na2—eight-vertex polyhedron

O6 1.8438(11) Na2—O9 2.309(1) Na2—O10 * 2.689(1)
<P2—O> 1.532 <Al2—O> 1.831 O7 2.337(10 O4 2.693(1)

O6 2.470(1) O8′ 2.935(1)
O8 2.500(1) O8” 3.086(1)

<Na2—O> 2.627

* The oxygen atom of the water molecule with low occupancy.

Table 3. Na2Al2O(PO4)2·0.12H2O. Bond valance data *.

Atom P1 P2 Al1 Al2 Na1 Na2 Σ

O1 0.716; 0.539 0.620 1.88
O2 1.269 0.596 0.036 1.90
O3 1.231 0.625 0.250 2.11
O4 1.268 0.513 0.218 0.090 2.09
O5 1.210 0.614 0.175 2.00
O6 1.298 0.594 0.165 2.06
O7 1.210 0.640 0.236 2.09
O8 1.354 0.352 0.152; 0.047; 0.036 1.94
O9 1.185 0.671 0.040 0.255 2.15
Σ 4.98 5.05 3.05 3.07 1.07 0.98

* Na1’ and O10(H2O) atoms with low occupancy are not included in the calculation.
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3. Results
3.1. Interatomic Distances and Crystal Structure Description

The basic structural elements of the title compound are shown in Figure 2a. The Al3+

ions in two symmetrically independent positions are surrounded by O atoms, forming
trigonal bipyramids. The Al1-centered polyhedron has three close Al1–O distances that
vary from 1.774(1) to 1.831(1) Å, and two longer distances to apical O atoms of 1.880 (1) and
1.898(1) Å. The distortion of the Al2-centered five-vertex polyhedron is different: all Al2–O
distances lie in the interval 1.816(1)–1.844(1) Å. The pattern of distortion of the AlO5
polyhedra is consistent with the bond-valence calculation (Table 3). The asymmetric unit of
the structure includes two P sites in tetrahedral coordination. In the P1 tetrahedron, there
are two pairs of close P1–O bond lengths, one of 1.529(1) Å and another of about 1.54 Å.
Similarly, two close P2–O distances are of 1.505(1) and 1.521(1) Å and two longer ones of
about 1.55 Å characterize the P2O4 polyhedron. The site of Na1 is split into two positions
at 0.46 Å statistically populated by Na atoms for 93 and 7% with six Na1–O distances
ranging from 2.190(1) to 3.033(3) Å, and six Na1′–O distances from 2.18(2) to 3.09(3) Å.
In Na2-centered eight-vertex polyhedron the Na2–O distances lie between 2.309(1) and
3.086(1) Å.
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Centrosymmetric tetramers built from two Al1O5 polyhedra sharing an edge and two
additional Al2O5 polyhedra attached by corner linkage at each side of this common edge
represent the distinguished feature of the title compound (Figure 2b). These tetrameric
units of four AlO5 bipyramids are cross-linked by PO4 tetrahedra to form two-periodic
slabs parallel to the yz plane. The Na+ ions and a small amount of H2O molecules at
the symmetry centers occupy positions between the anionic slabs of the [Al2O(PO4)2]2

composition (Figure 3) with eight-membered windows built from alternating sharing
vertices P- and Al-centered polyhedra, and open in the {101} direction (Figure 4).

3.2. Crystal Chemical Regularities in the Family of Aluminum Phosphates/Aluminophosphates

Natural phases, formed within the Al–P–O–(H) compositions, are generally supergene
minerals of sedimentary rocks; they also occur in weathering zones and late hydrother-
mal formations. Although these minerals contain water in a different form, they often
have rather dense crystal structures formed by cationic layers (augelite, Al2(OH)3[PO4])
or columns (senegalite, Al2(OH)3[PO4]·H2O) of either edge-sharing AlO6 octahedra and
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AlO5 polyhedra, or columns of aluminum octahedra shared faces and vertices (trolleite,
Al4(OH)3[PO4]3). Phosphate tetrahedra unite two- or one-periodic cationic fragments de-
signed by Al-centered polyhedra into framework structures. The water-rich representatives
in this mineral group are characterized by a microporous architecture with voids and chan-
nels containing H2O molecules (wavellite, Al3(OH)3[PO4]2·5H2O, kingite, Al3(OH)3[PO4]2·
9H2O, etc.). In the crystal structures of the minerals characterized by the ratio Al:P = 1
(variscite and metavariscite, AlPO4 · 2H2O), all vertices of AlO6 octahedra are shared
with phosphate tetrahedra [20]. In the crystal structure of mineral berlinite, AlPO4 (an
indicator of high-temperature conditions of phase formation [21]) with the ratio Al:P = 1,
the framework of which represents a superstructure based on quartz, Al atoms are in the
tetrahedral coordination.
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Incorporation of Na into the composition of aluminum phosphates is usually con-
nected with metasomatic reactions. In nature, two minerals are known in the Na-Al-P-O-H
system—wwardite and brazilianite. Both structures are based on mixed anionic frame-
works of Al octahedra and P tetrahedra, but the topology of the frameworks differs signifi-
cantly. Brazilianite, NaAl3(PO4)2(OH)4 is considered to form in granitic pegmatites as a
product of Na-metasomatic alteration of primary pegmatite minerals of the montebrasite-
amblygonite series. The crystal structure of brazilianite is designed from columns of
AlO4(OH)2 and AlO3(OH)3 octahedra sharing edges; these columns are linked by PO4
tetrahedra in a framework with cavities populated by Na atoms [22,23]. The mineral
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wardite, NaAl3(PO4)2(OH)4·2H2O of hydrothermal origin usually occurs in P-rich zones of
granite pegmatites. In its tetragonal crystal structure, Al-centered octahedra sharing OH
vertices are aligned in intercrossing chains along the {100} and {010} directions. These chains
form cellular layers parallel to the ab plane with Na atoms occupying positions near their
centers. The sheets of AlO2(OH)4, AlO3(OH)2(H2O) and NaO6(H2O)2 polyhedra sharing
edges and vertices are linked along the c axis via phosphate tetrahedra and hydrogen
bonds [24,25].

Natural potassium and aluminum phosphates are mainly weathering products of
clay minerals under the action of phosphate-containing solutions of guano or anthro-
pogenic fertilizers. Potassium aluminophosphate taranakite, K3Al5(HPO4)6(PO4)2·18H2O
mostly occurs in humid caves where phosphate-rich excrements of birds, penguins, or
bats react with clay minerals. It is also known as a reaction product of soil clays with
phosphate-containing fertilizers [26]. In the rhombohedral structure of taranakite, six
[K3Al5(HPO4)6(PO4)2(H2O)12] layers alternate along {001} with layers of H2O molecules.
Non-exchangeable K atoms are trapped within the layers. Hydrogen bonds in taranakite
act within the rigid layers, within the water interlayers, and between the layers and inter-
layers [27]. The product of taranakite dehydration, francoanellite, occurs at the contact
of “terra rossa” with bat guano in the karst cave. The mineral crystal structure is built
of the same “taranakite” [K3Al5(HPO4)6(PO4)2(H2O)12] layers connected by hydrogen
bonds. Hydrogen bonds in francoanellite are formed within the rigid layers and between
them. It has been shown that single crystals of synthetic francoanellite could be obtained
by topochemical dehydration of taranakite crystals with loosing of every second water
interlayer, when a first-order staging product of the deintercalation of water from taranakite
was formed [28].

Known to date, several structural topologies of aluminophosphates are derived from
the assemblage of PO4 tetrahedra and a number of types of Al-centered polyhedra (tetrahe-
dra, octahedra, trigonal bipyramids, and tetragonal pyramids) in the framework. Five-vertex
polyhedra formed by O atoms in the Al surrounding are not as common as usual AlO4 tetra-
hedra or AlO6 octahedra. There are compounds, for instance Na6Al3P5O20, in which the mi-
croporous framework is built from mutually AlO6 and AlO4 polyhedra, and PO4 tetrahedra
having vertex-bridging contacts [29]. Obtained by a high-temperature molten salt method,
the Ba3Al2P4O16 phase with an Al/P ratio of 1:2, is characterized by unique [Al2P4O16]∞
chains constructed from PO4, AlO4, and AlO5 groups [30]. Two complex aluminophosphates
with an Al:P ratio equal to 5:7, namely, [Al5(OH)(PO4)3(PO3OH)4][NH3(CH2)2NH3]2[2H2O]
and [Al5(PO4)5(PO3OH)2][NH3(CH2)3NH3]2[H2O] are layered materials with aluminum
atoms in three different coordination states, AlO4, AlO5, and AlO6, and the interlayer space
contains the amines and water molecules [31].

The title compound Na2Al2O(PO4)2·0.12H2O represents an example of the layered
sodium aluminophosphate built from PO4 and AlO5 polyhedra. Its monoclinic crystal
structure is very similar to that of mineral tinsleyite, KAl2(PO4)2(OH)·2H2O with K atoms
in the framework channels. The main difference between the two structures consists of
the type of Al coordination by O atoms. As shown above, clusters of AlO5 bipyramids
sharing edges and vertices are essential building blocks of the Na2Al2O(PO4)2·0.12H2O.
Similar clusters, but designed from AlO4(OH)2 and AlO4(OH)(H2O) octahedra, form the
tinsleyite crystal structure (Figure 5). The topologies of both Al/P substructures within
the bc layers are identical; the amount and distribution of alkali Na+ or K+ ions and the
H2O molecules are different. Significantly distinct sizes of Na+ and K+ ionic radii define
here not only a type of Al coordination by O atoms in order to arrange the necessary
environment around one or another alkali metal. They also specify a periodicity of the
aluminophosphate anionic construction: layers alternating along the {100} direction with
Na atoms in the Na2Al2O(PO4)2·0.12H2O or a framework with channels populated by
a two times lower quantity of K atoms in the case of tinsleyite (Table 4). The synthesis
of sodium aluminophosphate under mild hydrothermal conditions and the topological
resemblance of its structure with that of the mineral tinsleyite and a number of its structural
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analogues, suggest a high probability of the existence of a mineral equivalent of the
Na2Al2O(PO4)2·0.12H2O in nature.

Minerals 2022, 12, x FOR PEER REVIEW  9  of  13 
 

 

   

(a)  (b) 

Figure 5. Crystal structures of Na2Al2O(PO4)2∙0.12H2O (a) and tinsleyite, KAl2(OH)(H2O)(PO4)2∙H2O 

(b) projected along the a axis. 

A certain structural resemblance between hydrothermally obtained sodium alumi‐

nophosphate hydroxide Na2Al3(OH)2(PO4)3 and the mineral minyulite, KAl2F(H2O)4(PO4)2 

has been noticed earlier [32]. Minyulite was first synthesized by Haseman et al. [33], as 

well as a number of other hydrous phosphates, including tinsleyite, by the treatment of 

clays with phosphate anions at pH ranges appropriate for soil environments and at a tem‐

perature  less  than  95  °C.  A  synthetic  hydroxide  analogue  of  minyulite,  namely, 

KAl2(OH)(H2O)4(PO4)2 could also be obtained by the reaction of gibbsite with a potassium 

phosphate solution of pH = 5.5 at 333 K [34]. 

Table 4. Structurally related sodium and potassium microporous aluminophosphates. 

Compound/Mineral 
Unit Cell Parame‐

ters, Å, β, o, V, Å3   

Space Group, Z, 

, g/cm3 

Clusters of Al‐Cen‐

tered Polyhedra 

Anionic Struc‐

tural Fragment 
Reference 

Tinsleyite, synthetic 

KAl2(OH)(H2O)(PO4)2∙H2O 

a = 9.499(2)  P21/n    Al4(OH)2(H2O)2O16  Framework  [5] 

b = 9.503(2)  4       

c = 9.535(2)  2.66       

β = 103.26(3)         

V = 837.8(2)         

Na2Al2O(PO4)2∙0.12H2O * 

a = 9.9927(3)  P21/c  Al4O18  Layers  This work 

b = 8.8811(2)  4       

c = 9.7005(3)  2.63       

β = 116.155(4)         

V = 772.73(4)         

Minyulite, KAl2F(H2O)4(PO4)2 

a = 9.337(5)  Pba2    Al2F(H2O)4O6  Layers  [35] 

b = 9.740(5)  2       

c = 5.522(3)  2.47       

V = 502.2(5)         

Na2Al3(OH)2(PO4)3 

a = 8.475(2)  P212121    Al3(OH)2O12  Framework  [32] 

b = 8.471(2)  4       

c = 14.319(3)  2.88       

V = 1028.0(4)         

* Geometric characteristics correspond to the temperature of 150 K. 

Figure 5. Crystal structures of Na2Al2O(PO4)2·0.12H2O (a) and tinsleyite,
KAl2(OH)(H2O)(PO4)2·H2O (b) projected along the a axis.

A certain structural resemblance between hydrothermally obtained sodium aluminophos-
phate hydroxide Na2Al3(OH)2(PO4)3 and the mineral minyulite, KAl2F(H2O)4(PO4)2 has
been noticed earlier [32]. Minyulite was first synthesized by Haseman et al. [33], as well as
a number of other hydrous phosphates, including tinsleyite, by the treatment of clays with
phosphate anions at pH ranges appropriate for soil environments and at a temperature less
than 95 ◦C. A synthetic hydroxide analogue of minyulite, namely, KAl2(OH)(H2O)4(PO4)2
could also be obtained by the reaction of gibbsite with a potassium phosphate solution of
pH = 5.5 at 333 K [34].

Table 4. Structurally related sodium and potassium microporous aluminophosphates.

Compound/Mineral Unit Cell Parameters,
Å, β, o, V, Å3

Space Group, Z, ρ,
g/cm3

Clusters of
Al-Centered
Polyhedra

Anionic Structural
Fragment Reference

Tinsleyite, synthetic
KAl2(OH)(H2O)(PO4)2·H2O

a = 9.499(2) P21/n Al4(OH)2(H2O)2O16 Framework [5]
b = 9.503(2) 4
c = 9.535(2) 2.66

β = 103.26(3)
V = 837.8(2)

Na2Al2O(PO4)2·0.12H2O *

a = 9.9927(3) P21/c Al4O18 Layers This work
b = 8.8811(2) 4
c = 9.7005(3) 2.63

β = 116.155(4)
V = 772.73(4)

Minyulite,
KAl2F(H2O)4(PO4)2

a = 9.337(5) Pba2 Al2F(H2O)4O6 Layers [35]
b = 9.740(5) 2
c = 5.522(3) 2.47
V = 502.2(5)

Na2Al3(OH)2(PO4)3

a = 8.475(2) P212121 Al3(OH)2O12 Framework [32]
b = 8.471(2) 4
c = 14.319(3) 2.88
V = 1028.0(4)

* Geometric characteristics correspond to the temperature of 150 K.
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Crystal structures of these Na- and K-bearing pseudo tetragonal compounds look
similar in the ab projection. The elementary blocks of the anionic layers of the mixed type
in the minyulite structure are dimers consisting of two Al octahedra sharing F vertices (or
OH vertices in the structure of its synthetic variant). These pairs of octahedra are connected
in layers via PO4 tetrahedra. Voids of the octagonal cross-section in layers parallel to the
{001} plane contain K+ ions. In the direction of the c axis, the aluminophosphate layers
are linked by hydrogen bonds [35]. Blocks of sharing vertices Al-centered polyhedra
crosslinked by PO4 tetrahedra can be distinguished in the structure of Na2Al3(OH)2(PO4)3;
however, in this case, two AlO4(OH) polyhedra and one AlO4(OH)2 octahedron form
an elementary cluster of a horseshoe appearance (Figure 6). The Al-centered five-vertex
polyhedra are moved up and down along {001} from the Al-centered octahedron. As a
consequence, the Al3(OH)2O12 trimers with the AlO4(OH)2 octahedron at their centers
occur disposed at two levels along the z axis (Figure 6b); thus increasing the unit cell
c parameter to 14.319 Å, as compared with c = 5.522 Å of minyulite having the layered
structure (Figure 6c). In the framework structure of sodium aluminophosphate, the clusters
are linked via phosphate tetrahedra not only in the ab plane (as in the minyulite structure),
but also in the {001} direction. Each Al-centered polyhedron overlaps along the z axis with
its counterpart at a distance of about 4.9 Å, and the trimeric clusters look like dimers in the
xy projection (Figure 6a).
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The absence, at ambient conditions, of isostructural chemically similar but Na- or
K-based compounds is well-known and is mainly due to the difference in ionic radii
of Na+ and K+. The abovementioned examples demonstrate the crystal chemical varia-
tions between Na- and K-representatives of aluminophosphates, the structures of which
include clusters of Al-centered polyhedra interconnected in the framework through oxygen-
bridging contacts of PO4 tetrahedra. In both cases, alkali Na or K atoms work as structure
regulating agents, determining the character of the developing crystal structure, namely,
the types of Al-centered polyhedra and the structure periodicity (layer or framework).
The flexibility of aluminophosphate constructions, which include clusters of Al-centered
octahedra and/or five-vertex polyhedra connected by phosphate groups, allows them to
self-organize around structure-forming Na+ or K+ ions into anionic layers or frameworks.
The implementation of such structures, also in nature in the form of minerals, is largely
determined by the participation of water, in one form or another, which stabilizes the
crystallizing phases due to the forming hydrogen bonds.
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4. Conclusions

Various structural topologies of aluminophosphates are derived from the grouping
of PO4 tetrahedra and a number of types of Al-centered polyhedra (tetrahedra, octahedra,
trigonal bipyramids, and tetragonal pyramids) in the framework. A novel representative
Na2Al2O(PO4)2·0.12H2O within this family was obtained as single crystals in middle-
temperature hydrothermal conditions. Its original layered crystal structure was established
by low-temperature X-ray diffraction. A mineralogically probable phase is discussed as a
sodium alternative of tinsleyite, KAl2(OH)(H2O)(PO4)2·H2O, a member of the leucophos-
phite mineral group, which also includes sphenscidite and ammoniotinsleyite. These
minerals are known to occur in two different paragenetic associations: as late products of
the hydrothermal alteration of primary phosphates in granitic pegmatites, or as biominerals.

The crystal structures Na2Al2O(PO4)2·0.12H2O and tinsleyite contain similar frag-
ments: clusters of four Al-centered polyhedra sharing edges and vertices, surrounded by
PO4 tetrahedra. In contrast to tinsleyite, where tetramers are built from AlO4(OH)2 and
AlO4(OH)(H2O) octahedra, analogous clusters of AlO5 bipyramids are the main struc-
tural units of sodium aluminophosphate. We showed that alkali Na or K atoms, which
have strongly distinct ionic radii, act as structure regulators, determining the character
of the developing crystal structure, namely the types of Al-centered polyhedra and the
structure periodicity. The flexibility of aluminophosphate constructions, which include
clusters of Al-centered octahedra or five-vertex polyhedra connected by phosphate groups,
allows them to self-organize around structure-forming Na+ or K+ ions into anionic layers
or frameworks. We assume that the synthesis of sodium aluminophosphate under mild
hydrothermal conditions and the topological resemblance of its structure with that of the
mineral tinsleyite and a number of its structural analogues, suggest a high probability of
the existence of a mineral equivalent of the Na2Al2O(PO4)2·0.12H2O in nature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12050542/s1, Table S1: Fractional atomic coordinates and
isotropic or equivalent isotropic displacement parameters (Å2) for Na2Al2O(PO4)2·0.12H2O.
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