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Abstract: Shale inhibitor is an additive for drilling fluids that can be used to inhibit shale hydration
expansion and dispersion, and prevent wellbore collapse. Small molecular quaternary ammonium
salt can enter the interlayer of clay crystal, and enables an excellent shale inhibition performance.
In this paper, a novel ionic shale inhibitor, triethylammonium acetate (TEYA), was obtained by
solvent-free synthesis by using acetic acid and triethylamine as raw materials. The final product was
identified as the target product by Fourier transform infrared spectroscopy (FT-IR). The inhibition
performance of TEYA was studied by the mud ball immersion test, linear expansion test, rolling
recovery test and particle size distribution test. The results demonstrated that the shale inhibitor
shows a good shale hydration inhibition performance. The inhibition mechanism was studied by
FT-IR and X-ray diffraction (XRD), respectively; the results showed that triethylammonium acetate
TEYA could enter the crystal layer of clay and inhibit it through physical adsorption.

Keywords: drilling fluids; hydration swelling; shale inhibitor; shale gas

1. Introduction

With the development of oil and gas exploration to deep wells, ultra-deep wells,
offshore wells and wells in complex sections [1,2], a series of drilling problems caused by
the hydration expansion and dispersion of shale, such as wellbore instability, bit mud bag
and borehole purification, would occur frequently, which increases the drilling difficulty
and non-operation time of the oil industry [3–6]. Drilling fluid, commonly known as
the blood of drilling engineering, plays the role of suspending drilling cuttings, cleaning
and cooling the bit, balancing formation pressure, reservoir protection, and maintaining
wellbore stability. According to different mobile phases, drilling fluids can be divided into
water-based drilling fluids, oil-based drilling fluids and synthetic-based drilling fluids.
Water-based drilling fluids have the advantages of less components, a simple preparation
process, environmental protection and low cost, which make them widely used all over the
world. The performance of drilling fluid plays a decisive role in the stability of wellbore;
therefore, special requirements are put forward for the inhibition of the drilling fluid
system [7–10].

Adding shale inhibitor to drilling fluid can prevent wellbore collapse to a certain
extent. There are two main action mechanisms of inhibitors [11–13]. One is that inhibitors
are wrapped on the surface of shale to separate it from water. Another way is that the
inhibitor enters the clay crystal layer, the water between the clay crystal layers is replaced,
and the inhibitor is adsorbed inside the crystal layer, so as to play an excellent inhibition
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effect [14–17]. The high molecular weight inhibitors will play the role of wrapping inhibi-
tion, which have a certain impact on the performance of drilling fluids, so its application
is greatly limited. However, intercalation inhibitors gradually show a good development
prospect in shale inhibitors because of their unique molecular structure advantages [18–20].

The commonly used shale inhibitors mainly include inorganic salts, asphalts, polymers
and humic acids, but these shale inhibitors have some shortcomings; for example, asphalt
is not conducive to environmental protection, silicate will make the rheology of the system
difficult to control, glycosides cannot solve the drilling problem of active shale, etc. [21–26].
In recent years, amine-based drilling fluid has become the focus of petroleum researchers
all over the world because of its environmental protection and low cost. Its essence is that
amine (ammonium) shale inhibitor is added to drilling fluid. Ammonium-based shale
inhibitors are usually prepared by an acid–base reaction between small molecular weight
secondary tertiary amine and matrix acid. They have low molecular weight and low cost.
They are used in drilling fluid and oil production, but their economy and temperature
resistance still need to be further improved.

Based on the above analysis, a new ionic shale inhibitor triethylammonium acetate
was developed with acetic acid and triethylamine as raw materials. Its structure was
determined by infrared spectroscopy, its inhibition performance was comprehensively
studied, and its inhibition mechanism was analyzed.

2. Experimental
2.1. Materials

Triethylamine, acetic acid, acetone, and absolute ethanol were purchased from Chengdu
Kelong Chemical Reagent Factory (Chengdu, China) (the above reagents were analytically
pure), and sodium bentonite (Na-MMT) was purchased from Xinjiang Xiazijie Bentonite
Co., Ltd. (Tacheng, China).

2.2. Preparation of TEYA

Triethylamine (0.25 mol) was added into a three-neck flask, then acetic acid (0.2 mol)
was slowly added with stirring, and then heated at the temperature required until the
reaction was completed. After the reaction, the reaction solution was recrystallized with a
mixture of ethyl acetate and anhydrous ethanol (volume ratio 8:2). TEYA was left to stand
for 24 h to obtain an acicular white solid. The solid was vacuum dried at 45 ◦C for 8 h and
TEYA was obtained. The chemical formula and the synthetic route of TEYA is shown in
Scheme 1.
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2.3. Inhibition Performance Study
2.3.1. Mud Ball Immersing Tests

Bentonite (50 g) was added to 25 g distilled water and stirred evenly, which was used
to make a 30 g mud ball. Then, the mud ball was immersed in inhibitor solutions, and the
change in the mud ball size was observed after a period of time.

2.3.2. Linear Expansion Tests

A total of 10 g Na-MMT dried at 105 ◦C was compressed at 10 MPa for 5 min by using
a pressing machine, and the swelling height of Na-MMT was tested using a shale swelling
instrument.
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2.3.3. Rolling Recovery Tests

Mesh shale samples (50 g) were put into the high-temperature aging tanks filled with
350 mL solutions. The hot-rolling tests were carried out at 100 ◦C for 16 h. When these
experiments were completed, the shale samples were carefully rinsed and filtered by a
40-mesh sieve, then dried to constant weight at 105 ◦C, and weighed. We calculated the hot
rolling recovery rate by the equation as below:

R =
M
50

× 100%

where M is the recycling mass, g, and R is the rolling recovery rate, %.

2.3.4. Particle Distribution Tests

Different types of inhibitors were added to 350 mL 4% Na-MMT based slurry and
fully stirred. The effect of inhibitor on the particle size of bentonite was tested after 24 h.
Particle size analysis was measured with a laser diffraction technique (HORIBA, Kyoto,
Japan). The operating temperature was 25 ◦C, the circulation speed was 2000 r/min, the
ultrasonic system was 40 Hz, 70 W, and the stirring speed was 100–475 rpm.

2.4. Inhibition Mechanism Study
2.4.1. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis

The Na-MMT treated with 1.2% triethylammonium acetate (TEYA) was centrifuged
and filtered. During the filtration process, the Na-MMT was carefully rinsed by the mixed
solution of absolute ethanol and ethyl acetate. The obtained Na-MMT was vacuum dried
at 50 ◦C for 24 h and then stored in a closed manner. The prepared sample powder
was mixed with KBr and pressed into pellets for FT-IR analysis. The FT-IR spectra in
the wavelength range of 4000–500 cm−1 were recorded by a WQF-520 Fourier transform
infrared spectrometer (Thermo Electron Co., Waltham, MA, USA).

2.4.2. X-ray Diffraction (XRD) Analysis

Na MMT (1 g) was added into 100 mL 1.2% TEYA solutions. The solutions were stirred
for 2 h and then stirred at high speed for 30 min. After it was centrifuged, the bottom
precipitation was washed, filtered and dried it at 50 ◦C for XRD tests. X-ray diffraction
tests were performed on an X Pert PRO MPD diffractometer. Scans were taken from a 2θ
angle from 3◦ to 20◦, step size 0.1, and scan time per step of 10 s.

3. Results and Discussion
3.1. FT-IR Analysis

The results of TEYA are shown in Figure 1.
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It can be seen from Figure 1 that a strong and wide absorption peak appeared near
3485 cm−1, which was the stretching vibration absorption peak of -COOH; 2850 cm−1 was
the stretching vibration absorption peak of C-H bond in -CH2- and -CH3; and the peak
at 1630 cm−1 was the stretching vibration of C-N. According to the above analysis, the
synthetic product was the target product [27–30].

3.2. Mud Ball Immersing Tests

The hydration swelling tests of the inhibitor on the mud ball was studied, and the
results are shown in Figure 2.
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It can be seen from Figure 2 that the final shape of the two mud balls was very different
after immersing in different solutions for a period of time. The mud ball in water presented
as expanded and broken; however, the mud ball in inhibitor solutions was relatively intact,
indicating that the shale inhibitor shows an obvious inhibitory effect on the hydration of
shale. This experiment directly proved that shale inhibitor TEYA could effectively prevent
the hydration expansion of shale [31].

3.3. Linear Expansion Tests

The linear swelling effect of 1.2% inhibitor on shale was studied, and the experimental
results are shown in Table 1.

Table 1. Linear swelling tests of shale.

Experiment
Number Test Solution Height/mm Swelling/mm Swelling

Rate/%

1 TEYA 11.04 2.93 26.53985507
4 KCl 10.96 3.45 31.47810219
5 Water 11.84 6.15 51.94256757

The main reason for swelling of Na-MMT is that water molecules enter into the crystal
layer of minerals and the cation exchange of bentonite minerals, which increases the crystal
layer spacing of bentonite. It can be seen from Table 1 that the prepared inhibitor showed
the most obvious inhibitory effect on shale swelling, followed by potassium chloride (KCl).
The above experimental results showed that KCl also had a certain inhibitory effect; the
reason was that the diameter of K+ was equivalent to the diameter of the hexagonal oxygen
ring on the bottom of the clay silica tetrahedron, and the hydration energy of K+ was
small, which was easily inserted into the clay crystal layer. Therefore, Ca2+ and Na+ with
hydration radius and hydration energy greater than K+ can be replaced. K+ entering the
hexagonal oxygen ring can be firmly connected with the clay wafer, and it was not easy to
separate and inhibit the hydration expansion of the shale. TEYA can play an inhibition role
through the synergistic effect of crystal layer substitution and concentration difference, so
as to play a nice shale hydration inhibition effect [32–34].
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3.4. Rolling Recovery Tests

The rolling recovery rates of shale in different solutions were compared to evaluate
the inhibition performance of TEYA, as shown in Figure 3.
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Figure 3. Effect of different inhibitors on the rolling recovery rate of shale (a, 2 %TEYA; b, water; c,
3% polydimethylamine; d, 5% emulsified asphalt; e, 5# white oil; f, 3% small cation; g, 2# oil-based
drilling fluids; h, 3# oil-based drilling fluids; i, 5% KCl; j, 5%KCl+ 5% emulsified asphalt; k, 1% CaCl2;
l, 5% K2SiO3; m, 5% FeCl3).

As can be seen from Figure 3, the rolling recovery of 5% FeCl3 was lower than 40%
and distilled water was only about 50%; the others were higher than 60%. The highest
rolling recoveries were 5# white oil, oil-based drilling fluids, 5% potassium sorbate, 5% KCl
+ 5% emulsified asphalt, 5% K2SiO3, 5% KCl, 1% CaO and TEYA (93.21%). It can be seen
that TEYA demonstrated a good inhibition performance.

3.5. Particle Distribution Tests

The median diameter and average diameter of the water group were compared with
those with added TEYA to study the adsorption of TEYA on clay. The results are shown in
Figure 4.
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According to Figure 4, the pitch diameter of water-based slurry was 8.05068 µm
and the average diameter was 21.80842 µm. When the inhibitor was added, the median
diameter was raised to 56.19773 µm and the average diameter was raised to 60.04097 µm.
It can be seen that the particle diameter obviously increased, which played a certain role in
inhibiting the hydration and dispersion of shale.

3.6. Inhibition Mechanism Study

The interaction between Na-MMT and clay was studied by FT-IR. Figure 5 shows the
infrared spectra of Na MMT, TEYA and TEYA/Na-MMT.
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Figure 5. FT-IR spectra of Na-MMT, TEYA and Na-MMT/TEYA.

For the curve of Na-MMT, 3451 cm−1, 1020 cm−1 and 1645 cm−1 correspond to the
absorption peaks of -OH stretching vibration, Si-O stretching vibration and variable angle
vibration of interlayer water molecules in bentonite, respectively [35]. The infrared spectra
of TEYA/Na-MMT contained all the characteristic absorption peaks of the TEYA and Na-
MMT, and no new peak appeared, which indicated that TEYA and Na-MMT were effectively
combined together. However, the position of the absorption peak of Na-MMT was changed
slightly. The variable angle vibration absorption peak of water molecules in bentonite
had a red shift from 1645 cm−1 in low frequency to 1613 cm−1 in high frequency, and the
peak width had narrowed and the peak strength was weakened, which indicated that the
interlayer water of Na-MMT had been greatly reduced. Since TEYA contains quaternary
ammonium salt, it is beneficial for TEYA to squeeze out the water molecules between the
crystalline layers of bentonite, and therefore presents a nice inhibitory performance [35,36].

The XRD of dry Na-MMT treated with 1.2 wt% TEYA is shown in Figure 6. From
Figure 6 we can see that the crystal layer spacing of dry Na-MMT is 1.28 nm [36], and the
crystal layer spacing of TEYA/Na MMT is changed to 1.47 nm, which indicated that TEYA
had successfully entered into the clay crystal layer and expanded the crystal layer spacing.
Due to the occurrence of lattice substitution, the clay surface was negatively charged. The
positively charged quaternary ammonium group on TEYA can ensure its strong adsorption
on the clay. The molecular weight of TEYA was small and can enter the Na-MMT crystal
layer to pull the crystal layer spacing.
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The inhibition mechanism is shown in Figure 7. In the water environment, water
molecules increased the spacing of Na-MMT layers, and TEYA entered into the clay crystal
layer to replace water molecules, so as to effectively prevent the hydration and expansion
of clay [36].
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4. Conclusions

In this paper, a new ionic shale inhibitor TEYA was obtained by solvent-free synthesis
with acetic acid and triethylamine as raw materials. The final product was identified as
the target product by FT-IR. The mud ball immersion test shows that the mud ball in the
inhibitor solution was relatively intact after 24 h. The linear expansion experiment showed
that the linear expansion rate of clay in the inhibitor solution is only 26.54% after 16 h,
the rolling recovery rate of shale in the inhibitor solution was as high as 93.21%, and the
average particle size of clay in the inhibitor solution was 60.04097 µm. The results show
that the shale inhibitor had a certain shale inhibition effect.
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