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Abstract: Sensor-based particulate ore sorting is a pre-concentration technique that sorts particles
based on measurable physical properties, resulting in reduced energy consumption by removing
waste prior to grinding. This study presents an integrated methodology to determine the potential
for ore sorting based on intrinsic particle properties. The methodology first considers the intrinsic
sortability based on perfect separation. Only intrinsically sortable ore is further assessed by determin-
ing the sensor-based sortability. The methodology is demonstrated using a case study based on a
typical copper porphyry comminution circuit. The sorting duty identified for the case study was the
removal of low-grade waste material from the pebble crusher stream at a suitable Cu cut-off grade.
It was found that the ore had the potential to be sorted based on the intrinsic and ideal laboratory
sensor sortability results but showed no potential to be sorted using industrial-scale sensors. The
ideal laboratory XRF sensor results showed that around 40% of mass could be rejected as waste at
copper recoveries above 80%. An economic analysis of the sortability tests showed that, at optimum
separation conditions, the intrinsic, ideal sensor and industrial sensor sortability would result in an
additional annual profit of ~$30 million, $21 million and $−7 million (loss), respectively.

Keywords: ore sorting; ore characterisation; sortability

1. Introduction

Sensor-based ore sorting is a pre-concentration technique that uses electronic sensors
to differentiate ore particles based on measurable physical properties that are intrinsic to
the ore, i.e., naturally occurring properties (grade, texture, mineralogy, density, colour etc.).
Pre-concentration of ore by waste rejection prior to fine grinding can have a positive impact
on an operation by decreasing energy consumption whilst improving the efficiencies of
downstream processes [1–5].

Although particulate ore sorting has long been recognised as having the potential
to impact mining operations positively, ore sorting technologies have not been widely
implemented on an industrial scale in base and precious metal projects. There has, however,
been increasing interest in the use of this technology in recent years due to the significant
processing, economic and environmental benefits [6].

There are a number of reasons why ore sorting has not seen implementation across a
wider range of commodities. One of the reasons is that standard methodologies, similar to
those used in other branches of mineral processing (e.g., sink-float analysis), to determine
ore sortability using sensor-based ore sorting technologies are not well established. This is
the focus of this study.

Previous studies related to this area of research include a methodology to determine ore
sortability at a pilot-scale [3], at a laboratory scale [4], a model to determine ore sortability
for bulk ore sorting [6] and a method for optimal sensor selection based on mineralogy
data [7]. This paper presents an integrated methodology to determine the sorting potential
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of an ore based on intrinsic (natural ore properties) and measured particle properties using
a case study from a copper porphyry deposit in South America. It should be noted that
the purpose of this paper is to demonstrate the application of the methodology to a case
study for illustrative purposes and not to provide a specific technological solution to the
sorting of the ore used in the case study, i.e., the methodology is demonstrated by way of
the case study.

2. Methodology

The methodology consists of six stages, as presented in Figure 1. The first stage of the
methodology is to identify a potential sorting duty based on processing information and
ore mineralogy. Potential sorting duties can be divided into three categories depending
on the desired result, including upgrading of value elements (e.g., increasing Cu grade
by removing waste rock), removing penalty elements (e.g., removing phosphorus-rich
particles from an iron ore stream) or splitting material into two or more processing streams
(e.g., splitting an ore into hard and soft components for separate treatment). Once a
sorting duty has been identified, a representative sample of the material is then collected.
The individual particles of the representative sample are mineralogically and chemically
characterised in the next stage. The intrinsic sortability is then calculated based on the
particle characterisation data, with these results representing the theoretical sortability. Ore
that is intrinsically sortable is further assessed by establishing the amenability of various
sensors to sort the ore based on differences in particle properties. Sensors that are amenable
to sorting are then assessed by conducting ideal laboratory-scale sensor sortability tests
and if the potential exists, industrial-scale sortability tests.

Figure 1. Flow diagram of the six stages in the methodology.

For the intrinsic and sensor sortability tests in the methodology, the grade-recovery
relationship is established using a method presented by Tong [4]. The method uses a series
of simulated separation tests based on cut-off grades for the intrinsic sortability and sensor
response thresholds for the sensor sortability. To quantify the sortability, the grade-recovery
results are used to estimate the overall economic impact of implementing ore sorting on an
operation based on plant throughput data and operational costs using a method developed
by Lessard [5]. In the methodology, an additional positive profit would indicate that there is
the potential to sort the ore; these results are used for prospective purposes. This information
can then be used to motivate further test work to establish the actual ore sorting potential.
Examples of the application of the methodology as applied to a case study on a copper ore
are given in Section 3.
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2.1. Stage 1—Sorting Duty

Stage 1 of the methodology identifies a sorting duty, i.e., the end case as to why the
ore should be separated. A potential sorting duty for porphyry copper ores is the removal
of barren or low-grade rock prior to milling. This would increase the grade of material
reporting to the concentrator resulting in improved processing performance, increased
revenues and reduced environmental impact [8].

2.2. Stage 2—Ore Sampling

Stage 2 in the methodology in determining the required sample size for a represen-
tative sample of the ore to be tested. Methodologies for sampling are well established
in the literature and are mostly based on Gy’s Theory of Sampling (TOS). The theory
describes the method of collecting a representative sample by reducing or eliminating the
intrinsic/physical errors associated with sampling. Petersen [9] provides a comprehensive
review of the theoretical and practical aspects of TOS. Gy’s sampling equation (Equation (1))
is used to determine the minimum sample mass based on the variance of the fundamental
error (σ2

FE). The components of σ2
FE are the sampling constant (K), the nominal top size (dN)

with exponent (α) and the sample mass (Ms).

σ2
FE =

Kdα
N

Ms
(1)

K and α must be calibrated for different ore types. The sampling tree method is one
of the techniques used to determine the components of Gy’s equation, as described in
Minnit [10]. A portion of the ore under investigation is collected (~30 kg) and crushed into
progressively finer portions to produce 4 nominal top sizes. Each nominal top size is split
into 32 sub-samples. These sub-samples are chemically analysed for the elements of interest
and the relative variance for each of the 4 series is calculated. Equation (1) is linearised and
used to determine K and α from a plot of Ln(σ2MS) and Ln(dN) for the 4 series.

Ideally, one should use TOS to determine the minimum sample mass required for
a sample to be representative with a known error. However, depending on the ore type,
analysing the minimum sample mass, as determined using TOS, may be impractical. Other
sampling techniques, such as the binomial distribution method described by Fitzpatrick [3],
can be used to collect a sample representing the ratio of the various components within
the ore without taking the variability of particle size and composition into account. The
binomial distribution determines the minimum sample mass required to collect sufficient
particles of the least abundant component.

The sampling method employed is dependent on which stage a project is in (prefea-
sibility, feasibility etc.). There may be an insufficient mass of material produced from
exploration drilling to produce a representative sample in cases where ore sorting is consid-
ered in the initial plant design. Here, the method developed by Fitzpatrick [3] (or similar
sampling techniques) may be useful. In operations where ore sorting is being retrofitted
into an existing circuit, bulk samples can easily be acquired. TOS should ideally be used in
these cases.

2.3. Stage 3—Particle Characterisation

The third stage in the methodology is the characterisation of the ore particles to estab-
lish the size, mass, density and mineralogical/chemical composition of individual particles
in the sample collected in Stage 2. The particle size, mass and density can be determined
using various routine analytical methods. The particle size can also be determined from
the volume using the equivalent spherical diameter. Particles are screened into appropriate
size fractions for analysis. The top to bottom size ratio for each size fraction should not
exceed 3:1 for particles less than 40 mm and 2:1 for particles coarser than 40 mm.

The next step is to characterise the surface composition of each particle if possible. The
data is used to establish whether there is a correlation between the surface and volumetric
composition. Such a correlation between value or proxy minerals/elements is necessary
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if ore sorting sensors that only measure a particle’s surface are to be investigated in the
laboratory-scale sensor sortability tests. Examples of surface characterisation techniques
include XRF [4], hyperspectral imaging [11,12], and thermal infra-red reflectance [13].

Ideally, the volumetric composition is determined using non-destructive analytical
techniques, such as X-ray computed tomography [14]. If only destructive techniques are
viable, then an additional sample will need to be collected for subsequent stages in the
protocol. Destructive techniques include well-established mineralogical and chemical assay
techniques. Commonly used automated mineralogical techniques include systems such as
the Mineral Liberation Analyser (MLA) and QEMSCAN technique [7,15–17]. Chemical as-
say techniques such as ICP-OES/MS and XRF are commonly used techniques to determine
the elemental composition. The XRF technique may be adequate for analysis of both intact
as well as crushed particles, depending on the matrix of the material.

To validate the ore characterisation results, a statistical method based on bootstrap
resampling can be applied to the data [18]. This will also establish whether the minimum
sample mass determined from Equation (1) is sufficient. The particle composition data for
the mineral/element of interest (or proxy mineral/element) for each particle is collected
and the population is randomly resampled to produce M random subsets of N particles.
The process is repeated for different values of N. The relative standard deviation (RSD)
between the M random subsets at differing N values is determined. The RSD values
are plotted and a regression curve is fitted to the data. The regression curve determines
whether the population comprises enough particles at a sufficiently low RSD. If the RSD
is not sufficiently low, the slope of the curve can be used to predict how many additional
particles are required for the data set to be representative.

The particle characterisation results can be used to establish whether any proxies
correlate with the composition of the value mineral/element. The size, density and min-
eral/element compositions are compared with the value mineral/element composition
to determine if there are any correlations. Proxies may allow additional ore sorting sen-
sors to be assessed, e.g., if a correlation exists between density and grade, then an XRT
sensor would be considered. Ores that show a correlation between surface and volume
composition can be sorted using sensors that measure the surface of particles (e.g., XRF,
NIR, SWIR).

2.4. Stage 4—Intrinsic Sortability

The fourth stage in the methodology is determining the intrinsic sortability of the ore
from the particle composition based on theoretical separation, i.e., perfect separation at
the composition of interest (e.g., Cu grade). The particle characterisation data assesses the
intrinsic sortability on a size-by-size basis to determine if the sorting potential varies with
size. The intrinsic grade-recovery relationship is calculated using a method developed
by Tong [4] using the intrinsic properties from the particle characterisation section to
determine the sortability. The particle composition data for each size fraction are grouped
into appropriate composition categories (x1, x2, x3 . . . etc.). These composition categories
are used as the separation criteria in a simulated theoretical separation process, as shown
in Figure 2. All of the particles from the feed to Test x1 that are higher than the composition
category for Test x1 are removed to form Concentrate x1. The remaining particles then form
the feed to Test x2. The process is repeated for all of the selected composition categories.
Cumulative grade-recovery relationships are calculated on an overall and size-by-size basis
using the data generated from the simulated theoretical separation process.

The economic impact of ore sorting can be used at each stage in the methodology
to quantify the ore sorting potential. There are various financial models in the literature
that can be used to determine the economic impact of implementing process changes. An
example of how to determine the economic impact of implementing ore sorting on an
operation is presented by Lessard [5]. The feasibility of moving to the next stage in the
methodology is determined based on the financial analysis.
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Figure 2. Simulated theoretical intrinsic sortability test.

2.5. Stage 5—Sensor Amenability Tests

The fifth stage in the methodology is identifying sensors which have the potential to
differentiate between particles of varying composition based on the measurable physical
properties of the ore type under investigation. Table 1 presents a selection of sensing
technologies, the physical properties that they measure as well as applications where these
sensors have been successful. The selection of appropriate sensors can be achieved based
on quantitative mineralogical and textural data, i.e., the intrinsic properties of the ore [7].

Table 1. Ore sorting sensor technologies, physical properties detected and applications [4].

Sensing Technologies Physical Properties Applications

Radiometric Natural Gamma Radiation Uranium, Precious Metals

X-ray Transmission (XRT) Atomic Density Base & Precious Metals,
Diamonds

X-ray Fluorescence (XRF) Fluorescence Diamonds

X-ray Fluorescence
Spectroscopy Elemental Composition Base & Precious Metals

Near Infra-Red (NIR) Reflection, Absorption Base Metals, Industrial
Minerals

Colour (CCD) Colour, Reflection, Brightness,
Transparency

Base & Precious Metals,
Industrial Minerals,

Gemstones

Photometric (EM) Monochromatic Reflection,
Absorption & Transmission

Industrial Minerals,
Diamonds

Electromagnetic (EM) Conductivity, Magnetic
Susceptibility Base Metals

A selection of particles from the representative sample (~10%) that are known to vary
quite widely in composition are analysed on a particle-by-particle basis. The sensor re-
sponse tests are carried out using ideal measurement settings for each sensor, e.g., particles
are measured on multiple sides for a long enough period to get accurate readings. The
aim is to assess the amenability to sorting without considering the throughput required
for industrial-scale ore sorting machines. The sensor responses are compared with the
composition of each particle and only sensors that are most responsive are considered for
the next stage.

2.6. Stage 6—Sortability Tests

The final stage in the methodology is to conduct sortability tests on all particles in
the representative sample using the selected sensors from Stage 5. Firstly, laboratory-scale
sensor sortability tests are conducted using ideal measurement settings for each sensor, as
discussed in the previous section. If the sortability is poor using ideal sensor responses,
then ore sorting will not work on an industrial scale. Sensors that indicate the potential
to sort the ore based on ideal sensor responses are then tested at an industrial scale. The
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cumulative grade, recovery and mass rejection data are plotted for comparison between
the intrinsic, ideal laboratory sensor and industrial sensor sorting tests, an example of
which is shown in Figure 3. The economic impact is calculated for the ideal laboratory
sensor and industrial sensor sortability tests using the approach discussed in Stage 4,
with the difference that the results are determined at different sensor response thresholds
instead of cut-off grades. If the results are promising, the next stage would be further
industrial-scale ore sorting tests exploring factors such as throughput and varying ore
characteristics. Depending on the type of mining undertaken (bulk vs. selective mining), it
may be necessary to test the different ore types for sorting potential.

Figure 3. Examples of cumulative grade, recovery and mass rejection curves comparing the intrinsic,
ideal sensor and industrial sensor sortability tests.

3. Results & Discussion

This section presents and discusses the application of the methodology to the Cu ore
case study.

3.1. Stage 1—Sorting Duty

The case study is based on a typical copper porphyry comminution circuit consisting
of various crushing stages followed by autogenous/semi-autogenous milling (AG/SAG
milling). The AG/SAG milling stage often comprises a recirculating pebble circuit where
pebbles are crushed. The sorting duty identified for the case study was the removal of
low-grade waste material from the pebble crusher stream at a suitable Cu cut-off grade.
The flotation feed stream in the case study has a cut-off grade of 0.4% Cu, which is typical
for Cu-porphyry ore; removing any particles that are below this cut-off grade would
enable the concentrator throughput to be maximised, thus increasing production. The
methodology does not consider whether it is viable to increase throughput in an operation
for reasons such as processing constraints but aims merely to demonstrate whether ore
sorting has potential.

3.2. Stage 2—Ore Sampling

Ideally, the sampling methods discussed in Section 2.2 should be used to determine
the minimum sample mass required. However, for the purposes of this study, a smaller
sub-sample of 100 pebbles was used as these had to be analysed non-destructively. Here,
the non-destructive method used for characterisation had an excessively long turnaround
time. A sample of SAG mill oversize pebbles was screened at 20 mm for the test work.
The −20 mm material was discarded as it was considered too fine for efficient ore sorting.
The particles were visually inspected, and 100 pebbles were collected for the case study,
with varying particle sizes and amounts of mineralisation, i.e., qualitative assessment of
mineralogy/texture. The aim was to produce a set of pebbles that was sortable so that each
stage of the methodology could be effectively demonstrated. The methodology requires
a representative sample to produce accurate sortability results. The sample used in the
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case study cannot be considered representative but is fit for the purpose of demonstrating
the application of the methodology. Methods for determining representative ore samples,
such as those discussed in Section 2.2, are routinely used for various purposes in mineral
processing. Obtaining a representative sample is a necessary step in the methodology,
but the focus of this study is on demonstrating the application of the methodology for
determining the ore sorting potential and not this routine procedure.

3.3. Stage 3—Particle Characterisation

The first step in the particle characterisation stage was to establish whether there
was a correlation between the surface and volumetric mineralisation. The surface and
volumetric mineralisation for a sample of 35 pebbles were determined using XRF and
XCT, respectively. A portable XRF was used to analyse multiple points on the surface
of each particle to determine Cu content. Bootstrap resampling was used to determine
a statistically valid number of spot analyses required on the pebble surface. Here, 30
to 50 surface measurements per particle were required depending on particle size. An
Xradia Versa 520 XCT was used to determine the volumetric mineralisation. The resolution
achieved by the analysis was >40 µm. The analyses took up to 12 h per pebble, depending
on the number of tomographies required. A positive linear correlation was found with
an R2 of 0.82, indicating that the particles can be characterised based on either surface or
volumetric composition and that sensors which only measure surface composition can be
used. Consequently, it was decided to determine particle composition for all 100 pebbles
based on surface characterisation only. Here, the pebbles were divided into +40 mm (n = 48)
and −40 + 20 mm (n = 52) size fractions as there were sufficient particles in each size
fraction for characterisation. The grade distribution based on individual particle grade and
mass in 0.2% Cu categories for the 100 pebbles is presented in Figure 4.

Figure 4. Grade distribution of the pebbles (% Cu).

Figure 4 shows that >55% of the pebbles in the sample are below a fairly low Cu cut-off
grade of 0.4%. This suggests that there is potential to remove a volumetrically significant
mass of material from the SAG oversize stream by removing low-grade pebbles. The XRF
analyses were also used to determine whether any proxy elements correlated with Cu
grade, but no correlations were identified.

Bootstrap resampling was again used to determine a statistically significant number of
particles for analysis. Figure 5 presents the regression curve showing the relative standard
deviation (RSD) of copper grade vs. number of particles resampled based on the results
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of bootstrap resampling [18]. The target error of <10% RSD on the copper content was
achieved when ~40 particles are analysed, indicating that 40 randomly selected particles
are sufficiently representative of the 100 particles used in the study.

Figure 5. Regression curve for the Cu grade determined using the hand−held XRF.

3.4. Stage 4—Intrinsic Sortability

The overall and size-by-size intrinsic grade-recovery relationship was calculated based
on the ore characterisation data using the method described in Section 2.4. Here, simulated
separation tests were conducted at 5 different Cu cut-off grades. The intrinsic sortability
results calculated for the simulated separation tests are given in Tables 2 and 3, respectively.

Table 2. Overall intrinsic sortability results for the combined +40 mm and −40 mm fractions.

Product Mass (%) Cu Grade (%) Cu Distribution (%)

Test 1 Feed 100 0.44 100

Concentrate 1 8.01 1.44 26.0

Test 2 Feed 92.0 0.36 74.0

Concentrate 2 8.82 0.91 18.1

Test 3 Feed 83.2 0.3 55.9

Concentrate 2 6.86 0.65 10.0

Test 4 Feed 76.3 0.27 45.8

Concentrate 4 19.7 0.53 23.5

Test 5 Feed 56.6 0.17 22.4

Concentrate 5 25.9 0.25 14.8

Discard 30.7 0.11 7.57
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Table 3. Cumulative intrinsic sortability results for the combined +40 mm and −40 mm fractions.

Cut-Off Grade (%) Cu Recovery (%) Conc Grade (%) Mass Rejected (%)

1 26.0 1.44 92.0

0.8 44.1 1.16 83.2

0.6 54.2 1.01 76.3

0.4 77.7 0.79 56.6

0.2 92.4 0.59 30.7

The cumulative grade-recovery curves for the overall and size-by-size simulated
separation tests are given in Figure 6. From this figure, it is clear that the results for the
overall sample and the −40 mm and +40 mm fractions are similar, indicating no preferential
grade by size upgrade. Consequently, it was decided to proceed with the methodology
considering results for the overall sample only, i.e., no further size-by-size analysis.

Figure 6. Cumulative grade−recovery curves for the overall sample as well as the +40 mm and
−40 mm size fractions.

The case study results show that the ore has the potential to be sorted as a large pro-
portion of low-grade pebbles can be rejected from the process without incurring significant
copper losses to the waste stream. The intrinsic sortability results were used to conduct an
economic analysis at various Cu cut-off grades using the method developed by Lessard [5],
as shown in Table 4. The economic analysis indicates that the best-case sorting potential
occurs at a Cu cut-off grade in the vicinity of 0.4%. A more accurate “optimum” Cu cut-off
grade could be found by conducting the financial analysis over a broader range of grades
and determining the peak in the response.
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Table 4. Economic analysis of ore sorting based on intrinsic sortability and Cu cut-off grade.

Baseline 0.2 0.4 0.6 0.8 1.0

Mill Data

ROM Feed (tph) 3000 3184 3339 3458 3499 3552

Pebble Feed (tph) 600 416 261 142 101 48

SAG Feed (tph) 3600 3600 3600 3600 3600 3600

Pebble Circuit

Sorter Feed (tph) 600 600 600 600 600

Rejection (%) 31 57 76 83 92

Waste (tph) 184 339 458 499 552

Pebbles (tph) 600 416 261 142 101 48

Flotation Circuit

Feed Grade (%) 0.80 0.78 0.80 0.81 0.81 0.82

Recovery (%) 80 80 80 80 80 80

Pebble Grade (%) 0.44 0.59 0.79 1.01 1.16 1.44

Waste Grade (%) 0.11 0.17 0.27 0.30 0.36

Add. Cu Feed (tpd) 35 65 89 98 108

Add. Cu Waste (tpd) 5 14 29 36 47

Add. Cu Rec (tpd) 24 41 48 50 49

Add. Rev. ($/day) 105,720 180,788 212,753 220,249 216,301

Waste Cu ($/day) 17,105 50,526 103,609 126,274 167,256

Operating Costs

Mining ($/ton) 3 3 3 3 3 3

Mining ($/day 13,272 24,439 32,967 35,932 39,741

Waste Disp. ($/ton) 1 1 1 1 1 1

Waste Disp. ($/day) 4424 8146 10,989 11,977 13,247

Milling ($/ton) 4 4 4 4 4 4

Sorting ($/ton) 2 2 2 2 2

Sorting ($/day) 8848 16,293 21,978 23,954 26,494

Add. Rev. ($/day) 105,720 180,788 212,753 220,249 216,301

Add. Costs ($/day) 26,544 48,879 65,935 71,863 79,482

Add Profit

Add. Profit ($/day) 62,072 81,384 43,209 22,112 −30,436

Add. Profit ($/year) 22.6 m 29.7 m 15.8 m 8.1 m −11.1 m
Note: In Table 4, values similar to those observed on typical copper operations and commercial sorters have been
used in the calculations.

Here, an additional profit of around $30 million per year could theoretically be
achieved by implementing ore sorting for the SAG mill oversize pebbles, which is the
theoretical best case. However, this additional profit is based on the assumption of perfect
separation and does not include the costs of installing an ore sorting system or whether
the additional ROM throughput required is practically feasible. The positive profit merely
indicates that the next stage of the methodology should be conducted, i.e., there is the
potential for implementing ore sorting as it results in a positive additional cash flow. It
should be noted that the analysis was performed at a Cu price of $4400/ton, which was the
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price at the time the financial information for operating costs was obtained. The additional
profit would be significantly higher at current Cu prices, which are over double this.

3.5. Stage 5—Sensor Amenability Tests

Laboratory-scale XRF, XRT, and NIR sensors were selected for the sensor amenability
tests as these have been successfully used on base-metal ores. A much broader range of
sensors could have been evaluated, but these three were considered sufficient to demon-
strate the methodology. Sensors were supplied by Tomra Sorting Solutions. Standard
laboratory test measurement conditions were used but are not specified here as this detail
is not relevant to demonstrate the methodology. However, for example, the XRF sensor
measurement was based on two repeated measurements on two sides of the particle on a
±10 mm diameter spot. The result of the two spot analyses was combined to give a single
datum for each pebble for comparison with the corresponding Cu grade determined by
hand-held XRF at 30–50 points per particle. A comparison of copper grade and sensor
response is presented in Figure 7. Here, the aim was to determine which sensors could
discriminate between particles of differing grades based on measured physical properties.
A positive correlation was observed between the XRF sensor response and the Cu grade.
A weak positive correlation was found for the XRT sensor and no correlation for the NIR
sensor. The NIR sensor does not directly detect the Cu-bearing phases but can be used to
measure alteration silicate content (e.g., biotite). The results indicate no correlation between
Cu grade and alteration. Based on the sensor amenability test results, the XRF and XRT
sensors were selected for the next stage of the methodology, although of these, the XRF
provided the most promising results.

Figure 7. XRF, XRT and NIR sensor response curves.
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3.6. Stage 6—Sortability Tests
3.6.1. Ideal Sensor Sortability

The laboratory-scale sensor measurements from the sensor amenability tests discussed
in the previous section were used to determine the ideal sensor sortability for the XRF and
XRT ore sorting sensors. Here, simulated separation tests were conducted at five different
sensor response thresholds applying the same methodology used to determine the intrinsic
sortability. The only difference is that the Cu cut-off grade is used to determine the intrinsic
sortability, whereas the sensor response threshold is used for the ideal sensor sortability.
The cumulative grade-recovery curves for the simulated laboratory (ideal) sensor sortability
tests are given in Figure 8.

Figure 8. Cumulative grade-recovery curves for the intrinsic and laboratory (ideal) sensor tests.

Here, the intrinsic grade-recovery curve is also shown, representing the limit of
the ore’s separation efficiency based on mineralogical characteristics, i.e., the maximum
theoretical separation. The upgrade ratios for the two sensors are clearly lower than that
for the intrinsic sortability. However, the results indicate that there is potential to sort the
ore using the selected sensors as ~40% of mass can be rejected as waste at copper recoveries
above 80% with a maximum upgrade ratio of 1.4.

The additional profit was calculated using the same method described in Section 3.4.
Here, sorting at the optimal sensor response thresholds would add an additional profit of
~$21 million and ~$7 million for the XRF and XRT sensors, respectively. This indicates that
there is a potential to implement ore sorting using either sensor. The XRF sensor showed
the best grade recovery and was, therefore, selected for further investigation using an
industrial-scale sensor.

3.6.2. Industrial-Scale Sensor Sortability

The industrial-scale sensor sortability response was determined by passing the 100 peb-
bles through an industrial XRF sensor using a vibratory feeder. Here, the analysis time
was of the order of 50 milliseconds. Simulated separation tests and profitability were again
calculated as described in the previous section. The cumulative grade-recovery curves for
the simulated sensor sortability tests are given in Figure 9.
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Figure 9. Cumulative grade-recovery and mass rejection curves for the intrinsic, ideal and industrial
sensor tests.

The upgrade ratio for the industrial-scale sensor is significantly lower than that for the
ideal laboratory sensor. It is common that decreased performance occurs when upscaling
from benchtop to piloting through to full production. Here, ~30% of mass can be rejected
as waste at copper recoveries above 80% with a maximum upgrade ratio of 1.1. With
this separation efficiency, no additional profit could be achieved across the entire range of
sensor response thresholds. Therefore, there is no potential for industrial-scale XRF sorting
using the sensor in its current configuration.

3.7. Case Study Discussion

A summary of ore sortability results at optimum separation conditions is given in
Table 5. Here, the results represent the best case for sorting where additional profit was
highest for intrinsic/sensor sortability. As discussed previously, the intrinsic and ideal
sensor sortability results show that there is potential for ore sorting based on the physical
attributes of the SAG oversize particles. However, the industrial sensor sortability results
clearly show that there is no potential to implement ore sorting with the current sensor. This
suggests that there is an opportunity to consider improved XRF sensors (better resolution,
combining sensors etc.), alternative sensor types or other separation techniques as there is
an economic argument for implementing ore sorting. However, it should be noted that this
case study was used to demonstrate the application of the methodology and not to make
conclusions on implementing ore sorting for general copper operations.

Table 5. Summary of ore sortability results at optimum separation conditions (Cu cut-off grade or
sensor response threshold). Cu head grade for the sample was 0.4% Cu. An additional profit is
rounded to the nearest million.

Sortability Property/Sensor Cu Recovery (%) Concentrate
Grade (%)

Mass Rejected
(%) Upgrade Ratio Add. Profit

($/Year)

Intrinsic
Sortability Cu (%) 77.7 0.79 56.6 1.8 ~30 m

Sensor Sortability

Ideal XRF 86.5 0.62 38.4 1.4 ~21 m

Ideal XRT 76.8 0.56 39.0 1.3 ~7 m

Ind. XRF 80.2 0.49 28.3 1.1 ~ −7 m
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4. Conclusions

This study presented a methodology to determine the potential for ore sorting based
on intrinsic particle properties. The methodology was demonstrated using a case study
based on a typical copper porphyry comminution circuit.

The methodology consists of six stages. Stage 1 identifies the potential ore sorting
duty. Stage 2 determines the required sample size for a representative sample of the
ore. Stage 3 involves the characterisation of particles in the sample in terms of physical,
chemical and mineralogical composition. Stage 4 determines the intrinsic sortability of
the ore from the particle composition based on theoretical separation. Stage 5 identifies
sensors which have the potential to differentiate between particles of varying physical,
chemical or mineralogical properties. Stage 6 involves conducting sortability tests on
particles in the representative sample, firstly using ideal laboratory sensors and ultimately
industrial-scale sensors.

The intrinsic and ideal sensor sortability results showed that there is potential for
ore sorting. Here, the ideal XRF sensor results showed that around 40% of mass could
be rejected as waste at copper recoveries above 80%, with a maximum upgrade ratio of
1.4. However, the industrial sensor sortability results showed that there is no potential to
implement ore sorting with an upgrade ratio of 1.1.

An economic analysis of the sortability tests showed that, at optimum separation
conditions, the intrinsic, ideal sensor, and industrial sensor sortability would result in an
additional annual profit of ±$30 million, $21 million and $−7 million (loss), respectively.
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