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Abstract: The excessive input of heavy metals such as vanadium (V) into the environment has
been one of the consequences of global industrial development. Excessive exposure to V can pose
a potential threat to ecological safety and human health. Due to the heterogeneous composition
and reactivity of the various elements in soils and sediments, quantitative analysis of the chemical
speciation of V in different environmental samples is very complicated. The analysis of V chemical
speciation can further reveal the bioavailability of V and accurately quantify its ecotoxicity. This is
essential for assessing for exposure and for controlling ecological risks of V. Although the current
investigation technologies for the chemical speciation of V have grown rapidly, the lack of com-
prehensive comparisons and systematic analyses of these types of technologies impedes a more
comprehensive understanding of ecosystem safety and human health risks. In this review, we studied
the chemical and physical extraction methods for V from multiple perspectives, such as technological,
principle-based, and efficiency-based, and their application to the evaluation of V bioavailability. By
sorting out the advantages and disadvantages of the current technologies, the future demand for
the in situ detection of trace heavy metals such as V can be met and the accuracy of heavy metal
bioavailability prediction can be improved, which will be conducive to development in the fields of
environmental protection policy and risk management.

Keywords: extraction methods; chemical speciation; bioavailability; vanadium

1. Introduction

Vanadium (V) has many valuable physical, chemical, and mechanical properties; there-
fore, it is widely used in modern industrial technologies and is an important strategic
material [1]. V is used as an additive and alloying element (at 80–85%) in the ferrous metal-
lurgy industry to prepare a unique kind of steel. In the chemical industry, V compounds
have been widely used as catalysts and cracking agents in the contact method sulfuric
acid manufacturing industry and petroleum refining and organic synthesis industries [2,3].
A large number of studies have shown that excessive V is toxic and carcinogenic and must
be treated at the same level as Pb, As, and Hg [4–7]. As early as the end of the 1980s,
the United Nations Environment Programme (UNEP) recommended that V be included
in the list of environmentally hazardous elements as a substance of priority. Moreover,
they jointly proposed with the World Health Organization (WHO) and the International
Agency for Chemical Substances Safety (IPCS): “On the basis of monitoring, research
on the environmental behavior and biological toxicological characteristics of V should
be strengthened” [8,9].

Early V was mainly stored in the mantle and was later released into the surface
environment through the combustion of fossil fuels, mining, and the use of phosphate
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fertilizers [5]. V is chemically active and can form species with variable oxygen affinities. On
entering the soil, V and its compounds undergo chemical migration via various reactions,
such as dissolution, precipitation, aggregation, complexation and adsorption [10]. Both
the cationic (V2+, V3+, VO2+, VO2

+, V(OH)2+, and V(OH)4
+) and anionic states (VO3

−,
VO4

3−, HVO4
2−, H2VO4

−, VO2(OH)−, VO3(OH)2−, and V4O12
−) of V are toxic, and

their toxicity also depends on the physical and chemical properties of the compounds
they form [11–13]. In recent years, monitoring the total concentration of V has remained
useful in many areas, but speciation research is of vital importance because the mobility,
bioavailability, bioaccumulation, and toxicity of V depend on its chemical species [14–16].
The determination of the speciation of V in different environmental media, such as in river
sediments, mining area soils, and tailings, has been widely reported [17–21]. Similar to
other chemical poisons, V toxicity in different environmental media generally increases
with increasing atomic valence state and solubility [22,23].

The main principle of the current extraction methods from soils is using different
chemical reagents or solvents to separate and test V based on differences in the physical
properties (such as particle size, solubility, etc.) or chemical properties (such as binding
states, reactivity, etc.) of the different species of V [2,24–33]. Due to the different extrac-
tion mechanisms, the extraction outcomes from soils using various extractants are quite
different [34,35]. Correlations between the amount of V extracted by different methods
from soils and the V absorbed by plants can reflect the bioavailability of V [16,24]. Good
correlations could predict the amount of V absorbed by plants, thereby indicating its bio-
logical impact [36,37]. The amount of V species absorbed by the plant should be correlated
with the amount of extracted V species by statistical analysis to establish the bioavailability
of V species in the soil. At present, a comprehensive understanding of the selectivity of
the extractants, their effect on the chemical speciation of V in different environmental
media, and the evaluation of the bioavailability of V to plants is still lacking. Therefore,
this review aims to summarize and discuss globally published studies from the past ten
years on the extraction of specific chemical species of V. The objectives of this review are
(1) to review and compare the most relevant and recently published extraction methods
and extraction efficiencies of V from different environmental samples worldwide and (2) to
summarize the use of extraction methods related to the various chemical species of V to
assess the bioavailability of different V species on plants. This review will provide a more
systematic and specific discussion of the accurate evaluation of the bioavailability and risks
associated with V in the environment, which will further lay the foundation for revealing
its geochemical behavior.

2. Sources and Human External Exposure Pathways
2.1. The Distribution of V Resources

V is widely distributed in nature, with an average content of 90 mg kg−1 and 0.0015%
mass ratio in the Earth’s crust, a concentration higher than those of Cu, Ni, Zn, Ti, Co, Pb,
and other metals [5,15]. The valence or oxidation state of V determines the properties of
the compounds it forms. Common V oxides include VO, V2O3, VO2, and V2O5. Their
oxidation states range from low (II) to high (V), their redox abilities also change from
strongly reducing to strongly oxidizing, and their aqueous solutions gradually change from
strongly alkaline to weakly acidic [13,38].

In nature, V mainly forms symbiotic or composite ores with other minerals. More
than 70 kinds of V-bearing minerals have been discovered at present and few individual
V deposits have high content or rich accumulation [39]. Most V deposits are associated
with V-Ti magnetite, potash V uranium, and petroleum-associated minerals. Ninety-eight
percent of the proven V resource reserves are contained in V-Ti magnetite and their V2O5
content is 1.8% [5]. The world’s total metal V resources are estimated to be approximately
41.3 million tons. In the order of reserves, at present, the main V-supplying countries
of the world are Russia, South Africa, China, the United States, and Australia [40]. The
V concentration values of some countries in the world are shown in the Table 1. The V
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concentration in some areas of Turkey, Spain, and other countries is close to the world
average level by 90 mg·kg−1.

Table 1. V concentrations in some countries of the world.

Region V Concentration in Soils (mg/kg) Data from Reference

Poland 18.39 [41]
Palermo, Italy 58 [42]

Cheppel Island, Hungary 15.2–42.0 [43]
Catalonia, Spain 15.2–144.9 [44]

Arcala de Enares, Spain 6.01 [45]
Turku, Finland 47.5 [46]

Lithuania 38 [47]
Russia 79–91 [48]

Ankara, Turkey 74 [49]

China is rich in V resources, and its average V soil content is 114 mg/kg, which is
27% higher than the worlds’ average [36,50]. China’s V resources are mainly distributed in
seven provinces (>90%) (Table 2), of which the Sichuan Province ranks first in the country,
accounting for 49% of the total reserves [22,51]. Among them, V-Ti magnetite is mainly
distributed in the Panzhihua-Xichang region, Sichuan Province, and black shale-type V
deposits are mainly distributed in the Hunan, Hubei, Anhui, and Jiangxi provinces [27,52].
There are two main forms of V ore resources in China: (1) those produced in magmatic
rock-type V-Ti magnetite deposits as associated minerals and (2) independent deposits,
mainly Cambrian black shale-type V ore. In addition, China also has abundant stone coal
and V resources. Although stone coal V ore is a low-grade V-bearing resource, its V content
is equivalent to the world’s total reserves of non-stone coal V ore resources.

Table 2. V concentrations in contaminated soils of China.

Region V Concentration in Soils (mg/kg) Data from Reference

Chongqing 39–4994.6 [53]
Sichuan Province 19.1–548.7 [53]

Chengdu city, Sichuan Province 66.69–73.25 [54]

Panzhihua city, Sichuan
Province

149–4794 [51]
167 [52]

71.1–938.4 [36]
105.57–189.12 [50]
1120.3–1139.9 [55]

Hunan Province 4.5–1390.8 [53]
62.81–152.77 [55]

Chenxi county, Huaihua city,
Hunan Province

168–1538 [27]
1500–2600 [56]

Lianyuan city, Hunan Province 38.97–618.90 [57]
Loudi city, Hunan Province 97–282 [58]

Hubei Province 17.6–836.2 [53]
500 [59]
1306 [60]
931 [4]

Shiyan city, Hubei Province 1998.7–2031.5 [61]
128–821 [6]

Shaanxi Province 26.6–1854 [53]
85.98 [62]

21.14–286.42 [63]
Langao county, Ankang city,

Shaanxi Province 264–596 [64]

Xi’an city, Shaanxi Province 53.9–89.7 [65]
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Table 2. Cont.

Region V Concentration in Soils (mg/kg) Data from Reference

85.2 [66]
Anhui Province 23.3–1746.6 [53]

Huainan city, Anhui Province 2.24–71.86 [67]
41.15–81.13

Yunnan Province 6.7–1546 [53]
168 [53]

Kunming city, Yunnan Province 281.56 [68]
Guizhou Province 16–1685 [53]

Bijie city, Guizhou Province 206 [69]
Zunyi city, Guizhou Province 170–1369 [70]

2.2. V Contamination Sources in Soils

The smelting of V and its alloys are the main pollution sources associated with V
in the environment. V is discharged into the environment during a series of processes,
such as mining, crushing, sintering, and steelmaking from V-containing minerals such
as V-Ti magnetite [18,19,36,53]. At present, the areas with severe V pollution are mainly
concentrated in industrial areas, thermal power plants, V-Ti magnetite mines, smelters,
etc., that use heavy oil and coal as fuel. Generally, V pollution is relatively serious near
thermal power plants, which burn 20 to 30 tons of heavy oil per hour and discharge 20 kg
of V pentoxide [71]. In winter and spring, 50% of the V pollution in the Russian Arctic
is caused by V deposition from the atmosphere [72]. Part of the open-pit V mines also
discharge into rivers and farmlands with surface runoff. At the same time, due to the
recharge of V-containing wastewater and the application of V-containing pesticides, the
V content in farmland soil far exceeds the background value of heavy metals in this area,
thereby threatening human health [27,35,73,74]. The impact of V mining on the ecological
environment is mainly reflected in topography, land occupation, soil erosion, and so on.
Its biological effects are mainly manifested as the destruction of animal populations and
vegetation. Societal impacts are mainly manifested as changes in land use patterns and
landscape patterns. Panzhihua city and the Greater Western Hunan Region in China are rich
in V ore resources, and a large number of V smelting projects have caused V contamination,
which severely endangers the ecology of these areas [6,27,28,36,51,75].

Agricultural production, especially the excessive use of heavy metal-contaminated
fertilizers, organic manures, urban waste and pesticides, and sewage irrigation in modern
agricultural production processes, can cause heavy metal contamination in agricultural
soils [36,76,77]. The long-term, improper application of fertilizers can not only lead to
soil acidification and nutrient ratio imbalances but also promote the release of toxic and
harmful pollutants [78]. Affected by the deposition processes of phosphate ores, phosphate
fertilizers often contain a large quantity of heavy metals, and the heavy metal content
depends on the choice of phosphate ore sedimentary facies and manufacturing processes
used to prepare phosphate fertilizers [79,80]. Studies have shown that V is widely present
in fertilizer products, its content in general pesticides can be as high as 45%, and the content
of V in farm manure can reach 3–8 mg/kg [81,82]. Among these sources, the content of V in
phosphate fertilizers is relatively high, mostly existing in the form of the soluble and most
toxic pentavalent V salts, such as NH4VO3, which has potential environmental risks [79,80].
In addition, the livestock and poultry breeding industries in agricultural production are
also important sources that cannot be ignored [78]. The excess V is applied to farmland
soils in the form of organic fertilizers [80,83].

Studies have shown that the amount of V that enters the soil globally through fertilizers
can be as high as 1500 tons per year, which poses a threat to farmland ecosystems [78].
In addition to the large proportion of lead, cadmium, arsenic, and other elements that
exceed the standards in the soils of many grain-producing areas, the content of V has
also been significantly higher than its background levels [22,28,84]. Once heavy metal
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pollution occurs in farmlands, it is very difficult to control due to the large areas involved.
The V accumulated in the surface soils continuously enters the underground environment
through irrigation and rainfall. Due to its refractory nature and biological toxicity, it poses
a severe threat to human health and ecological safety.

2.3. V Speciation in Soil

V has a complex species in soil and can be combined with other metal ions and
soil organic matter to form a variety of chemical species. V has various oxidation states
(+2, +3, +4, +5), but in the natural environment it still exists mainly in the species of
V(IV) and V(V) [5,85]. The morphology of V largely depends on the redox conditions of
the environment, and different redox pairs (NO3

−/NH4
+, Fe3+/Fe2+, MnO2/Mn2+ and

SO4
2−/H2S) play important roles in the transformation of V species. Under oxidative

and moderately reducing conditions, V(IV) and V(V) dominate [28]. V(IV) is stable under
acidic conditions (pH < 5), but V(IV) is gradually oxidized to V(V) with increasing pH [10];
conversely, V(V) can also be reduced to relatively unstable V(IV) by humic substances,
hydrogen sulfide, and other soil organic components (SOM) [26,85,86]. V(III) exists only
in strictly anaerobic environments, such as some primary minerals, saturated soil, or
peat, and is easily oxidized to V(IV) and V(V) [10]. Under normal circumstances, V(V)
mostly exists in the species of anions (H2VO4

− and HVO4
2−) with strong mobility, while

oxides/hydroxides of iron, aluminum, and manganese in the soil can combine with it
to reduce V(V) fluidity; while V(IV) usually appears in the species of VO2+, which can
bind to organic ligands and is relatively stable under relatively reduced and low pH
environments [87,88]. Soil pH also significantly affects the chemical species of heavy metals
in soil solutions [29], and studies have reported that increasing soil pH may promote
the migration and release of V in soil [89,90]. Changes in soil pH may also control the
morphological changes, mobility, and bioavailability of V by affecting the solubility of SOM.
Oxygen-containing functional groups undergo deprotonation with increasing pH, which
in turn increases the solubility of SOM [10]. SOM can promote reducing conditions and
help reduce V(V) to V(IV) [91]; on the other hand, SOM can also stimulate the proliferation
of microorganisms, thereby promoting bioreduction [10,28]. Panichev (2006) analyzed
V(IV) and V(V) in soil and plants of V-contaminated sites, and confirmed that V in soil and
plants mainly exists in the species of +5 valence, which is potentially harmful [92]. V2O5 is
more soluble and more toxic than V2O3 and VO2, so the valence of V is more meaningful
than the total amount of V. In soil, V’s mobility, bioavailability and ecotoxicity in soil-plant
systems are closely related to its chemical species. Residual V does not participate in a series
of biochemical processes in the soil, but it can cause potential risks to the soil through
reactions such as hydrolysis, oxidation, and reduction. Changes in soil redox potential, pH,
organic matter content, metal oxide (hydroxide) content, and microbial activity all affect
the morphological changes of V [28,38,93].

3. The Extraction Methods for V
3.1. Single Extraction Methods

Single extraction methods involve the mixing of one or several mixed reagents with
soil in a specific ratio of soil to extractant liquid. Through one-step leaching, the content
of a specific species of V in the solution is determined, and the extractable concentration
of V has good correlations with its content in plants [25]. Because single extractions are
relatively fast, inexpensive, and easy to conduct, various methods are widely used to
assess V mobility in soils and sediments and to evaluate the short-term or medium-term
hazards of heavy metals [11,26,36,94–96]. The extraction agents mainly use ion exchange,
dissolution (acid or alkali), or chelation to extract various species of V from soil [11,26,96].
Commonly used leaching agents are as follows: (1) weak (dilute) acids (0.1 M HCl, 0.1 M
HNO3, 0.5 M HOAc, etc.); (2) chelating agents (DTPA, EDTA, etc.); and (3) inorganic salt
solutions, including valence cation salt solutions (NH4OAc, NH4NO3, NaNO3, etc.) and
divalent cation salt solutions (CaCl2, BaCl2, etc.) [16,26–28,36,76,91,97].
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Dilute acid solutions are mainly used for acidic soil, and dilute HCl is the most
commonly used reagent. An intermediate concentration of HCl (0.5 M) has buffering
capacity, mainly dissolving metals in carbonates, and has a limited impact on the metals
in residual clays and sulfides [98]. The leaching capacity of hydrochloric acid for V is
between that of the chelating agents and salt solutions [36,99]. The V extracted by HCl has
a positive correlation with the V in plants [36]. Furthermore, the amount of HCl leaching
V has a significant positive correlation with the initial concentration of HCl (5–30%) and
the reaction temperature (80–110 ◦C) [27]. Nevertheless, the impacts of soil properties,
including pH, CEC, and TOC, on V extractions with HCl are not obvious [36]. A complexing
agent can form very stable, water-soluble, and well-defined complexes with metal ions and
can simulate the activation of heavy metals by plant root exudates [100,101]. Among them,
ethylenediamine tetraacetic acid (EDTA) (0.05–1 M) and diethylenetriaminepentaacetic acid
(DTPA) (0.005 M) are commonly used chelating agents [19,20,36,102–104]. Taking EDTA as
an example, it is a nonselective reagent and can exhibit a strong capacity for complexing
metals [19]. It can dissolve carbonates and form organometal complexes, which compete
with the organic matter in soils. Additionally, complexes of EDTA with heavy metals such
as Pb, Zn, Cd, Cu, and Ni are more stable than complexes between EDTA and V, which
may result in a lower EDTA-extractable concentration of V when the aforementioned heavy
metal concentrations are high [74]. Moreover, the complexing agent often forms a mixed
solution with inorganic salts and dilute acids to improve the extraction efficiency.

Inorganic salt solutions mainly extract heavy metals in water-soluble and exchange-
able states through ion exchange [105]. Among them, CaCl2 and NaNO3 are also often
adopted as extractants for chemical speciation prediction [101]. Research has shown that
NaNO3 (0.1 M) and CaCl2 (0.01 M) extraction methods are only suitable for exchangeable
metals [16,19,50,100,101,106]. The ionic strength of NaNO3 is similar to that of the soil
solution, so it cannot affect the equilibrium between soil solids and soil solutions [107].
In a previous study, EDTA, HCl, and NaNO3 were used as comparative extractants to
evaluate V levels in the rhizospheric soil of alfalfa [16,50]. Out of the three extractants,
HCl extracted the highest V concentrations (4.75–307.84 mg/kg) from soils where EDTA
extracted 3.15–393.61 mg/kg V and NaNO3 extracted 0.004–23.94 mg/kg V from soils.
Normally, NaNO3 exerts weak competition for the adsorption sites of oxide surfaces and
organic matter [108]. Therefore, the weak leaching capacity of NaNO3 was the main reason
for its lower extraction of V compared to the dilute acid and complexing agent.

In addition, CaCl2 is often used for the extraction of V because calcium is an important
cation in soils and reflects the differences in solubility or binding strength between different
soils [19,101,109,110]. The mobile V in the alluvial soils of Belgium in Europe was estimated
by a single extraction with CaCl2 (0.01 M) [11]. According to calculations, the main V species
encountered in the CaCl2 extracts is HVO4

2−, which means that V occurs as an anion that
will have the tendency to be desorbed when the solution pH rises. V extraction was very
low even in the most contaminated soil samples of this experiment, which indicated its
low mobility. However, it is necessary to study the impact of changing environmental
conditions such as fluctuating redox conditions and soil acidification [110].

Due to the different extraction mechanisms, the extraction outcomes of different
extractants are quite different. Moreover, different leaching agents are suitable for soils in
different environments [19]. Because soil pH has a substantial impact on the mobility of
heavy metals, the use of different extractants for soils at different pH values can improve
extraction efficiency. According to previous studies, the extractants that can better predict
the migration characteristics of heavy metals in different kinds of soils are listed in Table 3.
Among them, the heavy metals extractable by the DPTA, NaNO3, NaAc, and CaCl2 leaching
methods correlated well with the content of V in plant roots for neutral and near-alkaline
soils [25,109]. Positive correlations can be observed in acidic soil for the EDTA, HCl, CaCl2,
NH4Ac, Ca(NO3)2, and NaH2PO4 leaching methods [37,100,101,111–113]
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Table 3. Comparison of the V extracted by single-step extraction methods.

Extractant Category Extraction Solutions Extraction Yield
(Extracted V/Total V) Samples Data from

Reference

Weak (dilute) acids

HCl

2.73 ± 2.21%

0.01 M HCl, soil samples
collected from Zhujiabaobao
mine located in the eastern

part of Panzhihua mine area
(n = 7,

Vtotal = 67.43 ± 14.92 mg/kg) [25,28]

6.21–69.26%

0.5 M HCl, soil used in pot
experiment was collected from
moist soil (0–20 cm) of forest

land in an urban park in
Panzhihua, southwest China

(n = 75,
Vtotal = 7.73–494.45 mg/kg)

HNO3 2.68 ± 1.65%

0.43 M HNO3, soil samples
collected from Zhujiabaobao
mine located in the eastern

part of Panzhihua mine area
(n = 7,

Vtotal = 67.43 ± 14.92 mg/kg)

[28]

HOAc 0.01–1.33%

0.11 M HOAc, topsoil
(0–10 cm) samples were

collected from the Panzhihua,
urban park (n = 23,

Vtotal = 105.57–189.72 mg/kg)

[36]

Citric acid (C6H8O7) 2.39 ± 2.03%

0.1 M C6H8O7, soil samples
collected from Zhujiabaobao
mine located in the eastern

part of Panzhihua mine area
(n = 7,

Vtotal = 67.43 ± 14.92 mg/kg)

[28]

Chelating agents

EDTA

0.2–35%

0.025 M Na2-EDTA, soil
samples from different sites of

the German long-term soil
monitoring program (n = 30,

Vtotal = 1.7–143.0 mg/kg)

[25,36,74]4.33–61.98%

0.05 M EDTA, soil used in pot
experiment was collected from
moist soil (0–20 cm) of forest

land in an urban park in
Panzhihua, southwest China

(n = 75,
Vtotal = 7.73–494.45 mg/kg)

0.27–4.09%

0.05 M EDTA, topsoil (0–10 cm)
samples were collected from
the Panzhihua, urban park

(n = 23,
Vtotal = 105.57–189.72 mg/kg)

DTPA
0.6–7.7%

1 M NH4HCO3 + 0.005 M
DTPA, cultivated soils of
Egypt and Greece (n = 21,

Vtotal = 13–206 mg/kg)
[91,114]

0.37–5.12%

1 M NH4HCO3 + 0.005 M
DTPA, different types of soil
sampled from three different

study areas in Germany (n = 6,
Vtotal = 29.7–109.2 mg/kg)
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Table 3. Cont.

Extractant Category Extraction Solutions Extraction Yield
(Extracted V/Total V) Samples Data from

Reference

Inorganic salt
solution

NaNO3 0.005–4.84%

0.1 M NaNO3, soil used in pot
experiment was collected from
moist soil (0–20 cm) of forest

land in an urban park in
Panzhihua, southwest China

(n = 75,
Vtotal = 7.73–494.45 mg/kg)

[25]

CaCl2 <4%

0.01 M CaCl2, seventeen rural
soil profiles for this study were

selected to covera
representative range of

different parent materials in
Taiwan (n = 94,

Vtotal = 35.4–475 mg/kg)

[76]

NaHCO3 <4%

0.5 M NaHCO3, seventeen
rural soil profiles for this study

were selected to covera
representative range of

different parent materials in
Taiwan (n = 94,

Vtotal = 35.4–475 mg/kg)

[76]

3.2. Sequential Extraction Methods

Sequential extraction (SE) methods are well-established approaches for analyzing the
chemical speciation of V. SE is a process of classified extraction by determining one or
a group of substances from the sample according to their physical properties (such as
particle size, solubility, etc.) or chemical properties (such as binding states, reactivity, etc.).
In recent years, many SE methods have been used to extract V, as summarized in Table 4.
As early as 1979, Tessier et al. (1979), based on geochemical characteristics and simulated
common environmental conditions, invented a five-step sequential extraction to divide the
chemical speciation of elements in the soil into acid-soluble states (including water-soluble
states), carbonates, Fe and Mn oxides, organic matter, and residual states [115]. Based on
this method, many scholars have analyzed the chemical speciation of V in contaminated
soils or sediments in China, the USA, Italy, Spain, Turkey, Poland and U.K. [99,116–121].
Most morphological analyses results indicate that V is mainly present in the soil as the
residual fraction (70–85%), and present in lower quantities in Fe and Mn oxides (6.96–18.0%)
or organic matter (2.48–13.2%) [20,116,118,119]. In contrast with these studies, significantly
larger amounts of V were found in the Fe and Mn oxide fractions (22.4 and 78% of the
total, respectively) in some other studies [117,121]. The residual fraction only contained
8 to 51.8%, while the organic matter fraction was of minor importance, accounting for
3–22.4% of the total V in the soil. The large specific surface area of oxide and hydroxide clay
minerals in soils has more adsorption sites, and the different contents of iron, manganese,
aluminum oxides, and hydroxides in different soils are important factors leading to the
inconsistency of various species of soil V [121].
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Table 4. Comparison of the V extracted from different environment samples by sequential extrac-
tion methods.

Samples Location
Sequential

Extraction Methods
(SE)

Target Fraction Extraction Solutions Average Percentage of
Each Fraction (%)

Data from
Reference

Soil

Agricuture region,
Panzhihua city, Sichuan
province, China. Vtotal:
71.7–938 mg/kg, n = 55

Wenzel scheme

Non-specifically
sorbed 0.05 M (NH4)2SO4, 20 ◦C 0.51

[99]Specifically sorbed 0.05 M NH4H2PO4, 20 ◦C 0.30
Amorphous

hydrous Fe and
Al oxide

0.2 M NH4
+-oxalate buffer,

pH = 3.25, 20 ◦C 5.52

Crystalline hydrous
Fe and Al oxides

0.2 M NH4
+-oxalate buffer +

Ac,
pH = 3.25, 96 ◦C

9.83

Residual HNO3 + H2O2 (1:50) 83.80

Five-steps SE
of Tessier

Exchangeable 1 M MgCl2, pH = 7, 20 ◦C 0

[122]
Carbonates 1 M HOAc + NaOAc, pH = 5,

20 ◦C 0.14

Fe and Mn oxides 20 mL 0.04 M NH2OH·HCl in
25% (v/v) HOAc, 96 ◦C 6.96

Organic matter
0.02 M HNO3 + 30% H2O2

(pH = 2), 85 ◦C 13.20
3.2 mol/L NH4OAc in 20%

HNO3
Residual HF + HClO4 (5:1) 79.70

Agricultural region, In
South Finlandfrom bare

arable land,
Vtotal = 601 mg/kg,

n = 1

Modified on the
basis of procedures

used in the
sequential

frac-tionation of
selenium (Se) and
phos-phorus (P)

Easily soluble V 0.25 M KCl <11

[29]
V bound by ligand

exchange
0.1 M

KH2PO4 + K2HPO4
8~35

Organic V 0.1 M NaOH 30~68
Strong bound V 0.25 M H2SO4 <10

Agricultural region,
Eschikon, Switzerland.

Vtotal = 61.2 mg/kg, n = 1

Sequential
extraction of V in

soils was performed
based

on Wenzel et al.
(2001) before

soybean planting

Non-specifically
sorbed 0.05 M (NH4)2SO4, 20 ◦C 15.70

[20]specifically-sorbed 0.05 M NH4H2PO4, 20 ◦C 24.60
Amorphous and
poorly crystalline
hydrous oxides of

Fe and Al

0.2 M NH4
+-oxalate buffer,

pH = 3.25, 20 ◦C 23.80

Well-crystallized
hydrous oxides of

Fe and Al

0.2 M NH4
+-oxalate

buffer + AC,
pH = 3.25, 96 ◦C

3.80

Mining region,
Panzhihua city, Sichuan

province, China.
Vtotal = 69.8–279.35

mg/kg, n = 7

BCR SE

Acid soluble 0.11 M CH3COOH, 25 ◦C 0.19–0.82

[28]Reducible 0.5 M NH2OH·HCl + 0.05 M
HNO3, 25 ◦C 0.27–5.78

Oxidizable 30% H2O2, pH = 2, 85 ◦C; 1
M NH4OAc, pH = 2, 25◦C 4.37–10.50

Residual HNO3 + H2O2 (1:50) 83.3–93.10
Mining region, Chenxi

county, Hunan province,
China. Vtotal = 168–1538

mg/kg, n = 7

Modified BCR SE

Acid extractable 0.11 M HOAc 0.32–1.88

[27]Reducible 0.5 M NH2OH·HCl, pH = 1.5 5.63–34.40

Oxidizable 8.8 mol/L H2O2; 1 M
NH4OAc, pH = 2 0.81–22.90

Residual HNO3 + H2O2 (1:50) 57.70–58.80
Industrial region,

Milazzo area, Sicily,
Vtotal = 0.072–0.24 g /kg,

n = 23

Modified
Tessier’s SE

Exchangeable V 1 M NaOAc 2.19

[73]V bound to
carbonates

CH3COONa/CH3COOH,
pH =5 1.19

V bound to Fe and
Mn oxides

0.04 M NH3(OH)Cl + 25%
CH3COOH (v/v), 96 ◦C 0.88

V bound to organic
matter and
or sulfide

HNO3 + 30% H2O2 92.31

Sediment

Nile Delta coast,
Vtotal = 73.62–154.82 mg/kg,

n = 11
Modified BCR SE

Exchangeable 1 M NH4CH3COO, pH = 7 7.20

[123]Acid-reducible 0.25 M NH2OH·HCl, pH = 2 1.60

Oxidizable-organic 30% H2O2, 1 M
NH4CH3COO, pH = 2 27.40

Resistant 65% NHO3 + 70%
HCLO4 + HF 63.80

In northern part of
Belgium.

Vtotal = 40–430 mg/kg,
n = 14

Modified BCR SE

Acid soluble 0.11 M CH3COOH 0.14

[17]Reducible 0.1 M NH2OH·HCl, pH = 1.5 21.16

Oxidizable 8.8 M H2O2, 1.0 M
NH4OOCH3

9.72

Residual HCl + HNO3 + HF (2:1:1) 52.93
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Table 4. Cont.

Samples Location
Sequential

Extraction Methods
(SE)

Target Fraction Extraction Solutions Average Percentage of
Each Fraction (%)

Data from
Reference

Ore (coal)
Industrial region,
Anatolia, Turkey.
Vtotal = 701, n = 1.

Seven-step
sequential
extraction

procedure of the
coal bottom ash

Water soluble Deionized water 1.51

[124]

Exchangeable
fraction

1 M MgCl2·6H2O,
pH = 7 ± 0.1 1.28

Carbonate fraction 1 M NaAc, pH = 5 ± 0.1,
90 ◦C 12.13

Reducible fraction 0.1 M NH2OH·HCl + 25%
(v/v) CH3COOH, 90 ◦C 25.11

Oxidizable fraction H2O2, pH = 2 ± 0.1, 100 ◦C 7.13
Sulfide fraction Aqua regia, 120 ◦C 25.11

Residual HF + HCl + HNO3 (5:1:5) 25.76

Ore
(asphaltite)

Minging region, in SE
Anatolia of Turkey.

Vtotal = 546.15 mg/kg,
n = 1.

Seven-step
sequential
extraction

procedure of
asphaltite

combustion waste

Water soluble Deionized water 1.66

[125]

Exchangeable
fraction

1 M MgCl2·6H2O,
pH = 7 ± 0.1 2.61

Carbonate fraction 1 M NaAc, pH = 5 ± 0.1,
90 ◦C 6.00

Reducible fraction 0.1 M NH2OH·HCl + 25%
(v/v) CH3COOH, 90 ◦C 11.75

Oxidizable fraction H2O2, pH = 2 ± 0.1, 100 ◦C 15.78
Sulfide fraction HCl + HNO3 (3:1 v/v), 120 ◦C 56.30

Residual HF + HCl + HNO3 5.89

However, some problems were reported with earlier sequential extraction procedures,
such as the non-specificity of the extracting agents and the reabsorption of metals before
isolation for analysis [126–128]. It is also difficult to compare data obtained from different
laboratories around the world that use different protocols. As a result, the BCR (now, the
Standards, Measurement, and Testing Programme) established a BCR three-stage extraction
method based on the Tessier method [129,130]. This method is operationally defined based
on the extraction mechanism of the released metal rather than by discrete geochemical
phases. At the same time, to strengthen the quality control of the analysis, the standard
BCR601 for sediments was also developed. Moreover, the comparison results between
20 laboratories in eight EU countries also improved the accuracy and repeatability of
the method. To standardize the sequential extraction scheme, the original BCR program
has been modified [131] to divide the chemical species into acid-extractable, reducible,
oxidizable, and residual fractions [132–134].

Based on the widely used Tessier or BCR methods, some other SE methods are also
available with various combinations of leaching steps and sequences [24,53,125,135,136].
These methods were later modified and applied to soil or coal studies [136]. However, few
of them were designed for the chemical speciation of V. Moreover, the few improvements
that were made to the SE method were aimed at shortening the extraction time rather
than improving metal recovery [35]. Unlike most other metal(loids) that generally exist
either as anions or as cations in the soil, V geochemistry is very different. V may be present
as both anions (VO2+, VO2

+) and cations (HVO4
2−, H2VO4

−) [23]. Xu et al. established
a new eight-step SE scheme that efficiently refined the V fraction bound to Mn, Fe, and Al
(hydr)oxides and largely increased total extraction efficiency [24]. This was also the first
study to enable the identification of visible amounts of geogenic V combined in the lattices
of soil minerals.

SE can be used to provide an indication of the quantities of metals in various speci-
ation, which is valuable for providing information on the mobility of V and other met-
als [15,28,29,137]. The existing research is mainly focused on assessing the potential risks
of V in contaminated soils, such as identifying the amounts of anthropogenic V in contrast
with V from natural origins [53,123,125], comparing the mobility of V in industrial or
agricultural areas [27,28,35,51,73,91], and discussing the relationship between bioavailable
V in soils and V contents in plants [23,25,36]. Recently, it has been found that SE methods
using LMWOAs could reduce the mobilizable and bioavailable V in soils to achieve the
effect of in-situ soil remediation [61,138].
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3.3. Other Chemical Extraction Methods

Chemical methods are the most widely used methods for evaluating the bioavailability of
metal pollutants and they are generally divided into two types, based on chemical extraction
or mechanistic modeling [139]. In addition to common traditional single-step extractions and
sequential extraction procedures, there are other effective chemical methods used to determine
the bioavailability of elements in the environment in many cases [140,141].

Diffuse gradients in thin films (DGTs) are powerful in situ passive sampling tech-
niques for performing analysis of metal species or speciation in soils, sediments, and
waters [142,143]. DGT can be regarded as a passive sampler, mainly composed of a dif-
fusion layer and a binding layer, which can extract targets from the environment [144].
Based on different binding gels, DGT can selectively accumulate different metal cations or
oxyanions [143]. Four different DGT devices (Ferrihydrite, carbon, Chelex, and Purolite®)
were used by Lucas et al. (2015) to determine the changes in the concentration of dissolved
V and nine other elements (As, Au, Co, Cr, Cu, Co, Cr, U, Mo, As, Au, Zn, and Mn) in the
water samples of an estuary [30]. Due to the formation of colloids or complexes bound to
dissolve organic carbon (DOC), the DGT concentrations of V in the downstream site were
lower than the total dissolved concentrations at the upstream site. In addition, changes
in flow rates during different seasons can also affect the concentration of DOC, which
in turn affects the DGT-dissolved V [31]. Metsorb-DGT and Ferrihydrite-DGT can be
used to determine labile vanadates over a wide pH range and to accurately measure V(V)
concentrations in seawater and freshwater [145,146]. An inverse trend was consistently
observed between DGT-labile and dissolved V concentrations. The time of deployment,
the concentrations of DOC, and the ionic strengths of the systems have subtle effects on
either concentration [147].

Electrochemical techniques, such as scanned stripping chronopotentiometry (SSCP),
absence of gradients and Nernstian equilibrium stripping (AGNES), anodic stripping
voltammetry (ASV), and competitive ligand exchange or equilibration-cathodic stripping
voltammetry (CLE-CSV) [34], are other powerful tools for metal speciation analysis. In
the presence of high concentrations of added ligands, electrochemical techniques are very
helpful in gaining insights into the cycling and potential bioavailability of various metals,
such as Mn, Fe, V, Ti, and Cr, due to their low detection limits [148–152].

3.4. Physical Methods

Various anthropogenic and natural sources provide a gateway to release and introduce
trace levels of V into the environment. Due to the carcinogenic and toxic effects of V,
which might affect humans, plants and aquatic life, more efforts are need to determine
low levels of V in natural waters and soil samples by using simple and easy methods [153].
V is usually present in trace quantities in different samples below the detection limit of
most available instrumental systems. Thus, easy and simple sample preconcentration and
separation technologies are necessary before screening out trace levels of V in different
environmental samples [154–157]. Some physical separation techniques have consistently
been reported to determine trace levels of V in different environmental samples.

Liquid-liquid microextraction (LLME) is one of the most appropriate extraction tools
for separating toxic metals from complex samples [158]. Pekiner (2014) invented an in
situ micropipette tip syringe system (µS-SHS) combined with ETAAS for separation, pre-
concentration and determination of V in food and water samples [155]. At pH = 6 and
in the presence of interfering ions, high selectivity was shown for V in a surface aqueous
solution with a vanadium concentration below 4.0 µg·L−1 [155]. Alkali and alkaline earth
elements do not form stable complexes with complexing agents, and they have almost no
effect on the selectivity of the method at high concentrations [155]. As a portable method,
it is suitable to separate trace amounts of different organic and inorganic toxicants from
different environmental samples [159].



Minerals 2022, 12, 642 12 of 23

3.5. Spectroscopic Methods

X-ray absorption spectroscopy (XAS) is a powerful tool for determining the speciation
of V present in sediments or soils [10]. In addition, X-ray absorption near edge structure
(XANES) analyses can investigate the average valence state of numerous redox-active
elements in solid samples and the species of V present in the soil in some cases [160,161].
Changes in the valence state of V from +3 to +5 result in corresponding shifts in pre-edge
features and absorption edge positions. By fitting linear combinations of unknown species
to a known reference, Larsson et al. (2017 a, b) calculated the average valence state of V in
different mineral soils [162,163], and Burke et al. (2012) determined that V(V) dominated
in red mud samples contaminated with As and Cr [164]. Through research on the V K-
edge XANES spectra of highly weathered tropical soil samples and a range of reference
compounds differing in V coordination chemistry or oxidation states, Wisawapipat and
Kretzschmar (2017) also revealed that the majority of the V(IV)/V(V) is octahedral or
tetrahedral. In limited cases, extended X-ray absorption fine structure (EXAFS) analysis
has been used to determine the average molecular coordination environment of V in soil
components [160]. In addition, extended X-ray absorption fine structure (EXAFS) measure-
ments may be used to test the average molecular coordination environment of V in soil
components [165–167]. By combining EXAFS analysis with ab initio molecular dynamics
calculations, seminal studies were conducted on the binding of V(III, IV, and V) to gibb-
site, goethite, ferrihydrite, and Fe(III)−natural organic matter complexes [160,162,168–170].
The use of V K-edge EXAFS spectroscopy is easily impeded by the Ba L2 edge, which
strongly interferes with the V K-edge EXAFS region for sediments, slags, and soils [171,172].
Compared with other extraction methods, spectroscopic methods have a relatively high
cost, and different methods are selected according to the actual situation [171]. Hence,
EXAFS spectroscopy may have considerable limits as a tool for determining the average
molecular coordination environment of V in many environmental materials, at least when
using a conventional X-ray absorption setup.

3.6. Comparison of Different Extraction Methods of Vanadium

Conventional single extractant methods usually only have a good effect on one or
two kinds of heavy metals, and it takes more time and cost to analyze the bioavailability
of multiple heavy metals. At present, the development of analyses for multiple elemental
states is growing; several single extraction n procedures can be applied to conduct extraction
tests to optimize the extraction conditions of the extracting agents for multiple elemental
states. In contrast to sequential extraction methods, single extraction methods suffer from
the difficulty of discovering a single reagent that can quantitatively dissolve the residual
species of metals without attacking the detrital species. Sequential extraction methods are
too cumbersome for studying the bioavailability of heavy metals, and the definition of
morphological classification and bioavailability is slightly different. Some scholars often
use fast and effective single extraction methods to analyze the effectiveness of V. Yang (2015)
showed that the correlation between sodium nitrate and alfalfa in the speciation extraction
of V was better than that of the BVR method and EDTA method [25]. DGT technology is
hardly affected by the basic properties of soil and can predict the availability of V in soil
well, but DGT technology cannot fully simulate the plant growth environment [173]. The
Tessier method of extractants lacks selectivity, and there are resorption and redistribution
phenomena during the extraction process, a lack of validation, and low data accuracy [174].
On this basis, BCR strengthened the control of analytical quality and formulated reference
material (Certified Reference Material, CRM 601) [132]. The three-step BCR method fully
utilizes the selective extractant from weak to strong, minimizing phase channeling [175].
By analyzing the phase state of sludge from WWTPs, the effects of the BCR method and
Tessier method were compared, and the results showed that BCR was more effective than
Tessier in extracting oxidizable states [176].
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4. V Bioavailability in Soils Based on Morphological Extraction
4.1. Plant-Available V in Soils

V acts as a growth-promoting factor, which could improve nitrogen assimilation and
utilization, chlorophyll biosynthesis, and seed germination. Under V stress, Mo and B
concentrations decrease in roots and increase in upper leaves [177–179]. Both of these
metal concentrations closely correlate with nitrate reduction, which might be responsible
for the increased nitrogen levels in the leaves of V-treated plants [180]. Furthermore, V
also enhances the uptake of Fe and Mg, which are essential elements for chlorophyll
biosynthesis [14,181]. Therefore, V can promote root length, plant height, and biomass
production at low contents. However, high V levels may inhibit key enzymes that mediate
ion transport, protein synthesis, energy production, and other important physiological
processes and cause root and shoot abnormalities, growth retardation, and even mortality
in plants [14,182,183]. V causes reductions in carotenoid content, potassium (K) uptake
and transport, and other growth factors, which could reduce photosynthetic activity and
transpiration [181,184,185].

V has a complex species in soil and has various oxidation states (+2, +3, +4, +5), but
it exists mainly in the species of V(IV) and V(V) in soil [5,85]. Accumulation is the major
response strategy of most plants to the soil toxicity of V. The available species of V that
can be absorbed and utilized by plants in the soil include those that are acid-extractable,
reducible, and oxidizable. Most of the V absorbed by plants is accumulated in the roots,
and a small part is transferred from roots to the trunk and leaves. The process of V
absorption by roots and transport in the plant is shown in Figure 1 [14]. V in the movable
part of the soil is mainly pentavalent [85]. After entering the plant, the pentavalent V is
gradually transformed into tetravalent V by the reduction of plant cells [186]. V is mainly
concentrated in the roots, where V contents are approximately 2 to 1000 times higher than
its levels in aerial parts of plants [23]. The amount of V in soil is the most important factor
influencing V accumulation in roots below the threshold V levels of apparent toxicity to
plants [7]. The half-maximal effective concentration (EC50) is a toxicological index that
can be used to counter the relationship between heavy metals and acute toxicity. EC50
of V for plants grown under hydroponic conditions varied from 1 to 50 mg/L, while it
varied from 18 to 510 mg/kg in soils. In many cases, a variety of plants exhibited strong
tolerance to V, such as some legumes (crops of chickpea, soybean, green bean, alfalfa, etc.)
and vegetables (Chinese green mustard, tomato, rice, lettuce, etc.) [7,23,25,38,184,187–190].
The greatest known V accumulation was detected in the tissues of Chinese green mustard,
bunny cactus, and chickpea at over 8000 mg/kg [25,38,187,190]. As a result, these plants
are suitable for V-contaminated soil remediation on a large scale. The bioavailable V in
the soil enters the plant through the root system. However, through the food chain, this
effect can be transmitted to people, which has an impact on human health. Soil V content
associated with higher gastric and colorectal cancer mortality rates in humans (IPCS, 1998).
In the presence of H2O2 at the site of inflammation, V activates mast cells at the late
phase to amplify allergic responses [191]. V(IV) can oxidize a large number of biochemical
substances, generate free radicals, and cause DNA damage [192].

Under conditions of high environmental V concentrations, Plants and root microor-
ganisms secrete some organic substances to change the physical and chemical properties of
the environment (pH, Eh etc.) to resist V [193,194]. In addition, Most of the V absorbed by
plants from the environment forms coordination bonds with polysaccharides and hydroxyl
groups in plant cell walls and cannot enter plants [180]. some plants have low absorption
characteristics for V. Rape, watermelon, box-thorn, and Chinese cabbage accumulate only
small amounts of V (0.56 mg/kg, 1.3 mg/kg, 2.73 mg/kg, 3.00 mg/kg, respectively) in
their roots [183,193,195,196], revealing high-efficiency exclusion and elimination properties
against high V contents. From the perspective of efficient land use and food safety, some
plants have some resistance to V-contaminated soil, but whether there is any negative
impact on health needs to be studied in more detail.
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4.2. Bioavailability Evaluation Index or Method

There is general consensus on the bioavailability of heavy metals that can assist the risk
assessment of these elements in the environment. However, professionals from different
disciplines can have different understandings of and definitions for bioavailability. The
International Union of Pure and Applied Chemistry (IUPAC) defines bioavailability as the
bioavailable part of a chemical “able to be absorbed by living organisms”, which is also
a function of biological properties and chemical speciation [197]. Bioavailability should
be quantifiable in risk assessment, but there are no unified analysis methods to quantify it.
In general, chemical methods and bioassays can be used to assess potential bioavailability
in extracellular or intracellular matrices, respectively [198–201]. Among these methods,
morphological extraction mainly uses singly coupled or sequential extraction reagents to
simulate different redox environments to predict risks related to contaminant behavior
under specific environmental conditions. Morphological leaching tests are relatively simple
and reproducible methods that can be performed according to standardized protocols, so
they are the most widely used methods for evaluating the bioavailability of heavy metals
(e.g., US EPA, 1992; DIN, 1998; US NRC, 2002) [202–204].

Available V in the soil refers to the content of V that can be quickly absorbed and
assimilated by plants. Pot experiments have showed that the growth of plants substantially
reduces the concentrations of V(V) in the rhizosphere soil, but no such relationships were
found for V(IV), suggesting that V(V) is actively related to the soil–root interaction of
V [19,23,182]. The bioavailability of V(V) is affected by soil pH value, total organic carbon
(TOC), plant species, and V concentration in soil [2]. V forms complex with carboxylic acid
and glycooh groups, and exists in the species of VO2+ under strong acidic conditions [186].
V at neutral pH exists mainly in the species of tetravalent V cation (VO2+) and pentavalent
vanadate anion (HVO4

2− or H2VO4
−) [205,206]. There was a poor correlation between

plant biomass and soil V(V) at low concentrations in the soil, while these parameters
showed a negative correlation at higher concentrations, reflecting the toxic effect of V [182].
The presence of carbonate plays an important role in vanadium mobility [15]. Therefore,
these results indicate that V(V) concentrations might better reveal the toxicity of V in
soils than total V or soil V(IV), which can be used as an indicator of V bioavailability [94].
Moreover, the self-protective function of plants might prevent the translocation of V from
the root to the aboveground parts [193,207]. Thus, the roots always absorb more V than the
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other parts of the plant (e.g., stem, leaf, and seed) [23,182]. Furthermore, the contents of total
V in roots are consistently proportional to the water-soluble or extractable V concentrations
in the rhizosphere soil [208]. For this reason, these V fractions that are effective for plants
can be used to indicate the bioavailability of V in the soil-plant system, to a certain extent.

From the perspective of soil chemistry, the bioavailability of V not only includes water-
soluble, acid-soluble, chelated, and adsorbed states but also includes forms that can be released
into plants in a short period, such as some easily decomposed organic states and weathered
mineral states. Sequential extraction methods are usually used to quantify V fractions that can
be mobilized in acidified, reduced, or oxidized environments. By the standardized Tessier
five-step sequential extraction or modified BCR method, bioavailable V could be defined as
the sum of the first few steps excluding the residual phases [25,36,50]. Many research results
have shown that V sorbed by plants has a direct correlation with V in soils, especially for the
sum of the first three fractions detected by BCR methods [16,23,25,209].

Single extraction methods can be used directly to predict V bioavailability in soils
because they have good correlation with plant uptake, and are usually used to evaluate
different hazardous species. Weak acids (e.g., 0.1 M HOAc, pH = 3.5) are expected to
minimally influence the extraction of V and to predominantly release only the weakly
adsorbed V fractions, which better reveal the readily bioavailable species in soils [182].
HCl and EDTA extractions seem to reflect long-term influences because they may decrease
the adsorption affinity of V by dissolving amorphous soil minerals, especially Fe and Al
(hydr)oxides, which are strong ligands for V complexation [210,211]. CaCl2 and NaNO3,
which are regarded as soil background electrolyte solutions, could be adopted as extractants
for V bioavailability prediction. Low-molecular-weight organic acids (LMWOAs) (e.g.,
citric, malic, acetic, lactic, and formic acids, etc.), which are produced in the rhizosphere
environment, are secretions of fungi and bacteria [100,101]. They play an important role
in transporting metals to roots and improving the uptake of metals by plants, so they are
good indicators of the bioavailability of V operating at the soil-root interface [211–213].
Nevertheless, no single specific extractant can be used as a standard in a universal method
for predicting bioavailability [214]. The extractability of V in soils varies with extraction
reagents, which can be explained by different extraction mechanisms.

5. Conclusions and Perspectives

In summary, we briefly reviewed the distribution of global V-bearing minerals and
the main sources of V pollution in the environment. Then, based on physical and chemical
methods, different extraction technologies and their extraction efficiencies for V in the
environment were discussed. The general conclusions of these comparisons follow: (i) Sin-
gle extraction methods can be widely used to evaluate the short-term or medium-term
hazards of V in soils and sediments because the extracted chemical species correlate well
with V content in plants. (ii) SE, which is mainly used to assess the potential risk of V
in contaminated soils, can be used to estimate the amounts of V in various “reservoirs,”
but challenges remain with regard to the non-specificity of extracting agents, incomplete
extraction between different phases, and reabsorption of metals before isolation for anal-
ysis. (iii) Electrochemical techniques, such as SSCP and ASV, are suitable for studying
the circulation of heavy metals such as V and their potential bioavailability under high
concentrations of ligand addition. (iv) Physical methods can be used for the separation,
pre-concentration, and determination of trace amounts of V in food and water samples;
these techniques have high selectivity for V in the presence of interfering ions. (v) XAS is
also a powerful tool to determine the species of V in solids because XANES analysis can
investigate the average valence of multiple redox active elements and ligand species of
V(IV)/V(V), and EXAFS measurement results can be used to test the average molecular
coordination environments of V in soil components.

Studies have shown that the chemical species of V and its bioavailability cannot be
attributed to a single value that can be measured by a single chemical or even biological
method. As with any process in nature, it is dynamic and changes with time and envi-
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ronmental conditions. Many efforts have been made recently to correlate bioavailability
with chemical extractions results. To reliably assess and predict the long-term behavior
of V in the environment, a complete set of detailed biological and chemical tests coupled
with geochemical modeling and advanced spectroscopy techniques may be required. In
addition, it is impractical to conduct extensive investigations on the chemical species of
V in the field. A small set of tests can be collected for experimental verification to more
accurately and conveniently predict changes in V bioavailability.
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