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Abstract: The magnetotelluric (MT) method is widely applied in petroleum, mining, and deep Earth
structure exploration but suffers from cultural noise. This noise will distort apparent resistivity and
phase, leading to false geological interpretation. Therefore, denoising is indispensable for MT signal
processing. The sparse representation method acts as a critical role in MT denoising. However, this
method depends on the sparse assumption leading to inadequate denoising results in some cases.
We propose an alternative MT denoising approach, which can achieve accurate denoising without
assumptions on datasets. We first design a residual network (ResNet), which has an excellent fitting
ability owing to its deep architecture. In addition, the ResNet network contains skip-connection
blocks to guarantee the robustness of network degradation. As for the number of training, validation,
and test datasets, we use 10,000,000; 10,000; and 100 field data, respectively, and apply the gradual
shrinkage learning rate to ensure the ResNet’s generalization. In the noise identification stage, we
use a small-time window to scan the MT time series, after which the gramian angular field (GAF)
is applied to help identify noise and divide the MT time series into noise-free and noise data. We
keep the noise-free data section in the denoising stage, and the noise data section is fed into our
network. In our experiments, we test the performances of different time window sizes for noise
identification and suppression and record corresponding time consumption. Then, we compare
our approach with sparse representation methods. Testing results show that our approach can
obtain the desired denoising results. The accuracy and loss curves show that our approach can
well suppress the MT noise, and our network has a good generalization. To further validate our
approach’s effectiveness, we show the apparent resistivity, phase, and polarization direction of test
datasets. Our approach can adjust the distortion of apparent resistivity and phase and randomize the
polarization direction distribution. Although our approach requires the high quality of the training
dataset, it achieves accurate MT denoising after training and can be meaningful in cases of a severe
MT noisy environment.

Keywords: magnetotelluric; identification; denoising; residual network; gramian angular field

1. Introduction

The magnetotelluric method is a crucial geophysical exploration technique that uses
natural current sources to detect underground targets. When the electromagnetic wave is
propagating underneath the ground, the induced charges and currents appear at different
depths, as different frequencies of electromagnetic waves have different skin depths. By
analyzing the measured electromagnetic fields on the air–Earth interface, we can infer the
conductivity distributions of underground structures [1–5].
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The MT method is based on the assumption of plane wave source [6–9]. On the
ground, we measure time series of two horizontal components of electric responses, ex
in the x-direction and ey in the y-direction. We also can measure time series of three
components of magnetic responses, hx in the x-direction, hy in the y-direction and hz in the
z-direction in the time domain. The x axis is perpendicular to y on Earth’s surface. The
Fourier transformations of these time series (which are Ex, Ey, Hx, Hy, and Hz) have the
following linear relationship [10,11]:

Ex = ZxxHx + ZxyHy
Ey = ZyxHx + ZyyHy
Hz = AHx + BHy

, (1)

where Z is impedance tensor, A and B are tippers. We use Z and its real part Re(Z) and
imaginary part Im(Z) to compute the apparent resistivity ρ and phase ϕ:{

ρ = 1
ωµ |Z|2

ϕ = arctan
(

Im(Z)
Re(Z)

) , (2)

whereω and µ denote the angular frequency and magnetic permeability of free space, respec-
tively. We then use the apparent resistivity and phase to infer the underground structure.

However, the MT data are inevitably corrupted by cultural noise when we collect
them in the area with electromagnetic noises, such as near cities. In order to remove noise,
there have been substantial denoising methods proposed in recent years. They can be
divided into five classes such as the remote reference method [12,13], the robust estimation
method [14,15], the data section selection technique [16,17], the inversion rectification
method [18,19], and the time–frequency domain suppression method [20,21].

The remote reference method is a widely used technique for MT denoising. Gamble et al. [22]
collected MT data from two sites, which were far away from each other, and set one site as the
remote reference site. They used the irrelevance of noise between the remote and local sites to
achieve MT noise removal. Ritter et al. [23] proposed that the magnetic field’s correlations between
the remote and local sites acted as a pivotal role in MT denoising. However, the performance of
this denoising method depends on the quality of the selected remote reference site. As for the
robust estimation technique, Sims et al. [24] used the self and cross power spectrums to estimate
the impedance tensor. Sutarno et al. [25] presented the robust M-estimation method. Chave [26]
combined the maximum likelihood estimator with robust estimation to obtain a good MT response.
The robust estimation relies on the proportion of useful MT data. When MT data are interfered by
long-period noise, this method does not work well. In this case, the data section selection does
not perform well either. However, when MT data only contain short-period noise, this method
can obtain good apparent resistivity. Escalas et al. [27] selected appropriate sizes of time series
and utilized their wavelet coefficients to suppress cultural noise successfully. Furthermore, many
geophysicists attenuate the MT noise in apparent resistivity and phase rather than the time series.
Because this kind of method rectifies apparent resistivity and phase via MT inversion, it requires
the majority of points of apparent resistivity and phase keeping correct. Parker et al. [28] rectified
the distortion of apparent resistivity via one-dimensional (1D) MT inversion. Guo et al. [29] applied
the nonlinear Bayesian formulation to analyze the MT noise influence and concluded that the
parameter’s uncertainties were underestimated when using diagonal covariance. Time–frequency
domain suppression is also an effective way to attenuate MT noise. Concerning the time domain
suppression, Tang et al. [30] used mathematical morphology filtering to remove the intense natural
noise from MT data. However, this method caused the loss of low frequency and could not deal
with impulse noise. In frequency domain suppression, Carbonari et al. [31] combined the wavelet
transformation with polarization direction analysis to attenuate the MT noise. This method was
effective in both synthetic and field MT data. Ling et al. [32] used the varying thresholds in wavelet
coefficients to suppress MT noise, outperforming the fixed thresholds for wavelet coefficients
in MT denoising. However, the wavelet transformation cannot remove the MT noise well in
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some cases because its base is fixed while the MT signal is complex. Only using one fixed base is
hard to represent the various MT signals well. Thus, Li et al. [33] presented a learning-based MT
denoising method to solve this problem. This method can use some optimization algorithms to
update the base. Thus, it can change the base according to the signal itself, which contributes to
more accurate apparent resistivity than the wavelet transformation. Nevertheless, this method is
still based on the assumption of sparse representation. When we collect the MT data in a complex
environment, the learning base still cannot represent the MT data well.

Recently, deep learning has made breakthroughs, and it has brought reform in many
fields, including geophysics [34]. The neural network, which belongs to deep learning
methods, contains many layers regarded as the mapping function. When we use some
optimization algorithms to train the neural network, it can find the mapping relationship
between the samples and labels. That is to say, we can find the noise-free and noise data
mapping relationship by a neural network. Unlike the sparse representation methods,
deep learning is not based on any signal sparse assumptions. Thus, it can achieve better
denoising performance than sparse representation methods [35]. Carbonari et al. [36]
combined the self-organizing map neural networks with data section selection to complete
the MT cultural noise removal. It achieves more accurate denoising results than some
convention MT denoising methods. However, this method is complicated and overloaded.
Chen et al. [37] applied the recurrent neural network to suppress the MT noise. This method
meets the feature of the MT time series since it has the memory cells, which can save the
weights and not damage the structure of the time series. Nevertheless, it has shortages
such as long-term dependencies and vanishing gradient problems.

Inspired by the good fitting ability of deep learning, we design a deep residual network
(ResNet) in this paper. Similar to other deep learning methods, our network needs a high-
quality training dataset to achieve accurate MT denoising. To fulfill this requirement,
we use 100,000,000; 10,000; and 100 samples for training, validation, and test datasets,
respectively. All of the training, validation, and test datasets are the field data to make
our experiments realistic. In the training and validation datasets, the additive noise is
extracted from field data. We set a variable learning rate that gradually shrinks to improve
the network’s generalization. To keep the noise-free data from being corrupted during
denoising, we segregate our denoising flow into two parts, called noise identification and
suppression, respectively. The time window is applied to shrink the MT data size and to
facilitate training. We also compare the influences of different window sizes for MT noise
identification and suppression. Furthermore, the gramian angular field (GAF) is applied to
help identify the noise. At the end of our experiments, we use our approach to deal with
the test datasets, whose noise level is unknown.

The rest of the paper is organized as follows. In the first section, the computation
and architecture of the ResNet, which is used in our study, is discussed, followed by a
brief introduction of our whole denoising flow. In the next section, before we show the
noise identification examples, the basic theory of the GAF is introduced. We also test
the influences of different window sizes for identification accuracy in this section. In the
section to follow, we compare our approach with some sparse representation methods,
and we test the performances of different window sizes for denoising. To evaluate the test
dataset denoising performances, we use the apparent resistivity and phase and polarization
direction to show our approach’s good generalization. Finally, according to our above
studies and discussions, we draw some conclusions.

2. ResNet
2.1. Basics Calculations for ResNet

This paper uses the ResNet to suppress MT noise since it is robust for network degra-
dation. Similar to other neural networks, the ResNet can find the mapping relationship
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between samples and labels, which are the noise and noise-free MT data in this paper,
respectively. The MT data with cultural noise can be defined as follows:

f = f̂ + c, (3)

where f , f̂ , and c denote noise MT data, noise-free MT data, and cultural noise, respectively.
In the case of sufficient training datasets, the ResNet can learn the mapping relationship
φ(·) between the samples f and labels f̂ via updating the parameters of neural network
ρ{w, v}, which contains weight value w and bias value v. Let f̂k and f̃k = φ( fk; ρ) represent
the k-th label and prediction of the ResNet with N training datasets. The L2 norm can be
used to optimize the ρ{w, v}, and the objective function L(ρ) of training ResNet can be
represented as [38]:

L(ρ) =
1

2N

N

∑
k=1

∥∥∥φ( fk; ρ)− f̂k

∥∥∥2

2
, (4)

Equation (4) can be solved by some optimization algorithms such as the ADAM
algorithm [39].

2.2. The Architecture of the ResNet

Usually, after surpassing a certain number of layers, the neural network’s fitting
ability will decrease as its architecture becomes deep. However, the ResNet contains skip-
connection blocks that can transmit the information from shallow layers to deep layers
directly and avert information loss [40–42]. The skip-connection block in our study is
shown in Figure 1. According to the output size, we can divide the skip-connection block
into two classes, such as the identity block (Figure 1a) and the convolution block (Figure 1b).
In the identity block, we have the relationship between input a and output b as follows:

b = relu(F1(a) + a), (5)

where F1(a) denotes the function of these below two layers in Figure 1a, relu is the rectified
linear unit. In Equation (5), b can acquire the information of a directly by adding. Similarly,
in the convolution block, we can rewrite Equation (5) as:

b = relu(F1(a) + F2(a)), (6)

where F2(a) is the function of this above layer in Figure 1b. Furthermore, the size of the
convolution kernel in F2(a) is 1. Thus, F2(a) only changes the channels (e.g., the stride
in this block is set to 2, which results in different sizes between the input and output of
this block) and does not influence the value of a. That is to say, b can still acquire the
information of a from F2(a). We use these two kinds of skip-connection blocks to build
our ResNet. Here, we take the input with a length of 32 as an example. When in the noise
suppression, the architecture of the ResNet can be displayed in Figure 2.

Nevertheless, in noise identification, the sizes of all inputs and outputs will change in
Figure 2. Owing to the GAF’s expansion function, the shape of input will become 32 × 32
rather than 1× 32. Thus, the second dimensions of all inputs and outputs for convolutional and
pooling layers in Figure 2 will be the same as their third dimensions (i.e., they are no longer 1).
Meanwhile, the input size in full connection is 1 × 1 × 8192 instead of 1 × 1 × 2048, and the
output size in this layer is 1 × 1 × 2 instead of 1 × 1 × 32.
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About the parameters in this ResNet, all the kernel sizes are 3 except the convolution
blocks, whose kernel sizes are kept constant 1. The padding of 1 is applied in all convolu-
tional and pooling layers except the convolution blocks. Furthermore, the strides are set to
2 in the sixth, tenth, and fourteenth convolutional layers and all convolution blocks, while
the others are set to 1. To facilitate potential readers who want to repeat our study and
make a comparison with their research, we show our computer environment as follows:

• CPU: Intel i9 12900K, 5.20 GHz, 16x (Key Laboratory of Metallogenic Prediction of
Nonferrous Metals and Geological Environment Monitoring, Central South University,
Changsha, China)

• GPU: Nvidia GeForce GTX 3090, 24 GB

In addition, we build and train this ResNet on Pytorch [43].
Figure 3 shows the workflow diagram of our study. First, we use the time window

to scan the MT time series and obtain the MT data section. Second, the GAF is applied
to expand the 1D data section (i.e., one channel MT time series section) to 2D and help
identify. Third, the ResNet is used for noise identification and suppression.
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3. MT Noise Identification
3.1. Gramian Angular Field

After completing the ResNet building, we use the time window to cut the MT time
series and obtain the data section. Then, the Gramian angular summation field (GASF)
or the gramian angular difference field (GADF) is applied to this data section since this
method can expand the 1D data section to 2D and can help identify. Wang et al. [44]
proposed the GAF of time series for identification in the CNN, and they found that this
technique could reduce mean-square error. Hong et al. [45] applied the GAF in the CNN
cascaded with the long short-term memory against overfitting. Thanaraj et al. [46] tested
the performances of different neural networks by the GAF, and they showed that the GAF
could improve the accuracy of electroencephalogram identification. When we use the GAF,
we should normalize the data section within the [−1, 1] range to meet the independent
variable of polar coordinate [47]:

ti =
ti

max(|ti|)
, (7)
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where ti and ti are the data section and its normalization in time point i, respectively.
max(|ti|) is the maximum of the absolute value of ti. In this case, we transform it into the
polar coordinate and have the relationship as follows:

θi = arccos
(
ti
)
, (8)

where θi is the polar coordinate corresponding to ti. Hence, the GASF for ti and tj can be
defined by:

GASFi,j = cos
(
θi + θj

)
, (9)

Similarly, when we use the GADF, we can rewrite Equation (9) as follows:

GADFi,j = sin
(
θi − θj

)
, (10)

Figure 4 shows shapes of the MT noise-free data and common MT noise such as
harmonic, square, triangle, impulse, and step noise in the Cartesian coordinate, the polar
coordinate, and the GAF. It is clear that the GAF can generate different kinds of 2D images
according to different 1D MT noise. When the samples of 1D MT data are being acquired
from left to right along the time axis, these samples are moving from top-left to bottom-right
in the GAF at the same time. Thereby the GAF does not corrupt the sequence in time series,
and its expansion in dimension helps identify MT noise.
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3.2. Training the ResNet for Identification

There are a number of 10,010,100 datasets in total, which contain 10,000,000 training
datasets, 10,000 validation datasets, and 100 test datasets, and all three are field MT time
series. These field data are collected in Qaidam basin, Qinghai province, China. The
instrument and software for these field data acquisitions and apparent resistivity and
phase computations are V5-2000 and SSMT-2000, respectively. In order to decrease the
memory of computation, the time window is applied. Each MT time series in training and
validation datasets will be cut randomly to obtain the same number of datasets. As for the
training datasets, the labels are 10,000,000 noise-free data, while every 2,000,000 of them
are corrupted by the harmonic, square, triangle, impulse, and step noises, respectively, to
form samples, which are both extracted from other sources field MT data. Similarly, in
the validation datasets, 10,000 of them are noise-free to form labels, while every 2000 of
them are corrupted by harmonic, square, triangle, impulse, and step noises, respectively,
to form samples. The noise level of test datasets is unknown. This dataset format is used
for the suppression stage, but it is a little different in the identification stage since we
should change the labels to meet the classification problem. Before training the ResNet for
identification, we manually mark the training and validation datasets as noise-free or noise
data. Thus, the samples are the noise-free or noise sections that are cut by windows while
the labels are 0 and 1. The number 0 represents those data sections without noise, while
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1 represents those data sections with noise. In the identification stage, the loss function is
Cross-Entropy loss. After GAF transformation, we feed these GAF images into our neural
network and begin to train. As for the optimizer, we use the Adam optimizer since this
algorithm can keep the denominators from zeros. Furthermore, the validation datasets are
used for hyper-parameters tuning. The outputs of the ResNet for identification are 0 and 1.

By checking 0 and 1 in the outputs and comparing them with training and validation
datasets, we can count the accuracy and know the performance of the ResNet to detect
noise. We also test the identification accuracy of different window sizes with 32 × 32,
64 × 64, 128 × 128, and 256 × 256 in the validation datasets. Moreover, their statistics
are shown in Table 1. Table 2 shows the computational time of these window sizes in
training. Thus, the different window sizes and GAF transformations hardly influence
the identification accuracy in our ResNet. In addition, as the window size increases, the
training time of the ResNet becomes longer. To reduce the computational memory as well
as computational time, we choose a window size of 32 × 32 for the following MT noise
identification. Figure 5 shows the loss and accuracy of identification, with a min-batch
size of 100, a drop out of 0.5 in full connection, and an initial learning rate of 0.000005,
which will be 0.9 smaller after every 5 epochs. As can be seen from Figure 5a, the loss
decreases as the epoch increases. After 9 epochs, the loss curves of training and validation
datasets become stable. In Figure 5b, the accuracy of identification is proportional to the
epoch. Similarly, after 9 epochs, the accuracy curves in training and validation datasets
also become stable. Thus, our ResNet has a good generalization in MT noise identification.

Table 1. The identification accuracy of validation datasets with different window sizes.

Window Sizes GASF GADF

32 × 32 99.250% 98.750%
64 × 64 98.750% 99.250%

128 × 128 98.500% 98.750%
256 × 256 99.250% 99.250%

Table 2. The computational time of training with different window sizes.

Window Sizes GASF GADF

32 × 32 30,457.7546 s 29,895.5363 s
64 × 64 75,138.0514 s 75,197.2437 s

128 × 128 127,751.3718 s 127,527.3862 s
256 × 256 303,577.9248 s 303,981.9382 s
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3.3. The Identification of Test Datasets

Figures 6 and 7 show the fifth and the twelfth test datasets. To see the MT noise
identification via our ResNet clearly, we amplify some sections, where they are in the
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range from 10,001 to 12,000 sample points in the fifth test datasets, marked by the arrow in
Figure 6. Figure 8 is the corresponding amplified sections in 6. Moreover, the data sections,
which are identified as noise via our ResNet, are marked by red color. In Figure 8, the ex, ey,
hx, and hy time series in the fifth test dataset contain severe impulse and triangle noise, and
our ResNet can identify this kind of noise. Thus, our ResNet has a good performance in the
identification of these noises. Thus, the step of MT noise identification is beneficial for the
following MT noise suppression since we can conserve the noise-free data section.
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4. MT Noise Suppression
4.1. Training the ResNet for Denoising

After identification, we can know which data sections contain noise. In the suppression
stage, it is the regression problem; thus, the loss function is the mean squared error loss,
which Adam can solve. The samples are the MT data sections that are cut by windows and
corrupted by the artificial noise, while the labels are the noise-free MT data sections. We
restart training the ResNet to attenuate the identified MT noise, with a min-batch size of
100, a drop out of 0.5 in full connection, and an initial learning rate of 0.0001 will be 0.9
smaller after every five epochs. Once the ResNet completes training, those data sections
that are identified as containing noise in the identification stage are fed into this ResNet.
The outputs of the ResNet for suppression are the denoising MT data. Similarly, we use the
time window to facilitate training, and the loss and computational time of different window
sizes in our ResNet training are shown in Table 3. As we can see in Table 3, as the window
size grows, the ResNet’s training becomes more time-consuming. Furthermore, the loss is
nearly equivalent when the window sizes are 1 × 64, 1 × 128, and 1 × 256, which are both
smaller than that of 1 × 32. Hence, we choose the window size of 1 × 64 to balance the loss
and running time of the ResNet. Figure 9 shows the loss of training and validation datasets
for MT noise suppression, which both descend gradually when epoch ascends. After about
75 epochs, both of these two loss curves are stable, proving the excellent generalization of
our ResNet. To further validate our approach, we introduce the signal-to-noise ratio (SNR)
as follows:

SNR = 10 log10


∥∥∥ f̂
∥∥∥2

∥∥∥ f̂ − f̃
∥∥∥2

, (11)

where f̃ denotes the denoising MT data. We compare our approach with the wavelet
transformation [48], the dictionary learning [49], and the ResNet denoising without identi-
fication. Since then, we compute the average of denoising SNR for all validation datasets,
listed in Table 4, and our approach obtains the highest SNR among these methods. Fur-
thermore, we show a denoising sample of validation datasets in Figure 10. In Figure 10,
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the wavelet transformation cannot perform well because the denoising result contains
considerable noise in the 30th and 50th points, while the denoising result of the dictionary
learning allows a little noise in these two points to remain. Compared with the wavelet
transformation and the dictionary learning, the ResNet’s denoising results are better and
nearly remove all noise. The ResNet, which combines the denoising with identification,
can better retain the noise-free data section than that without identification. Therefore, our
approach has the best MT denoising performance among these MT denoising methods.

Table 3. The validation dataset loss and the training running time with different window sizes.

Window Sizes Loss Time

1 × 32 0.0008250 5372.8206 s
1 × 64 0.0004493 5813.3767 s
1 × 128 0.0004106 9953.0137 s
1 × 256 0.0003925 15,525.8881 s
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Table 4. The average denoising SNR of all validation datasets for different methods.

Methods SNR

Wavelet transformation 0.2642 dB
Dictionary learning 3.4691 dB

The ResNet without identification 10.5283 dB
Our approach 13.6175 dB

4.2. The Denoising of Test Datasets

We use this trained neural network to process all test datasets and show the denoising
results of the fifth test dataset in Figure 11, while we show those of the twelfth test dataset
in Figure 12. The denoising results of the corresponding amplified section in Figure 6
are shown in Figure 13. From these figures, we can see that the identified noise is both
attenuated, and the noise-free data sections are well protected simultaneously. When we
deal with the test datasets, the apparent resistivity, phase, and polarization direction can
be regarded as the norm of MT denoising performance [50]. We continue to take the fifth
and twelfth test datasets as examples. Figures 14 and 15 show their apparent resistivity
and phase curves before and after denoising via our approach. Figures 16 and 17 show
their polarization directions. In Figures 14 and 15, as for the noise data, the apparent
resistivity curves are smooth and continuous in the high frequency, while they are in a
state of chaos and distortion in the low frequency. After denoising by our approach, the
apparent resistivity curves become smooth and continuous without chaos and distortion
in the low frequency. These phenomena can also be seen in the phase curves. The noise
data phase is diffuse while the denoising data phase stays coherent in the low frequency.
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Therefore, the proposed approach is effective for the field MT data denoising since it can
rectify the distortions in apparent resistivity and phase.
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Figure 10. A denoising sample in validation datasets. (a) Noise-free and (b) Noise data. The denoising
results of (c) the wavelet, (e) the dictionary learning, (g) the ResNet without identification and (i) our
approach. The difference between the denoising results of (d) the wavelet, (f) the dictionary learning,
(h) the ResNet without identification and (j) our approach with noise data.
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Figure 11. The denoising results of the 5th test dataset. (a–d) are the denoising results for ex, ey, hx,
and hy, respectively. (e–h) are the extracted noise for ex, ey, hx, and hy, respectively.
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Figure 12. The denoising results of the 12th test dataset. (a–d) are the denoising results for ex, ey, hx,
and hy, respectively. (e–h) are the extracted noise for ex, ey, hx, and hy, respectively.
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Figure 13. The denoising results of amplified section in the 5th test dataset. (a–d) are the denoising re-
sults for ex, ey, hx, and hy, respectively. (e–h) are the extracted noise for ex, ey, hx, and hy, respectively.
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Figure 14. The apparent resistivity and phase of the 5th test dataset. (a) ρxy, (b) ρyx, (c) ϕxy and
(d) ϕyx curves.
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Figure 15. The apparent resistivity and phase of the 12th test dataset. (a) ρxy, (b) ρyx, (c) ϕxy and
(d) ϕyx curves.
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Figure 16. The polarization direction of the 5th test dataset. The electric field of (a) noise data and
(c) denoising data at 0.2 Hz. The magnetic field of (b) noise data and (d) denoising data at 0.2 Hz.
Dots denote the polarization direction of different data sections.
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Figure 17. The polarization direction of the 12th test dataset. The electric field of (a) noise data and
(c) denoising data at 0.2 Hz. The magnetic field of (b) noise data and (d) denoising data at 0.2 Hz.
Dots denote the polarization direction of different data sections.

We compare our approach’s noise data and denoising results in Figures 16 and 17
for polarization direction. From these two figures, we can see that the noise leads to
points converging at some angles, such as the range from −60◦ to 0◦ and from −60◦ to
−90◦ in Figure 16a,b, respectively, the range from −75◦ to −90◦ and from 75◦ to 90◦ in
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Figure 17a, and the range from −75◦ to −90◦ in Figure 17b. However, as for the denoising
data, their polarization directions become overall random in electric and magnetic fields in
Figures 16 and 17. Therefore, these results support our approach to attenuate the MT noise
well, even if this noise level is unknown for our ResNet.

5. Conclusions

In this paper, we propose a novel MT denoising approach. Based on deep learning,
we design a deep neural network containing the skip-connection blocks to form the ResNet.
Owing to the ResNet’s unique architecture, our network has an excellent fitting ability
and robustness against network degradation. Furthermore, over 10,000,000 datasets and
the variable learning rate are used in our network training to ensure the ResNet’s gener-
alization. Our workflow is divided into two parts in terms of MT noise characteristics,
called identification and suppression. Before training the ResNet, a time window is used
to reduce computational memory. In the identification, the GAF is applied to expand the
datasets’ space, which helps MT noise identification. After identification, we retain the
noise-free data section and feed the noise data section into our network to achieve the MT
noise suppression.

Our experiments show that our ResNet’s accuracy in the MT noise identification is
relatively high at over 98%, which is beneficial for protecting the noise-free data section.
In addition, our ResNet has a good generalization in identification. When the noise level
is unknown, our ResNet can still identify it. Our tests also indicate whether the GASF
or GADF does not influence the performance of MT noise identification. Similarly, the
time window size does not influence the performance of identification, while its size is
proportional to the running time of the ResNet.

As for the MT noise suppression, our experiments show that our approach has a state-
of-the-art performance among sparse representation methods. We also find that with the
expansion of time window size, the ResNet loss becomes smaller for the MT noise suppression,
while this loss becomes stable after the time window size outweighs 1 × 64. Similar to the
MT noise identification, as the time window size grows, the ResNet’s running time increases.
In addition, our ResNet has good generalization. It can remove the noise whose level is
unknown. Our approach can rectify the distortion of the apparent resistivity and phase and
randomize the electric and magnetic fields’ polarization direction. Therefore, our approach can
be useful in MT denoising, even if MT data suffer from harsh noises. Our approach can also
be applied in other fields since it is not based on any signals’ assumptions. For example, our
approach’s identification function can be applied in face recognition, electroencephalogram
signal identification, machine fault diagnosis, etc. Simultaneously, its denoising function can be
used in seismic deblending, image denoising, speech denoising, etc.

Although our approach has many good effects on MT denoising, it is not perfect for
achieving denoising thoroughly. First, we should make a good training dataset to ensure
the effectiveness of our network. In the MT noise identification, because our approach
cannot obtain 100% accuracy, it allows a little noise to remain that will not be fed into our
ResNet to denoise. When our ResNet meets the harmonic wave noise, its long period brings
about our approach’s degradation, which will become the ResNet without identification.
Since this noise is throughout the whole MT data, the identification function of our network
is useless. In this paper, we only discuss the time window influences with the length
ranging from 32 to 256 for our ResNet. Thus, expanding the time window out of this range
and discussing these time windows’ influences are directions to improve our approach. In
addition, training the apparent resistivity rather than the time series is a potential direction,
which can overcome our approach’s degradation caused by harmonic wave noise.
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