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Abstract: The Changkeng–Fuwan Au-Ag deposit is representative in South China, which is located
in the southwest of the Qin–Hang metallogenic belt (QHMB). The Au and Ag orebodies are located
in the same altered fracture zone, forming independent gold and silver orebodies respectively, with
the characteristics of “upper gold and lower silver” in space. Three metallogenic stages have been
identified: the pyrite–quartz–sericite stage, the polymetallic sulfide stage, and the quartz–calcite stage.
The fluid inclusions (FIs) from the deposit are the two-phase liquid-rich (type I) and the pure liquid
FIs (type II). The microthermometric measurements of type I FIs are characterized by temperatures of
158–282 ◦C and 146–289 ◦C and salinities of 0.35–9.88 wt.% NaCl equiv. and 0.18–11.70 wt.% NaCl
equiv. The H, O, He, and Ar isotopic data show that the ore-forming fluids of the deposit were
derived from a mixture of magmatic and meteoric fluids. The C and O isotopic data suggest that the
carbon of the fluid may derive from a magmatic source. The S and Pb isotopic data indicate that the
primary source of the metals in the Changkeng–Fuwan deposit may be a magma source. Based on
the geological characteristics, FI microthermometry, and isotope data (C, H, O, He, Ar, S, and Pb), we
propose that the Changkeng–Fuwan deposit should be classified as a far-source low-temperature
magmatic–hydrothermal deposit.

Keywords: fluid inclusion; C-H-O-S-Pb-He-Ar isotopes; hydrothermal mineralization; Changkeng–Fuwan
Au-Ag deposit; south China

1. Introduction

The Qin–Hang metallogenic belt (QHMB) is a 2000 km NE-trending ore belt situated
in the South China Block [1–9]. The West Guangdong–East Guangxi, situated within the
southwest of the QHMB, is one of the most important Cu-Au-Zn-Ag production areas
in South China [10]. Numerous exploration studies have been conducted in the area
during the past decades, resulting in the discovery of many large deposits [7,8,11,12],
including the Pangxidong Ag deposit, the Damingshan Au-Ag deposit, the Hetai Au
deposit, the Huangnikeng Au deposit, the Xinzhou Au deposit, and the Changkeng–Fuwan
Au-Ag deposit.

The Changkeng–Fuwan Au-Ag deposit is one of the largest Au-Ag deposits in South
China. The Au and Ag reserves reach large and super-large scales, respectively [13]. The
Au and Ag orebodies are characterized by “upper gold and lower silver” in space. The
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Changkeng–Fuwan Au-Ag deposit has been studied continuously since it was discov-
ered in 1990 because of its special mineralization zonation. At present, its metallogenic
process remains controversial. There are two views to interpret its metallogenic process:
(1) the gold and silver mineralization were formed in different periods and different
metallogenesis [14,15]; (2) the gold and silver mineralizations were formed in the same
metallogenic system [16,17]. To address this problem, much research has been carried out
on the Changkeng–Fuwan Au-Ag deposit. Previous studies on the Changkeng–Fuwan
Au-Ag deposit have focused on the geology [15,18], the evolution of the ore-forming
fluids [13,16,19,20], the source of the ore-forming metal [15,21,22], and the metallogenic
epoch [13,23,24]. However, the origin of the ore-forming fluids and metal and the age
of the deposit are still controversial. Du et al. [13] carried out K-Ar dating on the fluid
inclusions in the quartz in the Changkeng–Fuwan Au-Ag deposit, which yielded ages of
132 ± 2.5 and 136.8. ± 11.3 Ma. Mao et al. [24] reported the quartz Rb-Sr isochron ages
of 128 ± 3 Ma and 65 ± 8.5 in the Changkeng–Fuwan Au-Ag deposit, respectively. As to
the origin of the ore-forming fluids, it has been proposed that the ore-forming fluids of
the Changkeng–Fuwan Au-Ag deposit were derived from (1) meteoric water or formation
water [15], (2) predominantly sedimentary brines [19], or (3) predominantly magmatic
water [17]. Mao et al. [18] and Liang et al. [15] proposed that the ore-forming fluid of the
Au mineralization was sourced from meteoric sources, whereas the ore-forming fluid of
the Ag mineralization derived from a mixture of meteoric and magmatic sources. As to the
source of the ore-forming materials, Sun et al. [25] and Zhang et al. [16] proposed that the
Au and Ag were derived from the Zimenqiao Group host rock. However, Mao et al. [24]
and Liang et al. [15] suggested that the Au was derived from the Zimenqiao Group host
rock, and a potential source of Ag was from older basement rocks at depth.

In this study, we conducted detailed fieldwork, petrographic observations, fluid
inclusions (FIs), and isotopic studies (C, H, O, He, Ar, S, and Pb) on the Au and Ag
orebodies, respectively. The goals were to: (1) reveal the origin of the ore-forming fluids
and metals as well as the ore deposition mechanism; (2) understand the ore genesis and
mineralization zonation, (3) gain some insights into future exploration in the southwestern
QHMB and SCB, and (4) provide an example for studying this type of deposit abroad.

2. Regional Geology

The South China Block consists of the Yangtze Block in the northwest and the Cathaysia
Block in the southeast [26–29] (Figure 1a). The QHMB is located along the Neoproterozoic
suture between the Yangtze and Cathaysian blocks and serves as the boundary along which
the Neoproterozoic amalgamation took place. The belt is 2000 km long and 100–150 km
wide, extending from Qinzhou Bay in eastern Guangxi Province, through northwestern
Guangdong, southeastern Hunan, and central Jiangxi provinces, and then to Hangzhou
Bay in Zhejiang Province [1,2]. The QHMB is a key metallogenic belt in South China,
which hosts many economic deposits [7,8,30–34]. It has undergone multiple tectonic events
associated with mineralization. As a result, the region is an important location for hy-
drothermal polymetallic mineralization [35–39]. Zhou et al. [4] divided the QHMB into
three sections (Figure 1a). The southern section of the QHMB comprises the Yunkai Ter-
rane and the Dayaoshan Uplift, which is an important gold producer in China [4,6–8]
(Figure 1b). The Changkeng–Fuwan Au-Ag deposit is distributed in the northeast of the
Yunkai Terrane. The lithostratigraphic units comprise a metamorphic basement and a sedi-
mentary cover [9,40–42]. The main tectonic framework in the QHMB includes NE-trending
faults and folds, which traverse the southern section [7,8,42–46]. Several ore deposits are
distributed along these faults, but large deposits are hosted in the north segment such
as the Hetai Au deposit and the Changkeng–Fuwan Au-Ag deposit (Figure 1b). Numer-
ous Early Paleozoic and Mesozoic granitoids are exposed in the northwest of the Yunkai
Terrane [40,43,47–49].
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Figure 1. (a) Location of the QHMB in the South China Block (modified from [4,38]). (b) Geological
sketch map of the southern segment of the QHMB (modified from [36]). The locations of the gold
deposits are from reference [50].

The Sanshui Basin, which hosts the Changkeng–Fuwan Au-Ag deposit, is situated
in the northwest of West Guangdong–East Guangxi (Figure 2). It is typical of a Mesozoic–
Cenozoic extensional basin with an area of approximately 3300 km2. The outcropping rocks
in the basin consist of metamorphic rocks (Neoproterozoic to Ordovician metasedimentary
sequences), Paleozoic and Mesozoic sedimentary rocks, Mesozoic granite, and late Cre-
taceous to Cenozoic cover rocks [51] (Figure 2). The basement rocks are unconformably
overlain by middle Devonian to early Carboniferous marine sedimentary rocks and in-
clude sandstone and siltstone [15]. The Mesozoic to Cenozoic continental sedimentary
clastic rocks unconformably overlay the lower Carboniferous limestone and are overlain
by Eocene volcanic rocks [15]. The Eocene volcanic and sedimentary rocks consist mainly
of basalt, rhyolite, tuff, trachytic tuff, and pyroclastic agglomerate [15]. There are mainly
five groups of faults with directions of NE-, WE-, and NW-trending, which contain the
Wuchuan–Sihui, Enping–Conghua, Xijiang, Panyu, and Shougouling faults (Figure 2). The
activities of the large and deep faults in the area provided favorable channels and spaces for
the transportation and precipitation of ore-forming fluids. Many Au-Ag-Pb-Zn polymetal-
lic mineralizations, such as the Luzhou, Dieping, Chashan, Hengjiang, and Xiqiaoshan
deposits, are closely correlated with the volcanic–hydrothermal and post-magmatic hy-
drothermal processes in the Sanshui Basin (Figure 2).
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Figure 2. Geological sketch map of the Sanshui basin with the deposits (modified from [52]).

3. Deposit Geology

The Changkeng–Fuwan Au-Ag deposit is located approximately 15 km northwest of
Gaoming County, Guangdong Province (Figure 2). The Au and Ag orebodies are hosted in
the same altered fracture zone, forming independent gold and silver orebodies, respectively,
with the characteristics of “upper gold and lower silver” in space. The exposed strata
are the Carboniferous Zimenqiao, Ceshui and Shidengzi Formations, Triassic Xiaoping
Formation, Cretaceous Baizushan Formation, and overlying Tertiary and Quaternary [15]
(Figure 3a). The Zimenqiao, Ceshui, and Shidengzi Formations are sparsely distributed in
the northwestern margin of the deposit and are composed predominantly of bioclastic and
silty limestone [15]. The Zimenqiao formation shows the fault contact with the Xiaoping
Formation. The Xiaoping Formation covers the entire central part of the deposit and
unconformably overlies the Baizushan Formation. The Baizushan Formation, exposed
in the northeast of the deposit, is composed predominantly of clastic rocks containing
conglomerate, sandstone (fine sandstone and siltstone), and mudstone.
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Figure 3. Geological sketch map (a) and geological cross section (b) of the Changkeng–Fuwan Au-Ag
deposit (modified from [15]).

Structurally, the NW-trending and NE-trending faults are widely distributed in the
Changkeng–Fuwan Au-Ag deposit (Figure 3a). The NE-trending fault (F1) is the major
ore-controlling fault, with the trending from 30 to 60◦, dipping at angles of 10–35◦ SE. The
NW-trending (F4, F5) and NE-trending (F3) faults cut across the orebodies, which formed
after the mineralization. Although there are no exposures of igneous rocks at the surface in
the mining district, related geophysical data showed that there may be concealed pluton
underlying the deposit [16].

3.1. Characteristics of the Orebodies and Ore Mineral Assemblages

The Au and Ag orebodies of the Changkeng–Fuwan deposit occur as stratiform,
stratoid, and lenticular shapes and are hosted in the Zimenqiao Formation (Figure 3b). The
Au orebody is hosted in the siliceous rocks, while the Ag orebody is hosted in the limestone.
The Au and Ag orebodies were mainly controlled by the F1 fault. The Au orebody is located
in the north of the mining area and at the upper stratigraphic section, whereas the Ag
orebody is located in the south of the mining area and at the lower stratigraphic section
(Figure 3b). Two Au orebodies in total were developed during the Au mineralization;
almost all metallogenetic features were documented by the largest No.1 orebody, which is
more than 750 m length and 1–40 m (average of 10 m) thickness and has an average grade
of 7.94 g/t Au. It strikes NEE and dips to the SSE at 30–50◦. There were five Ag orebodies
developed during the Ag mineralization, and the largest (No. 1) orebody appeared as
stratiform, characterized by approximately 2318 m in length and 0.3–32.2 m (average 4.7 m)
in thickness, with an average Ag grade of 225.93 g/t. The No. 1 Ag orebody strikes
30–60◦ SW and dips 10–30◦ SE.

The content of the metal sulfides in the Au orebody is low, and pyrite is the most abundant
mineral. Minor sulfides include sphalerite and chalcopyrite (Figures 4 and 5c,d), and none of
these minerals contain appreciable concentrations of Au. The gangue minerals mainly include
quartz, sericite, and calcite, with minor realgar and fluorite (Figures 4 and 5a,f,g). The Au occurs
as submicroscopic (<0.1 µm) grains in fissures of pyrite, quartz, and clay minerals [20].
The ore minerals of the Ag orebody predominantly include pyrite, galena, sphalerite,
and silver-bearing minerals, with minor chalcopyrite (Figure 5i–k); while the gangue
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minerals are mostly quartz, sericite, and calcite (Figure 5h,l), with accessory fluorite. The
Ag-bearing minerals mainly include freibergite, pyrargyrite, and andorite, which usually
are intergrown with galena and sphalerite (Figure 5j).
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Figure 4. Photographs of different stages in the Changkeng–Fuwan Au (a–d)-Ag (e–i) deposit.
(a) Pyrite–sericite–quartz in the early stage; (b) pyrite–quartz vein in the middle stage; (c) early stage
pyrite–sericite–quartz vein cut by middle-stage quartz–pyrite vein; (d) quartz–carbonate vein in the
late stage; (e) pyrite–sericite–quartz in the early stage; (f) quartz and sphalerite in the middle stage;
(g,h) quartz–polymetallic sulfide vein in the middle stage; and (i) quartz–carbonate vein in the late
stage. Py, pyrite; Sp, sphalerite; Qtz, quartz; Ser, sericite; and Cal, calcite.
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Figure 5. Photomicrographs showing the mineral assemblages and the alteration of different stages
in the Changkeng–Fuwan Au (a–g)-Ag (h–l) deposit. (a,f,g,h,l) Transmitted light, (b–e,i–k) reflected
light). (a) Early stage pyrite + sericite + silica alteration; (b) euhedral to subhedral pyrite; (c) middle
stage sphalerite; (d) galena, sphalerite, and chalcopyrite in the middle stage; (e) middle stage pyrite
cut by late stage realgar; (f) realgar and fluorite in the late stage; (g) quartz and calcite vein in the
late stage; (h) early stage pyrite + sericite + silica alteration; (i) middle stage galena and sphalerite
replacing pyrite; (j) silver-bearing mineral intergrowth with galena and sphalerite in the middle stage;
(k) galena, sphalerite, and chalcopyrite in the middle stage; and (l) quartz and calcite vein in the late
stage. Py, pyrite; Gn, galena; Ccp, chalcopyrite; Sp, sphalerite; Qtz, quartz; Ser, sericite; Rlg, realgar;
and Cal, calcite.

3.2. Hydrothermal Alteration and Mineralization Stages

The hydrothermal alteration associated with the Au and Ag mineralization is similar.
The main alteration types consist of silicification, sericitization, sulfidation, and carbonatiza-
tion. Among these, silicification and sulfidation are the most common types. Silicification
manifested as quartz–pyrite, quartz–polymetallic sulfide, and quartz–carbonate veins
(Figure 4a,b,d,h,i). Sericitization mainly manifested as scaly aggregates (Figure 5a,h). Pyrite
is closely related to the silicic and sericitic alteration (Figure 5a,h). Carbonation mainly
occurred as quartz–carbonate veins (Figure 4d,i and Figure 5g,l). The mineralogy and
associated wall rock alteration of each stage are summarized briefly below (Figure 6).
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Three metallogenic stages have been identified in the Changkeng–Fuwan Au-Ag
deposit (Figure 4). The early stage of the Au mineralization is represented by pyrite–
sericite–quartz alteration rocks (Figures 4a and 5a). The ore minerals mainly consisted of
pyrite, which was sparsely disseminated in grained and euhedral to subhedral crystals
(Figure 5b,c). The gangue minerals mainly consisted of quartz and sericite (Figure 5a). The
quartz during this stage was mainly chalcedony, and its grains were subhedral crystals
or anhedral crystals (Figure 5a). Sericite showed scaly aggregates and was intergrown
with pyrite and quartz (Figure 5a). The middle stage consists of quartz–pyrite veins
(Figure 4b,c), which is the most important stage of gold production. It contained quartz
and pyrite. Most of the quartz was smoky grey, fine-grained, with euhedral and subhedral
crystals, and the pyrite was fine-grained. The late stage is characterized by quartz + calcite
(Figures 4d and 5g).

The early stage of the Ag mineralization is also characterized by pyrite–sericite–quartz
altered rocks (Figures 4e and 5h). The ore mainly comprised quartz, sericite, and minor
pyrite (Figure 5h). The quartz was mainly chalcedony, and its grains were subhedral
crystals or anhedral crystals (Figure 5h). The pyrite grains were fine-grained and euhedral–
subhedral crystal and were disseminated in sericite and quartz (Figure 5h). The middle
stage includes quartz–polymetallic sulfide veins (Figure 4f–h), which is the most significant
stage of Ag production. The ore minerals consisted of pyrite, sphalerite, galena, and silver-
bearing minerals (Figure 5i–k). The pyrite was fine-grained, and other sulfides formed the
bulk of the ore (Figure 5i). Quartz made up the main gangue mineral. The polymetallic
sulfides and Ag-bearing minerals showed a close relationship (Figure 5j). The late stage is
represented by a large amount of calcite and quartz (Figures 4i and 5l).
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4. Samples and Methods
4.1. Fluid Inclusion Microthermometry

In total, 46 doubly polished thin sections (21 samples from the Au orebody and
25 samples from the Ag orebody) representing different stages were selected for the FIs
studies. Based on the detailed petrography, 8 samples (early stage, 3; middle stage, 3; and
late stage, 2) from the Au orebody and 11 samples (early stage, 4; middle stage, 5; and
late stage, 2) from the Ag orebody were selected for microthermometric measurements
and Laser Raman spectroscopic analyses. The microthermometric measurements were
conducted at the China University of Geosciences Beijing, using a LINKAM THMGS-600
heating–freezing stage, with a measured temperature range of −190 ◦C to +600 ◦C. The
accuracy of the measurements was ensured by calibration at −56.6 ◦C and 0 ◦C, using
synthetic fluid inclusion standards and pure water. The heating rates were 0.1 ◦C/min when
phase transitions were approached. The errors were about ±0.2 ◦C for the final ice melting
temperatures and ±5 ◦C for the homogenization temperatures. Laser Raman spectroscopic
analyses were conducted on a LABHR-VIS LabRAM HR800 microspectrometer at the
Beijing Geological Research Institute of Nuclear Industry, China. The wavelength of the
argon ion laser was 532 nm. The scanning range for the spectra lay between 100 and
4000 cm−1, with an accumulation time of 10 s for each scan and a spectral resolution of
1–2 cm−1. The detailed procedures followed those reported in previous studies [53–56].

4.2. Isotope Analyses

In total, 33 representative samples across the three identified ore mineralization stages
were selected for isotope analysis (C, H, O, S, Pb, He, and Ar), which was performed at the
Beijing Geological Research Institute of Nuclear Industry, China. Fifteen quartz samples
from three different stages of the Au and Ag orebodies were selected for H-O isotopic
analyses. Before measurement, the samples were heated in an induction furnace under a
vacuum and high temperature (~130 ◦C) condition, in order to eliminate the absorbed water
in the minerals. Oxygen was liberated by reaction with BrF5 and converted to CO2 on a
platinum-coated carbon rod [57]. Hydrogen was released by reaction with CuO to generate
H2O, which then was reduced to H2 through the Zn catalyst method [58]. The isotopic
compositions of both gases were analyzed on a Finnigan MAT253 mass spectrometer.

Sulfur isotopic analyses were conducted on five pyrite, two realgar, and two sphalerite
samples, including two realgar samples and one pyrite sample from the Au orebody and
four pyrite and two sphalerite samples from the Ag orebody. The samples were analyzed
for sulfur isotope using a Finnigan MAT 251 mass spectrometer. The precision for d34S was
better than ±0.2‰ [59].

Six samples including pyrite and sphalerite were chosen for Pb isotopic determinations.
The samples were dissolved in a mixed solution of hydrofluoric acid and perchloric acid,
followed by basic anion exchange resin to purify the Pb. Pb isotopic compositions were
determined by using an ISOPROBE-T Thermal Ionization Mass Spectrometer instrument,
and the precisions were better than 0.005%.

Four pyrite, three sphalerite, and one galena separate were selected for He-Ar isotopic
analyses. These sulfide grains were cleaned ultrasonically in alcohol, dried, and loaded
on-line in vacuo crushers. The sample chips were baked at 100–150 ◦C for 24 h in order to
remove the adsorbed atmospheric contaminants before analyses; then, gases were extracted
from the fluid inclusion by crushing in a vacuum. He and Ar isotopic compositions of the
inclusion-trapped fluids were measured by using a HelixSFT mass spectrometer.

C-O isotopic analyses were performed on nine calcite samples, including three calcite
samples from the Au orebody and six calcite samples from the Ag orebody. C-O isotopic
compositions of the nine calcite samples were obtained by using an automatic Multiprep
sample preparation device attached to a GV IsoPrime II mass spectrometer. Calcite reacts
with 100% phosphoric acid (H3PO4) to produce CO2. The analytical precision (2r) was
±0.1‰ for δ13C and ±1‰ for δ18O [60].
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5. Results
5.1. Fluid Inclusion Study

Although there were many fluid inclusions (FIs) in the samples, they were too small
to determine the phase change. Therefore, only the large isolated primary FIs were selected
for measurement. The classification of the primary and secondary FIs was according to Lu
et al. [54] and Roedder [61]. Based on the phase compositions at room temperature and
the phase transitions (Figure 7), two types of FIs were recognized: two-phase liquid-rich
inclusions (type I) and monophase liquid inclusions (type II).
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Figure 7. Photomicrographs of various types of fluid inclusions observed in the Changkeng–Fuwan
Au (a–c) and Ag (d–f) deposit.

The type I FIs commonly contain a vapor bubble and liquid phase at room temperature.
The vapor phase occupies the fluid inclusion volume from 5 to 30%, and the phase status at
homogenization is liquid phase. These inclusions are round or irregular in shape, and their
size varies from 3 to 12 µm. Type I FIs were more abundant in all the samples and widely
distributed. Type II FIs consist of a brine liquid, and their diameters are 2–5 µm. Type II FIs
were relatively rare and only found in the late stage quartz veins, coexisting with type I FIs
(Figure 7).

5.2. Microthermometry

The main microthermometric results of the FIs are listed in Table 1. Figures 7 and 8
show the statistical distribution as histograms.

5.2.1. Microthermometry of the Au Orebody

Early Stage: the quartz from the early stage only contained type I inclusions. The Th
values of the type I inclusions varied from 223 ◦C to 282 ◦C. The ice-melting temperatures
varied from −6.6 ◦C to −1.2 ◦C, which yielded salinities from 2.1 to 9.9 wt.% NaCl equiv.
(Table 1, Figure 8a,b).

Middle stage: this stage also only contained type I inclusions in the quartz, which
yielded ice-melting temperatures ranging from −6.5 ◦C to −1.1 ◦C, with corresponding
salinities from 1.9 to 9.9 wt.% NaCl equiv. The Th values varied from 187 ◦C to 231 ◦C and
had a peak between 200 ◦C and 210 ◦C (Table 1, Figure 8c,d).

Late stage: this stage was dominated by type I inclusions in the quartz and calcite, with
some type II inclusions. The type I inclusions in the calcite were analyzed. The ice-melting
temperatures ranged from −1.8 ◦C to −0.2 ◦C, with the corresponding salinities varying
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from 0.4 to 3.1 wt.% NaCl equiv. The Th values ranged from 158 to 211 ◦C and had a peak
in the range of 170–190 ◦C (Figure 8e,f).

Table 1. Microthermometric data of FIs in the Changkeng–Fuwan Au-Ag deposit.

Orebody Host Mineral Stage Type N Size/µm
Th/◦C Tm-ice/◦C wt.%NaCl.eqv

Range Range Range Mean

Gold orebody
Quartz Early L + V 49 4–10 223–282 245 −6.6–−1.2 6.1
Quartz Middle L + V 46 3–8 187–231 204 −6.5–−1.1 5.3
Calcite Late L + V 49 3–6 158–211 184 −1.8–−0.2 1.4

Silver orebody

Quartz Early L + V 48 4–12 210–289 236 −8.0–−2.0 7.4
Quartz Middle L + V 49 5–14 180–232 206 −6.5–−1.1 7.3

Sphalerite Middle L + V 17 6–14 187–230 209 −8.8–−2.2 7.0
Calcite Late L + V 36 4–10 146–203 176 −1.0–−0.1 0.7

Notes: N, number of inclusions analyzed; Th, homogenization temperature; Tm-ice, ice-melting temperature;
wt.%NaCl.eqv, salinity; L, liquid; V, vapor.
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5.2.2. Microthermometry of the Ag Deposit

Early Stage: the quartz from the early stage only contained type I inclusions. The Th
values varied from 210 ◦C to 289 ◦C. The ice-melting temperatures ranged from −8.0 ◦C to
−2.0 ◦C, which yielded salinities from 2.4 to 11.7 wt.% NaCl equiv. (Table 1, Figure 9a,b).
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Middle stage: this stage also only contained type I inclusions in the quartz and
sphalerite. The ice-melting temperatures from the quartz ranged from −6.5 to −1.1 ◦C,
with corresponding salinities from 2.6 to 12.4 wt.% NaCl equiv. The Th values varied from
180 ◦C to 232 ◦C and had a peak between 200 ◦C and 210 ◦C. The ice-melting temperatures
from the sphalerite varied from −8.8 ◦C to −2.2 ◦C, with corresponding salinities from 3.7
to 12.6 wt.% NaCl equiv. The Th values ranged from 187 ◦C to 230 ◦C (Table 1, Figure 9c,d).

Late stage: this stage was dominated by type I inclusions in the quartz and calcite, with
some type II inclusions. The type I inclusions in calcite were analyzed from this stage. The
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ice-melting temperatures ranged from −1.0 to −0.1 ◦C, with corresponding salinities from
0.2 to 1.7 wt.% NaCl equiv. The Th values varied from 146 to 203 ◦C (Table 1, Figure 9e,f).

5.3. Laser Raman Spectroscopy

We used laser Raman spectroscopy to detect the composition of the FIs in quartz.
The peak value of the water in the Raman analysis was 2800–3800 cm [62]. The results
revealed that the vapor and liquid phases of the FIs comprised H2O (Figure 10), and no
other volatiles were determined.
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deposit (b,d,f).

5.4. H and O Isotopes

The H and O isotopic data at different stages with historical data are presented in
Table 2. The δD values of the FIs in the Au orebody ranged from −84.1 to −46.0‰ (average
−64.9‰). The δ18OV-SMOW values varied from 10.5 to 13.8‰. The corresponding values in
the Ag orebody were −89.0 to −55.3‰ (average −71.9‰) and 8.8 to 13.0‰, respectively.
The O isotope composition of the hydrothermal water was characterized by an δ18OH2O
value, which was calculated by the equation (1000lnαquartz-water = 3.38 × 106 T−2–3.40) of
Clayton et al. [63] and Jiao et al. [8]. The δ18OH2O values for the fluids in the Au orebody
varied from −2.16 to 2.46‰ (mean 0.06‰). The corresponding values in the Ag orebody
were −1.38–3.66‰ (mean 1.20‰).
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Table 2. H and O isotope data of different stages from the Changkeng–Fuwan Au-Ag deposit.

Orebody Sample Mineral Stage Th (◦C) δ18OV-SMOW
%

δ18OH2O
%

δDV-SMOW
% Reference

Gold orebody

CKP31-1 Quartz I 238 12 2.46 −72.6

This study
CKP5-3 Quartz I 240 11.6 2.16 −56.5

CKP11-1 Quartz II 201 12.3 0.67 −84.1
CKP2-3 Quartz II 208 10.5 −0.7 −65.7

G0305-7 Quartz III 178 13.8 0.64 −57

[20]
G0405-9 Quartz III 178 11 −2.16 −78
G0406-19 Quartz III 178 11.8 −1.36 −60

G3210 Quartz III 187 11.9 −1.26 −46

Silver orebody

CKP16-2 Quartz I 263 8.8 0.44 −87.7

This study

CKP32-17 Quartz I 242 10.7 1.36 −55.3
CKP22-1 Quartz I 242 10.7 1.36 −65.3

CKP34-20 Quartz I 242 11.4 2.06 −60.1
CKP5-5 Quartz I 242 12.3 2.96 −77.7
CKP31-3 Quartz I 242 13 3.66 −79.5

CKP11-2 Quartz II 224 8.9 −1.38 −77.1
CKP17-2 Quartz II 209 12.2 1.06 −66.6
CKP14-2 Quartz II 208 12.4 1.2 −67
CKP36-4 Quartz II 208 12.1 0.9 −89.6

CKP33-23 Quartz III 203 11.6 0.09 −64.8

Th is the mean homogenization temperature.

5.5. S and Pb Isotopes

The sulfur isotopic data from the Au and Ag orebodies are shown in Tables 3 and 4.
The δ34S values of sulfides from the Au and Ag orebodies ranged from −5.80 to 8.73‰
(mean −0.84‰) and −8.70 to 7.39‰ (mean 2.58‰), respectively. In the Au orebody, the
pyrite showed δ34S values of −5.80 to 8.73‰ (mean −1.25‰), the stibnite had δ34S values
ranging from −3.90 to 2.30‰ (mean 0.07‰), and the realgar displayed a range from 1.30
to 5.30‰ (mean 3.76‰). In the Ag orebody, the pyrite showed δ34S values of −8.70 to
6.41‰ (mean 0.79‰), the galena had δ34S values ranging from 0.07 to 5.61‰ (mean 2.54‰),
and the sphalerite displayed a range from 1.70 to 7.39‰ (mean 3.92‰). Overall, the δ34S
values of the sulfides from the Au and Ag orebodies were similar, with a pronounced
normal distribution.

Table 3. S isotope data of the sulfides from the gold orebody.

Sample Mineral δ34SV-CDT(‰) Reference

ck-19 Pyrite −0.3

[64]

ck-38 Pyrite −5.2
ck-147 Pyrite −5.3
ck-55 Stibnite −3.9
ck-33 Stibnite 2.3
ck-39 Stibnite 0.8

ck-145 Stibnite 2.2

G0802-8 Pyrite −2.2

[65]
G0802-9 Pyrite −1.9
G0001-5 Pyrite −5.8
G0405-12 Pyrite −0.8

K01-1 Pyrite −3.1
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Table 3. Cont.

Sample Mineral δ34SV-CDT(‰) Reference

CKZK-1 Pyrite −2.2

[21]

CK-5 Stibnite 2.01
N334 Stibnite −1.23
CK-25 Stibnite −1.95

CKIA-4 Stibnite −0.56
CK-10 Realgar 3.67

CK-92C Realgar 4.62

C-T21 Pyrite −3.14

[13]

C-T22 Pyrite −1.57
C-T27 Pyrite 8.73
C-T10 Pyrite 1.46
C-T12 Pyrite 1.33
C-T4 Realgar 3.93
C-T8 Stibnite 1.47
C-T3 Stibnite 0.11
C-T2 Stibnite −0.45

ckp13-1 Realgar 5.3
This studyckp6-9 Realgar 1.3

ckp8-6 Pyrite 1.2

Table 4. S isotope data of the sulfides from the silver orebody.

Sample
δ34SV-CDT(‰)

Reference
Pyrite Sphalerite Galena

CK-94 2.7 2.4

[64]

CK-95 4.6 4.1
CK-156 1.7 2.1
CK-157 2.4 3.2
CK-160 3.8 3.7
CK-34 −2.3

C-T13 7.39 4.04
[13]C-T15 4.77 0.09

L-1 6.41 3.15 5.61

CH-15S 4.82

[16]
CH-21S −6.14
CH-14S 4.2 0.07
CH-5S 5.75 1.91
CH-11S 4.72 3.16 3.5

CKZK2403-6(1) 4.89 4.76 2.28

[21]

CKZK3209-2 3.27
CKZK4401-1 4.07
CKZK2403-4(1) 5.29
CKZK3206-4(1) 4.95 3.34 1.24
CKZK3206-4(3) 4.99
CKZK1001-3 1.59 3.38 2.33
CKZK4401-3(1) 4.39 1.5

ckp14-2 3.6

This study

ckp22-5 −2.7
ckp34-1 −2.4
ckp22-4 −8.7
ckp5-5 −3.8
ckp29-3 3.6
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The analytical results of the lead isotopes from the Au and Ag orebodies are listed
in Table 5. Overall, the individual isotopic values of sulfides from the two orebodies fell
within a narrow range. In the Au orebody, the 206Pb/204Pb values of the pyrite were
18.477 to 20.356, 207Pb/204Pb from 15.678 to 15.824, and 208Pb/204Pb from 38.842 to 39.270.
The corresponding values in the stibnite and realgar were 18.580–19.537, 15.672–15.750,
and 38.700–39.032, respectively. In the Ag orebody, the pyrite showed 206Pb/204Pb values
varying from 18.596 to 18.871, 207Pb/204Pb from 15.685 to 15.941, and 208Pb/204Pb from
38.977 to 39.854. The corresponding values in the galena were 18.702 to 18.953, 15.682 to
15.951, and 38.911 to 39.804, respectively. The corresponding values in the sphalerite were
18.704 to 18.932, 15.715 to 15.936, and 39.099 to 39.698, respectively.

Table 5. Pb isotope data of the ores from the Changkeng–Fuwan Au-Ag deposit.

Orebody Sample Mineral 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb Reference

Au orebody

CK-32 Pyrite 19.092 15.797 39.075

[16]
CK-38 Pyrite 18.832 15.728 39.002
CH-3S Pyrite 18.737 15.736 39.177
CK-33 stibnite 18.58 15.672 38.7

CKZK-1 Pyrite 18.996 15.705 38.987

[22]
CK-28 Pyrite 18.945 15.73 39.035
CK-5 stibnite 19.14 15.727 38.914
CK-25 stibnite 18.883 15.706 39.032

CK-92C Realgar 18.666 15.708 39.024

ckp13-1 Pyrite 18.706 15.767 39.124 This study
ckp8-6 Pyrite 18.477 15.678 38.842

Ag orebody

CK-156 Galena 18.845 15.902 39.69

[64]

CK-160 Galena 18.834 15.848 39.657
CK-157 Galena 18.851 15.873 39.658
CK-95 Galena 18.891 15.914 39.786
CK-94 Galena 18.82 15.848 39.579

CH-15S Pyrite 18.871 15.941 39.854
CH-14S Galena 18.702 15.687 39.015
CH-5S Galena 18.887 15.682 38.991
CH-6S Galena 18.825 15.86 39.561

ZK2403-6 Galena 18.713 15.72 39.087

[22]

ZK2403-6 Sphalerite 18.768 15.796 39.335
ZK2403-6 Pyrite 18.667 15.685 38.997
ZK3209-2 Sphalerite 18.72 15.725 39.119
ZK4401-1 Sphalerite 18.704 15.715 39.118
ZK2403-4 Sphalerite 18.932 15.936 39.698
ZK3206-4 Galena 18.835 15.867 39.596
ZK3206-4 Sphalerite 18.716 15.718 39.099
ZK3206-4 Pyrite 18.772 15.787 39.33
ZK1001-3 Galena 18.935 15.951 39.804
ZK1001-3 Pyrite 18.596 15.746 39.095
ZK4401-3 Galena 18.722 15.73 39.124
ZK4401-3 Sphalerite 18.841 15.882 39.627

ckp22-5 Pyrite 18.745 15.752 39.207
This studyckp29-3 Sphalerite 18.797 15.823 39.448

ckp5-5 Pyrite 18.762 15.742 39.209

5.6. He and Ar Isotopes

The He and Ar isotopic data of the Changkeng–Fuwan Au-Ag deposits are listed
in Table 6. In the Au orebody, the 3He/4He values varied from 2.46 to 2.50 Ra, where
Ra (=1.4 × 10−6) represents the atmospheric 3He/4He values [66]. The 40Ar/36Ar values
of the two analyzed samples were 304.6 and 300.2, slightly higher than the atmospheric
standard values (295.5) [67]. The 4He concentrations in the pyrite showed a variation
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between 1.30 and 3.65 (10−8 cm3 STP/g). The 40Ar concentrations in the pyrite ranged from
2.77 to 22.20 (10−8 cm3 STP/g). In the Ag orebody, the 3He/4He values ranged from 1.41 to
5.70 Ra (average 3.88 Ra). The 40Ar/36Ar values varied from 295.6 to 314.7 with a mean
value of 300.9, higher than that of air (295.5). The 4He concentrations ranged from 0.49 to
19.70 (10−8 cm3 STP/g) with an average value of 6.20 (10−8 cm3 STP/g), and those of 40Ar
varied from 2.35 to 30.00 (10−8 cm3 STP/g) with a mean value of 9.29 (10−8 cm3 STP/g).

Table 6. He and Ar isotopic data of the Changkeng–Fuwan Au-Ag deposit.

Sample Mineral 3He 4He 40Ar 3He/4He R/Ra 40Ar/36Ar 38Ar/36Ar

ckp8-6 Pyrite, Au ore 1.26 × 10−13 3.65 × 10−8 2.77 × 10−8 3.45 × 10−6 2.46 304.6 0.182
ckp13-1 Pyrite, Au ore 4.55 × 10−14 1.30 × 10−8 2.22 × 10−7 3.50 × 10−6 2.5 300.2 0.179
ckp22-5 Pyrite, Ag ore 3.90 × 10−13 1.97 × 10−7 3.00 × 10−7 1.98 × 10−6 1.41 295.9 0.175

ckp33-23 Sphalerite, Ag ore 3.69 × 10−13 6.75 × 10−8 3.60 × 10−8 5.47 × 10−6 3.91 295.6 0.186
ckp36-4 Sphalerite, Ag ore 3.95 × 10−14 4.94 × 10−9 5.50 × 10−8 7.99 × 10−6 5.70 302.5 0.223
ckp19-2 Sphalerite, Ag ore 6.52 × 10−14 8.70 × 10−9 2.35 × 10−8 7.49 × 10−6 5.35 314.7 0.226

ckp28-23 Galena, Ag ore 1.86 × 10−13 3.20 × 10−8 1.16 × 10−7 5.81 × 10−6 4.15 298.1 0.198
ckp34-12 Pyrite, Ag ore 2.49 × 10−13 6.45 × 10−8 2.66 × 10−8 3.86 × 10−6 2.76 298.7 0.218

5.7. C-O Isotopes

The C and O isotope data in the Changkeng–Fuwan Au-Ag deposit are listed in Table 7.
The δ13CV-PDB and δ18OV-PDB values in the Au orebody varied from −0.7 to 1.3‰ (average
0.6‰), and −17.2 to −11.2‰ (average −13.3‰), respectively. The corresponding values
in the Ag orebody were −1.2 to1.5‰ (average 0.03‰) and −18.4 to −13.2‰ (average
−16.6‰), respectively. The calculated δ18OV-SMOW values in the Au orebody showed a
variation ranging from 13.2 to 18.9‰ (mean 17.2‰). The corresponding values in the Ag
orebody ranged from 11.9 to 17.3‰ (mean13.8‰).

Table 7. C and O isotopic data of the Changkeng–Fuwan Au-Ag deposit.

Sample Mineral δ13CV-PDB‰ δ18OV-PDB‰ δ18OV-SMOW‰

ckp33-1 Calcite, the late
stage of Au ore

−0.7 −11.6 18.9
ckp33-6 +1.3 −11.2 19.4
ckp8-6 +1.2 −17.2 13.2

ckp10-4

Calcite, the late
stage of Ag ore

−0.1 −17.6 12.8
ckp16-2 −1.2 −13.2 17.3
ckp24-2 +1.0 −18.4 11.9
ckp25-1 −0.3 −17.1 13.2
ckp26-3 −0.7 −18.4 11.9
ckp34-9 +1.5 −15 15.4

6. Discussion
6.1. Fluid Evolution

Fluid inclusions can provide insights into the metallogenic processes of hydrothermal
systems [54,68,69]. The evolution of the fluids for the Changkeng–Fuwan Au-Ag deposit
can be reconstructed by petrographic, microthermometric, and laser Raman spectroscopy
data of the FIs, which indicate that the ore-forming fluid in the Au and Ag mineralizations
showed similarity in their chemical and physical properties. As described earlier, the type I
inclusions dominated in the Au and Ag mineralizations. Laser Raman spectroscopy data
indicated that the H2O dominated the vapor and liquid phases with no other volatiles
detected. In the early stage, the ore-forming fluid was represented by medium-low temper-
ature and medium-low salinity, which belonged to the NaCl-H2O system (Figures 8 and 9,
Table 2). In the late stage, the ore-forming fluid had a low temperature and low salinity
and turned into an H2O-NaCl system (Figures 8 and 9, Table 2). Low-salinity fluids can
be generated by the mixing of meteoric water with magmatic fluids [70]. These features,
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combined with the results of the H and O isotopes (Figure 11), indicate that the primary
ore-forming fluid probably mixed with meteoric water infiltrating downward along the
fractures. As the mineralization progressed, meteoric water was involved (Figure 11),
which led to a temperature and salinity decrease in the ore fluid.
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Figure 11. Plot of δD vs. δ18OH2O for the Changkeng–Fuwan Au-Ag deposit (from [70]).

The Th of the FIs in the Au mineralization ranged from 158 to 282 ◦C. The correspond-
ing values in the Ag mineralization were between 146 and 289 ◦C. The salinities of the
FIs were 0.35–9.88 wt.% and 0.18–11.7 wt.% NaCl equivalent, respectively. The Th and
salinity diagrams [71] show that the three fluid groups depicted an obvious descending
trend (Figure 12). This trend indicates a product of the gradual mixing of magmatic fluid
with meteoric water [72].
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6.2. Source of Ore-Forming Fluids

H and O isotopic analyses play a critical role in tracing the origin and evolution history
of fluids [73–77]. The δD-δ18O isotopic diagram shows that the H and O isotopic data of the
Au and Ag orebodies had a similar distribution (Figure 11). This implies that the sources
of the ore-forming fluids for the Au and Ag orebodies were similar. The H and O isotopic
results from the Au and Ag orebodies fell between the magmatic water region and the
meteoric water line (Figure 11), and most data plots were close to the primary magmatic
region. This suggests that the magmatic component contributed more than the meteoric
water. The fluids of the deposit may be partly derived from magmatic fluid, and meteoric
water was involved during the mineralization. It was also consistent with the late stage
fluids with low temperature and salinity caused by a meteoric water source.

He and Ar isotopic analyses also play a critical role in tracing the origin of ore-forming
fluids [66,78]. Generally, the source of the He-Ar isotopes of the fluids were as follows:
(1) air-saturated meteoric water (ASW); (2) mantle-derived fluids (MDF); and (3) crust-
derived fluids (CDF) [66,79–83]. The ASW was characterized by 3He/4He = 1.4 × 10−6 and
40Ar/36Ar = 295.5. The corresponding values in the MDF were 6–9 Ra (Ra = 3He/4He) and
40,000, respectively. The corresponding values in the CDF were 0.01–0.05 Ra and >295.5,
respectively.

The values of the 3He/4He in the FIs from the Au and Ag orebodies varied from 2.46
to 2.50 Ra and 1.41 to 5.70 Ra, respectively. The values were lower than the values of the
mantle (6–9 Ra) but much higher than the values of the crust (0.01–0.05 Ra). In the 3He-4He
diagram (Figure 13a), the value of 3He/4He in the FIs from the Au and Ag orebodies had
a similar distribution, and all data were plotted between the crustal and mantle helium
isotopic values. This indicates that the ore-forming fluids of the deposit may be a mixture of
the MDF and CDF. The percentage of the MDF can be calculated by the equation from [63].
The calculated results ranged from 17.85 to 72.59% (average 44.84%), reflecting that the
ore-forming fluids of the deposit may mainly derive from the MDF with the addition of
the CDF. In addition, the values of 40Ar/36Ar varied from 295.6 to 314.7, with a mean
value of 300.9, which was also slightly higher than that of air (295.5). The 40Ar/36Ar values
of the Au and Ag orebodies also showed a similar distribution in the R/Ra-40Ar/36Ar
diagram (Figure 13b). All data fell between the MDF and ASW values, which revealed that
the fluids were formed by mixing meteoric water and mantle-derived fluids. Zeng et al.
(2007) [84] proposed that the fluid of a magmatic source is characterized by high 3He/4He
and 40Ar/36Ar values, and the fluid of a meteoric source has low 3He/4He and 40Ar/36Ar
values. The He and Ar data suggest that the fluids of the deposit may be a mixture of a
magmatic source and a meteoric source.
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The C and O isotopic analyses are often used to trace the origin of the carbon in
ore-forming fluids [86–88]. The carbon in the fluids included three sources: (1) the upper
mantle, (2) marine carbonate, and (3) sedimentary organic matter carbonate [85]. The
δ13CV-PDB values of calcite from the Au and Ag orebody ranged from −0.7 to 1.3‰ and
−1.2 to1.5‰, respectively, which were slightly higher than the mantle source (−8 to
−2‰ [89]). The δ18OV-SMOW values of calcite ranged from 13.2 to 18.9‰ and 11.9 to 17.3‰,
respectively, which were obviously higher than the mantle source (6.5 to 9.5‰ [89]). The
C and O isotopic data of calcite from the Au and Ag orebodies had a similar distribution
(Figure 12). All the data were plotted between the magmatic field [85] and marine carbonate
field [90]. Moreover, the samples showed a horizontal zonation pattern between δ13CV-PDB
and δ18OV-SMOW (Figure 14). Therefore, the carbon of fluids may derive from a magmatic
source [91]. In summary, we conclude that the source of the fluids in the Changkeng–Fuwan
deposit were a mixture of magmatic fluid and meteoric water.
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6.3. Source of Ore-Forming Metals

S isotopic analyses can effectively trace the origin of the metals in ore-forming flu-
ids [81–83,93–98]. Studies on the sulfides related to the Au and Ag mineralizations are
helpful to understand the source of the Au and Ag in ore-forming fluids [99–101], due to the
lack of sulfate minerals in the Changkeng–Fuwan deposit. Thus, the total S isotopic compo-
sitions of the ore-forming fluids can be represented by the δ34S values of sulfides [102]. The
δ34S values of the sulfides from the Au and Ag orebodies in this study and previous studies
ranged from −5.8 to +8.73‰ (mean −0.84‰; Table 3; Figure 15a) and −8.7 to +7.39‰
(mean 2.58‰; Table 4; Figure 15b), respectively, which were close to the value of magmatic
sulfides (0 ± 5‰; [92]). This suggests that the sulfur of the Changkeng–Fuwan deposit
mainly came from magmatic sulfur [103–105].
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The Pb isotopic data can provide indicators about the origin of metal and the tectonic
environment of the mineralization [106–108]. We analyzed the Pb isotopes of the Au and Ag
orebodies, combined with previously published Pb isotopic data. The Pb isotopic data from
the Au and Ag orebodies fell within a narrow range (Table 5). The diagram of 207Pb/204Pb
versus 206Pb/204Pb (Figure 16) indicates that all the Pb isotopic data were plotted above or
near the upper crust curve, which was consistent with the previous studies. Zhu (1998) [109]
proposed that the ratios of 207Pb/204Pb and 208Pb/204Pb can also reveal the source of the
metal, while 206Pb/204Pb is sensitive to the time of mineralization. Comparison of data from
different rock types can determine the ore formation mechanism. The ∆β-∆γ diagram can
reflect the tectonic environment and source of the metal, which is not influenced by the time
factor. It can more effectively trace the origin of metals than global patterns of evolution.
The values of ∆β and ∆γ can be calculated by the equation of Zhu (1998) [109] and Wei
(2020) [110]. The diagram of ∆β-∆γ (Figure 17) further shows that the Pb isotopic data were
distributed in the upper crust field or near fields between the upper crust and the mantle.
Therefore, the source of the Pb in the Changkeng–Fuwan deposit was predominantly from
the upper crust, with a minor contribution of mantle-derived Pb.

Hence, we conclude that the primary source of the metals in the Changkeng–Fuwan
deposit may be magmatic fluids.
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The Pb sources are: (1) mantle; (2) upper crust; (3) (3a, magmatism; 3b, sedimentation); (4) chemical
sedimentation; (5) hydrothermal sedimentation; (6) mesometamorphism; (7) deep metamorphic
lower crust; (8) orogenic belt; (9) ancient shale crust; and (10) retrograde metamorphism.

6.4. Mineralization Zonation

Our new data from the FIs and isotopic analyses showed that the origin and evolu-
tion of the ore-forming fluids and metals of the Au and Ag mineralizations were similar.
Therefore, the Au and Ag mineralizations were formed in the same metallogenic system.
However, the gold and silver orebodies were independent of one another, with the charac-
teristics of “north gold and south silver” in the plane and “upper gold and lower silver” in
the section. Xue et al. [112] suggested that there were two main types of gold deposits in
China according to the study of 450 representative gold deposits. One is characterized as
Au and Ag associated, with low Pb and Zn contents; the other is Au, As, and Sb associated,
with low Ag contents. The statistical results of the mineralization element contents of
125 gold and silver ores samples in the boreholes showed that the Au and Ag orebodies
were not completely separated but associated with each other. In particular, in the contact
area of the Au and Ag orebodies in the central part, both the contents of the Au and Ag in
the same spatial position were close to or above the cut-off grade. The elements of Au (As,
Sb)-Au (Ag)-Ag (Au, Pb, Zn, Cu) were zoned with depth. Considering the geochemical
characteristics of the elements, we propose that the reason for the mineralization zonation
of the Au and Ag orebodies are as follows: Au is a variable element with three forms, Au+,
Au3+, and Au0. Au+ is a strong alkaline cation, and its ionic potential is similar to that of
Cu+ and Ag+. Au3+ is a transition ion, and its ionic potential is similar to that of Sb3+ and
As3+ [112–114]. Au migrates mainly in the form of Au+ at depth and is associated with Ag+.
The ionic potential of Ag+ and Au+ is as follows: Ag+ 0.79 and Au+ 0.73. Generally, if the
coordination anions remain unchanged, the greater the ionic potential of the cations in the
complex, the more stable the complex [115,116]. Thus, it presents lower silver (associated
gold). Au+ is oxidized to Au3+ in the shallow to near-surface, which is associated with
As3+ and Sb3+, and presents upper gold (associated silver). In addition, the Au, As, and Sb
elements can migrate in the gas phase; so, Au3+, As3+, and Sb3+ can occur far away from
the top of the metallogenic rock mass.

6.5. Ore Deposition Mechanism and Genesis

Usually, the metals of the ore-forming fluid exist in the form of Cl- and HS-aqueous
complexes, and temperature plays a critical role in the stability of the metal complexes [117–119].
A certain degree of cooling of the fluid will lead to the precipitation of the base metals. The
ore-forming fluids of the Au and Ag mineralizations belong to the NaCl-H2O system with
low-medium temperatures and low-medium salinities. The data of the FIs in the Au and
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Ag mineralizations from the early stage to the late stage indicate that the temperature and
salinity of the ore-forming fluids decreased continuously. It shows an integration of both
mixing and cooling processes. Moreover, the H, O, He, and Ar isotopic data implied that the
fluids of the deposit were formed by mixing meteoric and magmatic fluids. These FIs and
stable data demonstrate a simple cooling trend and mixing with meteoric waters during the
evolution of the fluid [120–123]. Meanwhile, the data of the FIs from the middle-stage and
late-stage with relatively lower salinity and lower temperature fail to provide any evidence
for boiling. In summary, it is considered that fluid mixing ought to be the main mechanism
for the deposition of Au and Ag.

Many researchers have proposed hypotheses for the genesis of the Changkeng–Fuwan
Au-Ag deposit [14–17]. At present, its genesis remains controversial. There are two main
views to interpret its genesis: (1) epithermal deposit [15] and (2) magmatic hydrothermal
deposit [17]. The Changkeng–Fuwan Au-Ag deposit has unique geological features, which
differ greatly from a typical epithermal Au-Ag deposit. Meanwhile, the hydrothermal
alteration and mineral assemblage of the deposit are inconsistent with the epithermal
deposit [124,125]. Based on the new data in this study, we propose that the Changkeng–
Fuwan Au-Ag deposit might be classified as a far-source low-temperature magmatic
hydrothermal deposit [112,113]. The detailed reasons for the classification are as follows:

(1) The orebodies of the far-source low-temperature magmatic hydrothermal deposit
are hosted in a clastic rock–carbonate–siliceous rock formation and are mainly controlled
by faults. The orebodies in the Changkeng–Fuwan Au-Ag deposit occur within Zimenqiao
Formation siliceous rocks and limestone and are mainly controlled by faults.

(2) The ore minerals of the Changkeng–Fuwan Au-Ag deposit predominantly consist
of pyrite, galena, sphalerite, and silver-bearing minerals, with minor chalcopyrite; while
the gangue minerals are mostly quartz, sericite, and calcite, with accessory realgar and
fluorite. The hydrothermal alteration of both the Au and Ag mineralizations is similar. The
main alteration types consist of silicification, sericitization, sulfidation, and carbonatization.
Among these, silicification and sulfidation are the most common types. The early stage of
the deposit is characterized by silicification. The alteration and mineral assemblage of the
Changkeng–Fuwan Au-Ag deposit are similar to a far-source low temperature magmatic
hydrothermal deposit.

(3) The type of FIs in a far-source low-temperature magmatic hydrothermal deposit
is characterized by aqueous liquid FIs. The homogenization temperatures range from
140 to 300 ◦C. The types of FIs in the Changkeng–Fuwan Au-Ag deposit were two-phase
liquid-rich inclusions and monophase liquid inclusions. The ore-forming fluids of the Au
and Ag mineralizations were generally characterized by low-medium temperatures and
low-medium salinities and belong to a NaCl-H2O system.

(4) The C, H, O, He, and Ar isotopic data demonstrate that magmatic-derived fluid
matters during mineralization. In addition, the S and Pb isotopic data show that the
primary source of the metals in the Changkeng–Fuwan deposit may be a magma source.

(5) The orebodies of far-source low-temperature magmatic hydrothermal deposit are
often far from the igneous intrusion. Although there are no exposures of igneous rocks at
the surface in the mine district, related geophysical data showed that a concealed pluton
underlay the Changkeng–Fuwan Au-Ag deposit. The concealed pluton may provide the
most important mineral and heat sources for the Changkeng–Fuwan deposit.

Collectively, the geological setting, ore geology, hydrothermal alteration, and the
characteristics of the fluid and stable isotopic data above attest that the Changkeng–Fuwan
Au-Ag deposit belongs to a far-source low-temperature magmatic hydrothermal deposit.

7. Conclusions

(1) The Au and Ag mineralizations of the Changkeng–Fuwan deposit are the products
of the same metallogenic system, and three metallogenic stages were identified: a pyrite–
quartz–sericite stage (early), a polymetallic sulfide stage (middle), and a quartz–calcite
stage (late).
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(2) The ore minerals of the Changkeng–Fuwan Au-Ag deposit predominantly consisted
of pyrite, galena, sphalerite, and silver-bearing minerals, with minor chalcopyrite; while
the gangue minerals were mostly quartz, sericite, and calcite, with accessory realgar
and fluorite.

(3) Two types of FIs were recognized: two-phase liquid-rich inclusions (type I) and
monophase liquid inclusions (type II).

(4) The ore-forming fluids of the Au and Ag mineralizations were generally presented
by low-medium temperatures and low-medium salinities and belong to a NaCl-H2O system.
Fluid mixing ought to be the main mechanism for the deposition of Au and Ag.

(5) The isotopic data (C, H, O, He, Ar, S, and Pb) showed that the source of fluids in
the Changkeng–Fuwan deposit was a mixture of magmatic fluid and meteoric water, and
the primary source of the metals may be magmatic fluids.

(6) Integration of the regional geology, ore geology, hydrothermal alteration, fluid
inclusion, and the isotope study indicate that the Changkeng–Fuwan Au-Ag deposit
belongs to a far-source low temperature magmatic hydrothermal deposit.
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