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Abstract: The existence of radioactivity linked to the heavy-bearing minerals in building materials—
such as granite—has increased attention to the extraction procedure. Granite rocks play an essential
economic role in various areas of Egypt. Thus, this study intended to detect the 238U, 232Th, and
40K activity concentrations in the examined granite samples and to determine the corresponding
radiological risks associated with the granite. The studied rocks were collected in the Gabal Qash
Amir area (south Eastern Desert, Egypt). The obtained results of the activity concentrations for 238U
(193 ± 268) Bq/kg, 232Th (63± 29) Bq/kg, and 40K (1034± 382) Bq/kg indicated that there were mod-
erate concentrations in the investigated samples, which were greater than the worldwide average. The
radioactivity levels in the studied granite samples are due to the secondary alteration of radioactive-
bearing minerals associated with cracks of granites (secondary minerals in muscovite granites are
wolframite, uraninite, uranophane, beta-uranophane, autunite, xenotime, columbite, zircon, and
monazite). The radiological risk assessment for the public from the radionuclides that were associated
with the studied granite samples was predicted via estimating the radiological hazard factors, such as
the radium equivalent content (362 Bq kg−1), compared with the recommended limit. The dosing rate
Dair in the air (169.2 nGy/h), the annual effective dose both outdoors (AEDout ~ 0.21 ± 0.17 mSv) and
indoors (AEDin ~ 0.83 ± 0.67 mSv), the annual gonadal dose equivalent (AGDE ~ 1.18 ± 0.92 mSv),
as well as the external (Hex) and internal (Hin) hazard indices (>1), and another factor were associated
with excess lifetime cancer risk. According to the statistical investigation, the studied granites were
inappropriate for use in construction and infrastructure fields. They may induce health problems due
to the radioactivity levels, which exceed the recommended limits.

Keywords: granite rocks; radioactive; terrestrial; radium equivalent content; excess lifetime cancer

1. Introduction

Terrestrial radioactivity and cosmic radiation are the origins of natural radioactivity.
The two main types of exposure to humans are external exposure, which is related to
gamma rays emitted from terrestrial radionuclides, such as 238U, 232Th, and 40K, and
internal exposure from inhaled radon gas and its decay products [1–3].

Numerous analyses have been performed on areas with high natural radioactivity
around the world and have come to attention in recent years for risk assessments. The
previous studies have illustrated the existence of radionuclides with high concentrations in
granite rocks, sediments, and soils, etc. Among various geological items, granite rocks and
sediments play a fundamental role in building materials, as well as the accumulation and
transportation of radionuclides from one zone to another [4–7].
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Anthropogenic impacts, such as U-mining, have led to the elimination of radionu-
clides, which then disperse into the environment [8–10]. Therefore, the radioactivity levels
around mining zones are high compared to other areas and accordingly, the background
radiation will increase. Consequently, the long-term exposure to gamma radiation can
induce many acute diseases, such as those associated with the kidneys, liver, bones, lungs,
and pancreas [11]. Moreover, diseases, such as lung cancer, digestive system cancer, and
kidney cancer, can be linked to a variety of pathways, including the inhalation of radon gas
and its derivatives, as well as the ingestion of radioactive food [12,13].

Performing a radiological environmental assessment for building components in order
to investigate and control the radioactive effects on people and the environment is a large
and difficult task that must be caried out in order to fulfill long-term development goals. In
order to analyze the radiation consequences, quantifiable factors that may be utilized as
input parameters for modeling the environmental dispersion and determining the radiation
dosage should be used [14,15].

The investigation area was selected due to the economic value of the heavy radioactive
minerals amassed in the granite and sediments rocks, compared to the different areas that
have been investigated in Egyptian deserts. The novelty of the current investigation is the
detection of the levels of radionuclide concentrations in the investigated granites, which
may be involved in infrastructure implementations. In addition, the evaluation of the
public exposure to radiation via the assessment of the radiological hazards was detected
with different radioactive factors.

2. Geological Description

The Gabal Qash Amir muscovite granite area is found near the Sudan border in
Egypt’s Eastern Desert, and it makes up the southern part of the Elba topographical sheet
(NF-37 I). It is around 27 km southwest of Abu-Ramad city. It is bound by longitudes of
36◦14′24” E–36◦10′59” E and latitudes of 22◦15′21” N–22◦14′7” N. (Figure 1).
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Figure 1. Location map and Google image for the Gabal Qash Amir area.

The study location forms an isolated ovoid pluton with intruding schistose metavol-
canic rocks. The pluton outcrops along a NW–SE oriented ridge and it is bordered by wadi
sediments (Khalaf, 2005).

Khalaf (2005) concluded that the muscovite granites are a highly-fractionated com-
ponent of the calc-alkaline granite series, which was deposited in a post-orogenic tectonic
setting [16]. The muscovite granite of the studied area, and its environs, were subjected to
a thorough geological investigation (Figure 2).
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Figure 2. Geological map of the Gabal Qash Amir area, south Eastern Desert, Egypt.

2.1. Metavolcanics

The metavolcanic rocks crop out in the western and southern sectors of the investigated
area. The low to moderate relief hills of these rocks are dark-green to greyish-green in color,
massive, porphyritic, fine-grained, foliated, extensively jointed, and very schistose in certain
parts. They are made up of metavolcanics (dacite, andesite, and rhyolite). The metavol-
canics show andesite, dacite, and rhyolite compositions. Meta-agglomerates, banded
meta-crystal tuffs, and tuffs are most commonly associated with meta-pyroclastics [17].

According to the field surveys, the biotite and muscovite granites show sharp intrusive
contacts with the metavolcanics (Figure 3a).

2.2. Biotite Granite

Low to high granite relief landscapes and isolated scattered granitic blocks are found
in this granite. It comes in a variety of colors and grain sizes, ranging from medium to
coarse, with a coarse-granite domination. Vertical joints, fractures, and exfoliation are
common features (Figure 3b). The primary constituents are biotite, K–feldspar, quartz,
plagioclase, and rare muscovite. The fractures of granites include manganese oxides and
iron. Radioactive mineralization is produced in the granites, due to hydrothermal alteration.
The alteration can be seen as albitization, kaolinization, and hematitization. It intrudes
the metavolcanics with intrusive sharp contact, and is invaded by numerous types of
dykes e.g., microgranite, bostonite, basic dykes, and veins [18,19].

2.3. Muscovite Granite

The muscovite granite is found in the studied area as moderate to high relief hills
(Figure 2). Its color varies from pink to red, and its grain size extends from medium
to coarse, with coarse-grained granite dominating. This granite has been heavily worn,
exfoliated, and jointed (Figure 3c). N–S, E–W, and NE–SW oriented cracks, joints, and
fractures affect this rock. Manganese fracture filling characterizes the pluton’s peripheral
areas, particularly in the southwestern section.

Various secondary processes (kaolinization, hematization, albitization, and greening
tacks) have altered these granites [20,21]. Visible uranophane mineralization can be found
along the joint planes. The bostonite dyke cuts through the eastern half of the investigated
area of the muscovite granite and is characterized by the crimson to deep-red color; it is
heavily jointed and fractured (Figure 3d).
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metavolcanic granite (SW), (b,c) Exfoliation, cavernous, and bouldery weathering in biotite and
muscovite granite (W, E), and (d) Dark-black color basic dyke cut in the western part of the muscovite
granite (E).

3. Materials and Methods
3.1. Sampling and Sample Preparation

About 136 chosen samples of muscovite granite were collected regularly from the
studied area, utilizing a metallic scoop, and were stored in plastic zip bags. The collected
samples were transported into the laboratory, were crushed, and the homogenous samples
were sieved below 200 meshes. The samples were stored in plastic containers with a known
volume of 250 cm3 for twenty-eight days, after which the radon gas and its daughters had
reached secular radioactive equilibrium.

3.2. Gamma-Ray Spectroscopic Analysis

The radioactivity in the storage samples was detected via a solid-state detector, namely,
a hyper pure germanium (HPGe) detector. The analysis of the samples was conducted
regularly, in which each sample was measured for approximately 20 h. The detection of
radioactivity in the examined samples relied on the resolution of the HPGe detector. The
resolution was detected at 1.85 and 1332.5 for 226Ra and 60Co, respectively. Before the
measurement of radioactivity in the granite samples was taken, calibration of the HPGe
detector was conducted utilizing various radioactive approved sources, such as 226Ra,
60Co, and 241Am (USA, 1994, approved the standard sources), and the efficiency curve was
presented with two phases, with an energy range of 186–2450 keV. The 226Ra point source
was applied to determine the relative efficiency curve. At the same time, in the other phase,
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the normalization of the relative curve of the spectrometer was achieved with potassium
chloride. After the calibration, and before the measurements were taken, the background
radiation was detected via a blank vessel with an identical volume and was estimated
at an identical duration. Finally, after the detection, the activity of the radionuclide was
determined by the following Formula (1) [22]:

A =
N/t
εIγm

(1)

where A refers to the activity of the radionuclide (Bq kg−1), N denotes the full-energy
peak’s total net count (by subtracting the background area from the overall area, the peak
areas are found), t shows the duration of the count (Sec), ε represents the efficiency of the
HPGe detector, Iγ refers to the γ-abundance, and m is the mass of the measured sample
(kg). The detection of 238U in the granite samples was analyzed by determining 226Ra
(186 keV), 214Pb (0.352, 0.295 MeV), 234Pa (1.001 MeV), and 214Bi (0.609, 1.120, 1.765 MeV),
while the 232Th activity concentration was determined from its decay products at energies
of 0.911, 0.338 MeV for 228Ac and 0.583, 2.614 MeV for Tl. Furthermore, the 40K activity
concentrations were detected at photopeak energy (1.460 MeV) [23]. To eliminate any
inaccuracy in the ray intensities, and the influence of coincidence summation, the efficiency
calibration of the spectrometry system was performed utilizing the radionuclide-specific
efficiency approach. Certified reference materials, such as RGU-1, RGTh-1, and RGK-1,
were employed; their densities were equal to that of the building materials after pulveriza-
tion [24]. The container geometry was selected according to the sample type in order to
distribute the samples homogeneously. The 226Ra, 232Th, and 40K had MDAs of 2, 4, and
12 Bq kg−1, respectively. Total radiation level uncertainty was estimated using systematic
and random detection errors. Random errors of up to 5% were found in radioactivity
readings, and regular mistakes of 0.5 to 2% were found in efficiency calibration [25]. After
the detection of activity concentrations of 238U, 232Th, and 40K, the radiological variables
were estimated according to Table 1.

Table 1. Important radiological parameters and indices [26,27].

Parameter Definition Formula

Raeq

The radium equivalent content (Raeq) is a radioactive parameter
that is widely applied in radiation health hazards. The results of
Raeq must be less than 370 Bq kg−1, which keeps the AED for the

public lower than one mSv.

Raeq (Bq kg−1)= ARa + 1.43 ATh + 0.077 AK

D (nGy/h)

The radioactive factor known as the absorbed dose rate is used to
evaluate the effect of gamma radiation at a distance of 1 m from
radiation sources in the air, owing to the concentrations of 238U,

232Th, and 40K.

Dair (nGy h−1) = 0.430 AU + 0.666 ATh + 0.042 AK

AEDout
An element of radioactivity called the yearly effective dose is used

to gauge radiation exposure levels over a fixed period of
time (1 year).

AEDout (mSv/y) = Dair (nGy/h) × 0.2 × 8760 (h/y) × 0.7
(Sv/Gy) × 10−6 (mSv/nGy)

AEDin
AEDin (mSv/y) = Dair (nGy/h) × 0.8 × 8760 (h/y) × 0.7

(Sv/Gy) × 10−6 (mSv/nGy)

Hex
The radiological parameters used to evaluate the risk of gamma

radiation are known as the external hazard index.
When radon and its decay products are exposed internally, the

internal hazard index is used.

Hex = AU
370 +

ATh
259 +

AK
4810

Hin Hin = AU
185 +

ATh
259 +

AK
4810

Iγ

Due to the various combinations of distinct natural activities in the
sample, another index was proposed by a group of specialists to

determine the amount of radiation hazard linked with the natural
radionuclides in the samples.

Iγ = ARa
150 +

ATh
100 +

AK
1500

AGDE
The radioactive measure known as the yearly gonadal dose

equivalent is used to calculate the doses of gamma radiation that
are absorbed by the gonads.

AGDE (mSv y−1) = 3.09ARa + 4.18ATh + 0.314AK

ELCR The radioactive factor used to determine whether gamma radiation
exposure has caused lethal cancer is called excess lifetime cancer. ELCR = AEDout × DL × RF
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4. Results and Discussion
4.1. Radioactivity in Granites

Table S1 displays the 238U, 232Th, and 40K activity concentrations that were detected in
the granite samples. Table 2 depicts the activity concentration means of the 238U, 232Th, and
40K samples have surpassed the worldwide averages of 35, 45, and 412, respectively [3].
As elucidated in the investigated granite samples, the mean of AU was 193 ± 268 Bq kg−1,

greater than the mean reported value (33 Bq kg−1), with a factor of approximately six. It
ranged from 22 to 2099 Bq kg−1, while the mean of ATh was 63 ± 29 Bq kg−1, which is
higher by a factor of 1.4 compared to the 45 Bq kg−1 worldwide average, and its minimum
value was 10 Bq kg−1. The maximum value was 183 Bq kg−1. The values of the AK were
altered from 125 to 1659 Bq kg−1, with a mean value of 1034 ± 382 Bq kg−1, which is
greater by a factor of 2.5 compared to the worldwide average (412 Bq kg−1). The skewness
values of 238U and 232Th activity concentrations were positive and demonstrate a positive
asymmetric nature. In contrast, a negative asymmetric distribution was displayed in the
skewness values of the 40K activity concentration. Additionally, the kurtosis values reflect
the distribution probability’s peak. Table 1 illustrates that the kurtosis values are positive
for the 238U and 232Th activity concentrations (the distributions are peaked). The activity
concentration distribution of 40K is flat, due to the fact that the kurtosis values are negative.

Table 2. Basic statistical summary of muscovite granite rocks, Gabal Qash Amir, Egypt.

Variables * U-238 Th-232 K-40 Raeq Hin Hex Iγ Dair AEDout AEDin AGDE ELCR

(Bq/kg) (Bq/kg) (Bq/kg) (Bq/kg) nGy/h mSv mSv mSv

N 136 136 136 136 136 136 136 136 136 136 136 136

Mean 193 63 1034 362 1.50 0.98 1.30 169.2 0.21 0.83 1.18 0.0007

SD 268 29 382 298.21 1.52 0.81 1.01 137.0 0.17 0.67 0.92 0.0006

Min 22.23 9.74 125.20 65.09 0.24 0.18 0.25 31.56 0.04 0.15 0.23 0.0001

Max 2099.50 182.70 1658.90 2351.01 12.03 6.35 7.89 1078 1.32 5.29 7.24 0.0046

Skew 4.19 0.77 −0.46 3.41 3.82 3.41 3.25 3.37 3.37 3.37 3.27 3.37

Kurtosis 22.15 2.69 −1.04 16.79 19.57 16.80 15.68 16.45 16.45 16.45 15.81 16.45

* N = Number; SD = Standard deviation; Max = Maximum; Min = Minimum; Skew = Skewness.

The frequency distribution of AU, ATh, and AK are presented in Figure 4. However,
the 238U, 232Th, and 40K activity concentrations displayed a multi-modality degree. This
illustrates that the granites were enriched with various radioactive-bearing minerals; thus,
this study needs to analyze the minerals. The present results of AU, ATh, and AK are
compared with other studies in various countries (Table 3).

Figure 5 exhibits a map for the granite samples with the AU, ATh, and AK. The
proportion AU/ATh indicates that the granite has been enriched with uranium as a re-
sult of rainwater leaching, which has aided in the movement of uranium minerals and
precipitation at faults and joints [10].

As shown in Figure 5, the highest uranium activity concentrations were found in the
examined samples that were collected from the southeastern region of the studied area.
This is linked to the disruption of radioactive materials that have been deposited inside
of the granite fissures. Moreover, several of the analyzed areas had high thorium activity
concentrations. This is due to the presence of several minerals in the granite samples, such
as thorianite, zircon, and monazite.
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Table 3. Comparison of 238U, 232Th, and 40K activity concentrations in the Gabal Qash Amir area
with other studies of different countries.

Country 238U 232Th 40K References

Egypt 193 63 1034 Present study
Egypt 137 82 1082 [28]

Saudi Arabia 28.82 34.83 665.08 [29]
Palestine 71 82 780 [30]

Jordan 41.52 58.42 897 [31]
India 25.88 42.82 560.6 [32]
Iran 77.4 44.5 1017.2 [33]

Spain 84 42 1138 [34]
Greece 74 85 881 [25]
Turkey 80 101 974 [35]
Nigeria 63.29 226.67 832.59 [1]

Italy 85.86 24.71 1340.49 [36]
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4.2. Radioactive Assessment

The Raeq values in the granite samples are computed and presented in Figure 6.
As reported in Figure 6, 34% of the examined samples represent higher values of Raeq
than 370 Bq kg−1. The Raeq mean value was 362 Bq kg−1, which is comparable with the
recommended limit, and the Raeq values ranged from 65.09 to 2351.01 Bq kg−1 in the
examined granite. The highest Raeq reveals the presence of U and Th in the examined
granite with high activity concentrations.

The results of Dair reveal that the highest Dair values were detected in the granite
samples from the southeastern region of the studied area. Statistically, the Dair data changed
from 31.56 to 1078 nGy/h, with the mean value being 169.2 ± 137.0 nGy/h above the
approved limit (59 nGy/h) [3,37]. This displays that the granites of the Gabal Qash Amir
area are inappropriate for various infrastructure fields. This leads to evaluating the public
exposure from the investigated granites. Based on the Dair data of the examined granites,
the AED values were estimated based on two scenarios and are displayed in Table S1.
Table 2 illustrates that the AEDout values varied from 0.04 to 1.32 mSv, with a mean value of
0.21 ± 0.17 mSv, > 0.07 mSv (recommended limit) [3], while 0.15 and 0.67 mSv are the Min
and Max values of the AEDin, respectively, with a mean value of 0.83 ± 0.67 mSv, which is
two times that of the recommended value of 0.41 mSv. Moreover, long-term exposure to
huge dosages might cause tissue degeneration, cancer, coronary heart disease, and may
impact deoxyribonucleic acid (DNA) in genes [38].
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studied area.

The significant health risks can be detected with higher radiological hazard indices. In
the current study, Hex data ranged from 0.18 to 6.35, with a mean value of 0.98, which is
comparable to the recommended value (Hex ≤ 1), while the maximum value of Hin in the
investigated granites was 12.03 and the minimum was 0.24, with a mean value 1.5, which
is higher than the recommended value (Hin ≤ 1). Consequently, a significant risk can be
observed due to the internal hazard index. This indicates that health effects, stemming
from the inhalation of emitted radon gas and its decay products from the granite rocks, will
be observed [39].

The range of Iγ values in the investigated granite samples varied between 0.25 and
7.89 for the minimum and maximum values, respectively. The high Iγ values show that the
granite samples in the southeastern half of the study area provide a considerable health
risk and, thus, are not compatible for use in construction materials.

The AGDE data were calculated for all of the granite samples and are shown in
Table S1 and the consistent descriptive statistics are shown in Table 1. The range of AGDE
values altered between 0.23 (Sample number S9 and S14) and 7.24 (Sample number 126)
mSv y−1. The mean value was 1.18 ± 0.92 mSv y−1, which is four times higher than the
limit of 0.3 mSv y−1 [3]. Thus, the granite rocks in the investigated area are inconvenient
for masonry materials.

Moreover, the ELCR values of the granite rocks studied here show a range of 0.0001 to
0.0046, with a mean value of 0.0007, which is two times greater than the maximum limit
(0.00029) [40]. This demonstrates that public exposure to the investigated granite causes
cancer effects over the course of their lives.

4.3. Statistical Analysis

The study divides the association between natural radioactive indicators into two
components. First, the correlation between AU, ATh, and AK with the Raeq was studied and
is plotted in Figure 7a–c. A strong positive correlation (R2 = 0.96) between the Raeq and
238U activity concentrations was found. A good correlation (R2 = 0.53) between Raeq and
232Th activity concentrations was also found, while there was a weak correlation (R2 = 0.04)
with 40K. The correlation of Raeq with the natural radionuclide activity concentrations
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indicates that the granite rock is enriched with uranium, which is the main contribution
to Raeq. This establishes the geological properties of the granite rocks in the investigated
zone, where weathering has caused the occurrence of heavy radioactive minerals, including
thorite, uranophane autunite, and uranothorite.
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Moreover, rare metals are contained in monazite, zircon, samarskite, xenotime, columbite,
rutile, fergusonite, and fluorite [16]. Second, the Pearson correlation was used to look at
the links between the natural radioactivity and the radiological risks (Table 4). The Pearson
correlation shows a substantial link among all of the radiological hazard indices and
238U, and a strong correlation with 232Th, because the 238U and 232Th series are naturally
associated together. Furthermore, a weak correlation was found between the radiological
parameters and the 40K activity concentration. This emphasizes that the granitic rocks with
significant uranium activity are accountable for the radioactive hazards and health risks.

Table 4. Pearson correlation between natural radionuclides and the radiological hazard coefficients
of muscovite granite rocks, Gabal Qash Amir, Egypt.

U-238 Th-232 K-40 Raeq Hin Hex Iγ Dair AEDout AEDin ELCR AGDE

U-238 1
Th-232 0.58 1
K-40 0.02 0.67 1
Raeq 0.98 0.73 0.21 1
Hin 0.99 0.66 0.12 0.99 1
Hex 0.98 0.73 0.20 0.99 1.00 1
Iγ 0.97 0.74 0.24 0.99 0.99 0.99 1

Dair 0.98 0.73 0.21 0.99 0.99 0.99 0.99 1
AEDout 0.98 0.73 0.21 0.99 0.99 0.99 0.99 1 1
AEDin 0.98 0.73 0.21 0.99 0.99 0.99 0.99 1 1 1
ELCR 0.98 0.73 0.21 0.99 0.99 0.99 0.99 1 1 1 1
AGDE 0.97 0.74 0.23 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1
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The PCA (principal component analysis) used varimax rotations in order to control
the correlation matrix between several items. In Figure 8, the PC1 and PC2 components are
provided and plotted. The AU is highly positive in the PC1 loading, correlating with all of
the radioactive variables, and is explained with a variance of 87.83%. This indicates that
the AU is the primary source of the natural radioactivity in the granitic rocks studied here.

Minerals 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

Table 4. Pearson correlation between natural radionuclides and the radiological hazard coefficients 
of muscovite granite rocks, Gabal Qash Amir, Egypt. 

 U-238 Th-232 K-40 Raeq  Hin Hex Iγ Dair AEDout AEDin ELCR AGDE 
U-238 1            

Th-232 0.58 1           

K-40 0.02 0.67 1          

Raeq  0.98 0.73 0.21 1         

Hin 0.99 0.66 0.12 0.99 1        

Hex 0.98 0.73 0.20 0.99 1.00 1       

Iγ 0.97 0.74 0.24 0.99 0.99 0.99 1      

Dair 0.98 0.73 0.21 0.99 0.99 0.99 0.99 1     

AEDout 0.98 0.73 0.21 0.99 0.99 0.99 0.99 1 1    

AEDin 0.98 0.73 0.21 0.99 0.99 0.99 0.99 1 1 1   

ELCR 0.98 0.73 0.21 0.99 0.99 0.99 0.99 1 1 1 1  

AGDE 0.97 0.74 0.23 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 

The PCA (principal component analysis) used varimax rotations in order to control 
the correlation matrix between several items. In Figure 8, the PC1 and PC2 components 
are provided and plotted. The AU is highly positive in the PC1 loading, correlating with 
all of the radioactive variables, and is explained with a variance of 87.83%. This indicates 
that the AU is the primary source of the natural radioactivity in the granitic rocks studied 
here. 

 

Figure 8. Principal component analysis (PC1 and PC2) for the radiological data .(the overlapping 
parts are Raeq, Hex, Iγ, Dair, AEDout, AEDin, ELCR and AGDE from top to bottom) 

The PC2 load, on the other hand, is weakly positive for ATh and strongly negative for 
AK, which is explained with a variance of 10.98%. As can be seen, the loading variance is 
positive, which is explained by the fact that 232Th and 40K do not affect the radiation expo-
sure grade. The total explained variance in the PC analysis is 98.81%, indicating that the 
radioactive data proved to be good [41]. 

The correlations between the radiological parameters have been studied by applying 
hierarchical clustering analysis (HCA) and are plotted in Figure 9. 

Figure 8. Principal component analysis (PC1 and PC2) for the radiological data.(the overlapping
parts are Raeq, Hex, Iγ, Dair, AEDout, AEDin, ELCR and AGDE from top to bottom).

The PC2 load, on the other hand, is weakly positive for ATh and strongly negative for
AK, which is explained with a variance of 10.98%. As can be seen, the loading variance
is positive, which is explained by the fact that 232Th and 40K do not affect the radiation
exposure grade. The total explained variance in the PC analysis is 98.81%, indicating that
the radioactive data proved to be good [41].

The correlations between the radiological parameters have been studied by applying
hierarchical clustering analysis (HCA) and are plotted in Figure 9.
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The dendrogram of the results is divided into two clusters. Cluster I contains 232Th
and 40K, whereas cluster II comprises the rest of the radiological variables. The application



Minerals 2022, 12, 884 12 of 14

of HCA indicates that the radioactivity of the granitic rocks is attributed to the activity
concentration of 238U. The HCA agrees with the other statistical investigations, such as the
Pearson analysis and the PCA.

5. Conclusions

The goal of this study was to produce a comprehensive assessment of the radioactivity
associated with granite rocks that can be applied in building materials and infrastructure
fields. A statistical study was carried out in order to show the geological processes that
result in a rise in radioactive content in granite rocks. The activity concentrations of 193,
63, and 1034 Bq kg−1 of AU, ATh, and AK, respectively, are moderate concentrations and
are greater than the mean worldwide value. Moreover, all of the radiological hazard
parameters were detected in the studied samples and displayed greater values than the
recommended levels. This is attributed to the existence of radioactive-bearing minerals
and rare metals in the investigated granite rocks. The granite in the examined area is
not appropriate to consume and should not be employed in construction materials or in
infrastructure applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12070884/s1, Table S1: The concentrations of radionuclides
238U, 232Th, 40K and the radiological hazard indices.
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