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Abstract: The Hailijin (HLJ) sandstone-type uranium deposit was newly discovered in the south-
western Songliao Basin in recent years. Different from the roll-front orebody of the sandstone-type
uranium deposits with (phreatic oxidation) interlayer redox origin (or phreatic oxidation), the ore-
body of the HLJ uranium deposit is tabular-shaped and multi-stratiform. The kaolinite content
in ore-controlling gray sandstones is significantly higher than that in oxidized sandstones, which
have the highest kaolinite content in the less oxidized zone of sandstone-type uranium deposits in
the basins of western China (such as Yili Basin and Turpan-Hami Basin). In order to identify the
properties of ore-forming fluids and the genesis of the tabular-shaped orebody of the HLJ uranium
deposit, trace element, scanning electron microscopy (SEM), X-ray diffraction (XRD), and uranium
mineral electron probe (EPMA) analyses of different geochemical zone sandstones in ore-bearing
strata were carried out. As a result, kaolinite, illite, and illite/smectite formation (I/S) appear to
alternate with one another in ore-controlling gray sandstones, and the content of kaolinite is the
highest in ores. SEM analysis also suggests that uranium minerals are commonly adsorbed on the
surface of foliated and vermicular kaolinite or trapped within micropores of kaolinite. In this case, it
is inferred that kaolinite in ore-controlling gray sandstones is of epigenetic origin, and the ore-bearing
sandstones have undergone at least one transformation of acidic fluids. Combined with the regional
paleoclimate, regional tectonics, and regional burial history, it is concluded that the acidic fluid
originated from the uranium-rich source rocks of the Lower Cretaceous Jiufotang Formation, and the
tabular-shaped orebody of the HLJ uranium deposit was formed by exudative metallogeny. When
the uranium-rich acidic organic fluids exuded upward from deep levels along the faults to the target
strata, the solubility of uranium and other polymetallic elements decreased because of the decrease
in temperature and pressure, and uranium eventually precipitated and accumulated in sandstones
with suitable permeability and porosity. However, it cannot be ruled out that the superimposition
and transformation of uranium mineralization was caused by phreatic oxidation or local interlayer
redox during the interval of exudative metallogeny.

Keywords: clay minerals; acidic organic fluid; tabular-shaped orebody; Hailijin sandstone-type
uranium deposit; Songliao Basin

1. Introduction

In recent years, a series of remarkable achievements regarding uranium exploration
have occurred in the southwestern Songliao Basin, and a large number of large or super-
sized sandstone-type uranium deposits (such as Qianjiadian uranium deposit, Baolongshan
uranium deposit, HLJ uranium deposit, and Dalin uranium deposit) have been newly dis-
covered [1–5]. The uranium orebody is a multi-stratiform and tabular-shaped orebody [6–8],
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which is obviously different from those of roll-front form orebodies in sandstone-type ura-
nium deposits of interlayer oxidation zone origin (such as the Mengqiguer uranium deposit
in the Yili Basin, the Shihongtan uranium deposit in the Turpan-Hami Basin, the Dong-
sheng uranium deposit in the Ordos Basin, and the Bayinwula uranium deposit in the Erlian
Basin) [9–13]. In addition, normally, kaolinite is rich in ore-bearing sandstones, especially
in less oxidized sandstones of interlayer oxidation origin sandstone-type uranium deposits
(such as the Mengqiguer and Shihongtan uranium deposits). In contrast, in the southwestern
Songliao Basin, the kaolinite is enriched in ore-bearing gray sandstones [8,14–16], and the
kaolinite and uranium concentrations exhibit a relatively strong positive correlation, indicating
that the uranium mineralization has undergone at least one stage of acidic fluid transformation.
However, the source of the acidic fluid and its genetic relationship with the tabular-shaped
uranium orebody have rarely been discussed [14,15]. In fact, foreign scholars have proposed a
lacustrine mudstone−humic acid genesis model and a hot brine underwater interface gen-
esis model based on the systematical studies on the genesis of the tabular-shaped uranium
orebody in the Colorado Plateau, United States [17–23]. Furthermore, it is believed that the
formation of tabular-shaped uranium orebodies is related to the organic acid-rich fluid which
is generated by the compaction of mudstones underlying ore-bearing layers. However, most
domestic scholars consider that it is the composite genesis of both atmospheric precipitations
infiltrated by interlayer oxidation and deep-sourced oil (gas) or thermal fluid, ignoring the
organic acid fluid generated during the burial evolution of the overlying mudstones (coal
seam or source rock) under the ore-bearing layer [14–16,24].

Therefore, the HLJ sandstone-type uranium deposit in the Songliao Basin is studied
in this paper. By systematically collecting sandstone samples of different geochemical
zones (oxidation zone and reduction zone) of ore-bearing strata, trace element, scanning
electron microscopy (SEM), X-ray diffraction (XRD), and other analyses were carried out to
identify the changes in clay minerals in different geochemical zones and the paragenetic or
associated relationship with uranium minerals. Based on the regional paleoclimate and
tectonic evolution, the source of kaolinite-related acidic fluids and its role in the formation
of tabular-shaped uranium orebodies is discussed. The study has profound theoretical
significance for the deeper understanding of the metallogenic mechanism and metallogenic
model of sandstone-type uranium deposits.

2. Geological Setting

The Songliao Basin is the largest Mesozoic-Cenozoic petroliferous basin in North-
eastern China, and it is also a fault-depression Mesozoic continental basin formed on the
cratonic basement. It is further divided into seven first-order tectonic units, namely the
Northern Plunge, Central Downwarp, Northeastern Uplift, Southeastern Uplift, South-
western Uplift, Western Slope, and Kailu Downwarp [25] (Figure 1A). The HLJ uranium
deposit is a tabular-shaped sandstone-type uranium deposit formed in continental fluvial
facies [26]. It is located in the Qianjiadian Sag, a secondary tectonic unit across the Kailu
Downwarp and Southwestern Uplift (Figure 1B). The Pre-Mesozoic basement faults, such
as F1, F8, and F12, occur surrounding the HLJ uranium deposit (Figure 1B). The F1 fault in
the south is NE trending, and controls the tectonic environment at the east of the mining
area. The fault was a normal fault in the early stage, and caused the formation to uplift and
erode to form the Baolongshan tectonic erosion fenster. The F8 fault is located to the west of
the F1 fault, and is characterized by a normal fault with a NE trend (Figure 1B). This fault
mainly controls the western margin of the Qianjiadian Sag and extends northward to the
HLJ mining area in the north. The F12 fault is a strike-slip normal fault, dipping to the NE
with the southeast part extending through the HLJ mining area. In comparison, basement
faults such as the F1 fault not only penetrate the Cretaceous strata, but also connect the
source rocks of the Lower Cretaceous Jiufotang Formation (Jiufotang Fm) (K1jf ) as a natural
channel for the upward escape of deep fluid.

The sedimentary strata exposed by drilling in the HLJ mining area include the Upper
Cretaceous Qingshankou (K2qn), Yaojia (K2y), Nenjiang (K2n), Sifangtai (K2s) Fms, Neogene
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Taikang Fm (N2t), and the Quaternary (Q) (Figure 2A). The uranium mineralization occurs
in the red mottled sedimentary construction of the Lower Yaojia Fm (Figures 2B, 3 and 4).
The upper and lower oxidized zones and reduced zones can be identified vertically. The
ore-controlling gray sandstones are surrounded by red mottled oxidized sandstones, and the
orebody mainly occurs in the medium-fine-grained gray sandstones and is a multi-stratiform
and tabular-shaped orebody (Figures 3 and 4).
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3. Methods

Samples analyzed in this contribution were collected from drill hole cores of the Lower
Yaojia Fm in the HLJ uranium deposit (sampling position is shown in Figure 1B), covering
the oxidized sandstones, reduced zone sandstones, and ores. The petrographic analysis,
trace element analysis, X-ray diffraction (XRD) analysis, scanning electron microscopy
(SEM), and electron probe microanalysis (EPMA) were all conducted at the Analytical
Laboratory of Beijing Research Institute of Uranium Geology (ALBRIUG). The specific
analytical methods are described in the following.
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3.1. Trace Elements Analysis

Before testing, the oxide film, soil cement, and other impurities on the sample surface
were cleaned. Samples were then rinsed and dried, and ground into 200 mesh. Trace ele-
ments were analyzed using a plasma mass spectrometer (ICP-MS). The sample processing
method was as follows: Firstly, weighing 200 mg of powdered sample, mixing uniformly
with 900 mg LiBO2 flux, then melting in a furnace at 1000 ◦C. Secondly, dissolving and
diluting the melt with 100 mL 4% nitric acid after the melt was cooled, and then analyzing
using ICP-MS; the analysis accuracy was 5%–10%.

3.2. XRD Analysis

Samples were subjected to XRD analysis at ALBRIUG using an X’Pert PROMPD X-ray
diffraction system produced by Panalytical Company in Holland. The operating voltage
was 40 kV and the current was 40 mA. The X-ray was suspected to be a Cu target, and the
measurement angle was between 5◦ to 70◦. During the measurement, only the edge of the
samples could be taken to avoid contamination of the X-ray measuring plane. The specific
analysis process refers to the implementation standard SY/T 5163-2018.

3.3. SEM Analysis

The SEM analyses of 25 selected samples were carried out at ALBRIUG using a Nova
Nano SEM450 scanning electron microscope, which was produced by FEI Company in
Czech Republic. Samples for testing were thin sections of 1 cm × 1 cm × 1 cm cubic targets.
The test plane was carbonized and numbered. The laboratory temperature was controlled
at (20 ± 2) ◦C and the humidity was less than 80%. The main part of the instrument was
always in a high-vacuum state.

3.4. EPMA Analysis

The uranium minerals’ composition in 3 samples with a total of 33 testing points was
determined at Analytic Laboratory of Beijing Research Institute of Uranium Geology (AL-
BRIUG) using a JXA-8100 Electron Probe Micro Analyzer equipped with four wavelength
dispersive spectrometers. The samples were first coated with a thin carbon film, and the
precautions suggested by Zhang and Yang [27] were used to minimize the difference in
the carbon film thickness between samples and to obtain an approximately uniform ca.
20 nm coating. The working voltage was 20 kV and the beam current was 1 × 10−8 A. Data
were corrected online using a modified ZAF (atomic number, absorption, fluorescence)
correction procedure.

4. Results
4.1. Mineralogy

Sandstones in the reduced zone are characterized by a grayish tone (Figure 5a), partly
containing organic matter (Figure 5b). In contrast, the sandstones in oxidized zones show a
reddish tone (Figure 5c,d). Sandstones of the reduced zone are characterized as gray or off-
white, medium- to fine-grained, with relatively poor−moderate sorting and poor roundness
(Figure 5e), representing a feature of near-source accumulation. The rock-forming minerals
are mainly quartz (with a content of 60%–65%) and feldspar (with a content of 10%–15%),
of which feldspar is composed of microcline, perthite, and a small amount of plagioclase.
The debris includes intermediate-acid volcanic rocks, metaquartzite, and mica schist with a
content of 20%–25%. In addition, the accessory minerals are dominated by zircon, pyrite,
apatite, ankerite, dolomite, etc. Generally, uranium minerals are often observed in dissolved
pores on the surface of quartz and feldspar (Figure 5f,g). Meanwhile, hematitization spots
can be observed in gray sandstone (Figure 5h).

The oxidized zone sandstones mainly include red and maroon, medium- to fine-
grained sandstones with a similar mineralogical composition to that of the gray sandstones.
However, some differences still exist: (1) oxidized sandstones contain a large amount
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of hematitization alteration (Figure 5i); and (2) oxidized sandstones lack organic matter
and pyrite.
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Figure 5. Petrographic characteristics of sandstones of the Lower Yaojia Fm in the HLJ uranium
deposit. (a) Photograph of gray fine-grained sandstone from reduced zone; (b) photograph of gray
fine-grained sandstone with a large amount of organic matter from reduced zone; (c) photograph of
red fine-grained sandstone sampled from oxidized zone; (d) photograph of maroon coarse-grained
sandstone sampled from oxidized zone; (e) microphotograph of gray sandstone; (f) uranium minerals
are observed in dissolved pores on the surface of quartz (SEM image); (g) coffinite can be observed
in dissolved pores on the surface of plagioclase (SEM image); (h) in reduced zone, hematitization
spots can be observed in gray sandstones; (i) microphotograph of red sandstone, which has strong
hematitization alteration and also lacks organic material and pyrites, as compared with gray sand-
stone. Cof—coffinite, Cal—calcite, Hm−hematitization, Pe—perthite, Pl—plagioclase, Q—quartz,
U—uranium, P—phosphorus. The diameter of the coin in Figure 5a,b,d is 2 cm.

4.2. Clay Minerals

The clay minerals in the Lower Yaojia Fm of the HLJ uranium deposit are composed
of kaolinite, illite, and I/S (Table 1). The kaolinite is distributed on the surface of mineral
particles or the micropores in a vermicular and blade-like shape (Figure 6a), while the illite
is mainly in a squamiform shape. The XRD analysis results suggest that the content of
kaolinite in gray sandstone is obviously higher than that in oxidized sandstone, which
is the highest in the ores (Table 1, Figure 7). Scanning electron microscopy (SEM) results
suggest that uranium minerals are closely related to kaolinite, and often exist in adsorbed
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form on the surface of foliated and vermicular kaolinite or trapped within micropores of
kaolinite, whereas coexistence between uranium minerals and illite can hardly be observed
(Figure 6b–f).

Furthermore, kaolinite, illite, and I/S generally alternate with one another in gray
sandstones of reduced zones (Figure 7). The content of kaolinite, illite, and I/S in oxidized
zones range from 20% to 59% (ave. 49.29%), 20% to 38% (ave. 27.71%), and 14% to 42%
(ave. 23%), respectively, while that in reduced zones ranges from 60% to 86% (ave. 72.1),
5% to 24% (ave. 14.1%), and 4% to 20% (ave. 13.8%).

Table 1. The XRD analysis results of sandstones and U content of ore-bearing strata in the HLJ
uranium deposit.

No. Sample No. Lithology Depth (m) Geological Zone
Relative Content of
Clay Minerals (%) U (ppm)
Kl Ilt I/S

1 L14-3-11 Red fine-grained sandstone 585.5 Oxidized zone 56 25 19 2.25
2 L14-3-12 Red fine-grained sandstone 589.9 Oxidized zone 51 28 21 2.06
3 L14-3-13 Red fine-grained sandstone 592.74 Oxidized zone 53 23 24 10.6
4 L16-1-4 Red fine-grained sandstone 553 Oxidized zone 48 23 29 3.22
5 L16-1-13 Red medium-grained sandstone 592 Oxidized zone 52 25 23 2.2
6 L16-1-14 Red medium-grained sandstone 592.7 Oxidized zone 53 25 22 2.2
7 L16-1-15 Red medium-grained sandstone 595 Oxidized zone 53 16 31 1.57
8 L14-3-1 Gray fine-grained sandstone 562.8 Reduced zone 69 13 18 13.6
9 L14-3-2 Light-gray fine-grained sandstone 567.1 Reduced zone 56 20 24 2.62

10 L14-3-3 Light-gray fine-grained sandstone 569.1 Reduced zone 65 15 20 5.63
11 L14-3-4 Light-gray fine-grained sandstone 570.1 Reduced zone 62 20 18 3.02
12 L14-3-8 Light-gray fine-grained sandstone 580 Reduced zone 74 18 8 22.7
13 L14-3-9 Light-gray fine-grained sandstone 583.5 Reduced zone 74 8 18 26.7
14 L14-3-10 Light-gray fine-grained sandstone 584.5 Reduced zone 76 5 19 65.2
20 L14-3-5 Gray fine-grained sandstone 575 Ore 74 14 12 137
21 L14-3-6 Gray fine-grained sandstone 578.4 Ore 81 14 5 219
22 L14-3-7 Gray fine-grained sandstone 578.6 Ore 86 10 4 62.8
23 ZKL-16 Gray medium-grained sandstone 582.3 Ore 70 30 / 303
24 ZKL-17 Gray medium-grained sandstone 584.3 Ore 82 11 7 1164
25 ZKL-18 Gray medium-grained sandstone 583.3 Ore 82 12 6 1654
26 ZKL1-2 Gray fine-grained sandstone 573 Ore 74 13 13 823
27 ZKL1-3 Gray fine-grained sandstone 574 Ore 61 24 15 393

Notes: Kl—kaolinite, I/S—illite/smectite formation, Ilt—illite, U—uranium.

4.3. Trace Elements

The average content variations in trace elements in the HLJ uranium deposit are listed
in Table 2. U, Mo, Re, V, Ni, Pb, Cr, Cu, and Zn of gray sandstones in reduced zones are
richer than those in oxidized zones. Furthermore, these elements are significantly more
enriched in ores. In particular, the content of Mo in ore-bearing gray sandstones is almost
nine times higher than that in oxidized zone sandstones. Re, Ni, Co, Zn, Cu, Pb, and V in
reduced zones are significantly increased, by 323%, 60%, 72%, 30%, 44%, 34%, and 22%,
respectively, compared with the sandstones in oxidized zones.

Table 2. Average content of trace elements of sandstone of the ore-bearing strata in the HLJ uranium
deposit.

Trace Element Average Content of Trace Element (ppm)

Geochemical Zone V Cr Co Cu Ni Zn Re Mo Pb Th U Zr Hf

Upper oxidized zone (15) 32.41 16.35 4.45 7.67 6.97 44.56 0.01 0.59 17.73 9.49 2.76 134.73 4.96
Non-ore-bearing gray

sandstone (70) 34.62 20.35 6.25 9.24 9.04 51.50 0.02 0.67 20.12 9.42 20.21 146.04 4.98

Ore-bearing gray
sandstone (68) 38.67 19.62 7.65 11.02 11.15 58.06 0.23 6.01 22.48 9.12 468.70 137.79 4.21

Lower oxidized zone (22) 31.80 14.43 5.12 7.56 7.55 48.04 0.01 0.72 16.74 8.37 4.57 121.82 4.34

Notes: the number in bracket represents the quantity of samples.



Minerals 2023, 13, 1324 8 of 17Minerals 2023, 13, x  9 of 20 
 

 

 
Figure 6. Paragenetic relationship between uranium minerals and clay minerals in HLJ uranium 
deposits: (a) kaolinite in shape of blades; (b) uranium and titanate minerals occur on the surface of 
kaolinite; (c) uranium, titanate, and framboid pyrite occur in the micropores of kaolinite; the for-
mation of framboid pyrite is earlier than that of uranium; (d) uranium and titanate are absorbed on 
the surface of kaolinite, while the coexistence of uranium minerals and illite can hardly be observed; 
(e) uranium occurs in the pores of kaolinite; (f) the microcrystalline form of uranium is adsorbed on 
the surface of kaolinite. Ilt—illite, Kl—kaolinite, Py—pyrite, Ti—titanate, S—sulfur, U—uranium. 

Figure 6. Paragenetic relationship between uranium minerals and clay minerals in HLJ uranium
deposits: (a) kaolinite in shape of blades; (b) uranium and titanate minerals occur on the surface
of kaolinite; (c) uranium, titanate, and framboid pyrite occur in the micropores of kaolinite; the
formation of framboid pyrite is earlier than that of uranium; (d) uranium and titanate are absorbed on
the surface of kaolinite, while the coexistence of uranium minerals and illite can hardly be observed;
(e) uranium occurs in the pores of kaolinite; (f) the microcrystalline form of uranium is adsorbed on
the surface of kaolinite. Ilt—illite, Kl—kaolinite, Py—pyrite, Ti—titanate, S—sulfur, U—uranium.
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uranium deposit. I/S—mixed montmorillonite/illite layer, Ilt—illite, Kl—kaolinite, U-uranium.

5. Discussion
5.1. The Fluid Property and Sources Related to the Formation of Kaolinite

The XRD analysis results of ore-bearing strata sandstones in the HLJ uranium deposit
suggest that the kaolinite, illite, and I/S in ore-controlling gray sandstones alternate with
one another (Table 1, Figure 7); that is, the kaolinite in gray sandstones is obviously en-
riched compared to that in oxidized sandstones, and reaches the highest level in the ore.
This unique signature is significantly different from the enrichment of kaolinite in less oxi-
dized sandstones of sandstone-type uranium deposits of interlayer oxidization−infiltration
origin in Western China (such as the Mengqiguer uranium deposit in the Yili Basin and
the Shihongtan uranium deposit in the Turpan-Hami Basin) [28–31]. Previous research
indicated that the formation of kaolinite is generally related to an acidic environment with
a hot and humid climate [15,32–34], whereas numerous studies have shown that the paleo-
climate of the Yaojia period in the study area was dominated by an arid climate [35–41].
Obviously, the enrichment of kaolinite in ore-bearing strata of gray sandstones is not a
response to paleoclimate, which has also been reported by Rong et al. (2016) [42], Li et al.
(2018, 2020) [15,16], Shan et al. (2019) [34], and Li et al. (2022) [43]. Combined with the
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co-existing uranium minerals and kaolinite and illite (Figure 6), it is believed that the ore-
bearing sandstones of the HLJ uranium deposit have undergone at least one transformation
of acidic fluids, and the transformation of I/S to kaolinite occurred during the uranium
mineralization period. Previous studies suggest that the acidic fluids are derived from
the upward evaporation of petroleum (gas) in the Lower Cretaceous strata underlying the
ore-bearing strata [24,36,37]. The latest research shows that the enrichment of kaolinite in
ore-controlling gray sandstones in the Qianjiadian uranium deposit is of epigenetic origin,
which is related to acidic organic fluids formed by the upward evaporation of the Lower
Cretaceous Jiufotang Fm (K1jf ) source rocks along the deep-seated faults connecting the
overlying ore-bearing layers [14–16]. Furthermore, the temperature of the acidic organic
fluids was limited to 40–120 ◦C by means of fluid inclusion temperature measurement [44]
and H-O isotopes of kaolinite [14]. In addition, the sandstones of the Yaojia Fm in the
Qianjiadian area also contain some adsorbed hydrocarbons and inclusion hydrocarbons;
n-alkanes exhibit a bimodal distribution feature. The main peak carbon ranges are C16
and C22–C25, and the Pr/Ph ranges from 0.51 to 0.84 [45], which reflects the source rocks
formed in an anoxic environment [45–48]. In addition, the vitrinite reflectivity (Ro) of
the adsorbed hydrocarbons and inclusion hydrocarbons ranges from 0.51% to 0.6% [45],
indicating that the oil filled in the sandstones derived from a mature stage. These organic
geochemistry findings manifest that the parent materials are at the submature−mature
thermal evolution stage, which is consistent with the lacustrine source rocks of the Lower
Cretaceous Jiufotang Formation in the Qianjiadian area [14,47,48].

As mentioned above, the F1 fault, which is located in the southeast of the HLJ uranium
deposit, not only penetrates the Cretaceous strata, but also connects the source rocks
of the Lower Cretaceous Jiufotang Fm (K1jf ), which provides a natural channel for the
upward escape of deep fluid. In this case, the acidic organic fluids derived from the source
rocks of Jiufotang Fm escaped upward to the ore-bearing layers (Figure 8), then reduced
the primary oxidized sandstones of Yaojia Fm accompanied by the reduction of Fe3+ to
Fe2+, and finally formed large-scale secondary reduced gray sandstones. This speculation
can explain the phenomenon of hematitization spots that are commonly observed in gray
sandstones (Figure 5h), which are actually a residue of incomplete reduction transformation.
Therefore, the authors believe that the enrichment of kaolinite in the ore-controlling gray
sandstone of the HLJ uranium deposit is strongly associated with the acid organic fluids
that derived from the Lower Cretaceous Jiufotang Fm source rocks escaping upward along
the F1 deep-seated fault.

5.2. Genetic Mechanism of Tabular-Shaped Uranium Orebody

SEM analysis results suggest that the adsorption of uranium to kaolinite is significantly
stronger than that to illite and I/S (Figure 6), which is in contradiction with previous studies
showing the the adsorption capacity of uranium to montmorillite and illite is much greater
than that of kaolinite [49,50]. Therefore, it is speculated that the acidic organic fluid related
to the formation of kaolinite is also a uranium-rich fluid. Some simulation experiments in
recent years have confirmed that a large amount of uranium could be excreted from the
source rocks while generating and expelling hydrocarbons [15,43,51–53]. Zhang (2018) [54]
even put forward the conjecture that the source rock is the uranium source. The uranium in
source rocks immigrating into oilfield water can reach up to 50% under certain temperature
and pressure conditions [16], as long as the continuous hydrocarbon generation of source
rocks and the decomposition of saturated hydrocarbons, a reducing fluid rich in CO2, CH4,
H2S and organic acids, can eventually be generated [43], which is a benefit to uranium and
other polymetallic dissolution and migration. Consequently, the uranium migrated as either
tetravalent (UO2) or in the form of hydrate colloid (UO3·H2O, UO2·H2O, U6O7·H2O), and
finally precipitated and enriched in sandstones with suitable porosity and permeability [43].
Furthermore, the uranium and chloride complex (UCl4) is relatively stable under reduced
acidic conditions with a temperature greater than 100 ◦C. The solubility of UCl4 decreases
in an oxidized environment or as temperature decreases, and ultimately, the pitchblende
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precipitates [55]. Comprehensively, sources rocks not only provide a reduced environment
for uranium mineralization, but also provide uranium sources.
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Actually, source rocks in the Jiufotang Fm (K1jf ) of the Lower Cretaceous in south-
western Songliao Basin have a large thickness and wide area; they also possess a higher
uranium content of (1.52–10) × 10−6 [56–58] (Figure 8) and are enriched in Mo, Co, Zn,
Pb, V, Zr, and other elements [59]. These features are consistent with the results of trace
element, EMPA, and SEM analysis of ore-bearing strata sandstones in the HLJ uranium
deposit. Trace elements of bulk samples indicate that the gray sandstones are generally
enriched in U, Re, Mo, Co, Ni, Pb, V, Cu, and Zn, which are much more enriched in ores
(Table 2). Generally, it is relatively difficult to precipitate and enrich these elements under
atmospheric conditions. Conversely, they are more likely to be derived from deep-sourced
acidic fluids [43]. The SEM analysis demonstrated that the uranium commonly coexists
with Zr, Ti, Pb, and P (Figures 9 and 10). The EMPA analysis supported a similar conclusion,
i.e., the pitchblende contains 62.72%–71.11% of UO2, followed by TiO2, ZrO2, CaO, P2O5,
PbO, As2O5, SiO2, Ce2O3, etc. (Table 3).
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Figure 9. The co-existence relationship between uranium minerals and polymetallic elements in the HLJ
uranium deposit: (a) uranium and vanadium co-exist in the intergranular pores; (b) uranium, zircon,
and titanate co-exist in the micropores of ankerite; (c) uranium, zircon, lead, and phosphorus co-exist
around the ankerite; (d) uranium, zircon, and molybdenum co-exist in the micropores of kaolinite.
Ank—Ankerite, Kl—kaolinite, Mo—molybdenum, P—phosphorus, Pb—lead, Pl—plagioclase,
Ti—titanate, U—uranium, V—vanadium, Zr—zircon.

It is concluded that the genesis of the tabular-shaped orebody of the HLJ sandstone-
type uranium deposit is strongly related to the upward exudation of uranium-rich acidic
reduced organic fluids from deep source rocks along the deep-seated fault connecting
the overlying target layers. At the end of the Nenjiang movement, the deep-seated F1
fault was subjected to tectonic inversion under the regional subduction and compression,
which not only caused the denudation and erosion of sediments in the Qianjiadian area,
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but formed the Baolongshan tectonic erosion fenster. Meanwhile, the upward exudation
of uranium-rich and polymetallic-rich reduced fluids along the F1 fault to the primary
oxidized sediments in the Lower Yaojia Fm, and the oxidized sandstones were reduced
to gray sandstones with a bead-like and lenticular shape (Figure 3). As the temperature
and pressure decreased, the Eh and pH values of the reduced fluids changed, resulting
in the decomposition of uranium-rich organic fluids under the chemical action of oxida-
tion, decarbonation, dehydration, and desulfurization, and leading to the decrease in the
solubility of the ore-forming elements. Consequently, the enrichment and precipitation of
uranium and polymetallic in sandstones with suitable porosity and permeability occurs,
and eventually, the uranium was mineralized (Figure 11). Necessarily, the occurrence
of deep uranium-rich organic fluid exudation and mineralization does not rule out the
superimposed transformation of uranium mineralization by phreatic oxidation or local
interlayer redox.
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Table 3. Electron probe microanalysis results of pitchblende in the HLJ uranium deposit (%).

Test No. Y2O3 SiO2 TiO2 K2O Na2O MgO FeO CaO As2O5 Al2O3 Ce2O3

1 0.47 0.82 4.68 0.13 0.68 0.35 0.39 3.68 0.89 0.14 0.41
2 0.56 0.71 4.32 0.13 1.93 0.29 0.62 3.89 1.14 / 0.38
3 0.51 0.74 4.56 0.12 2.20 0.25 0.36 3.02 1.06 / 0.32
4 0.51 0.70 4.37 0.13 1.62 0.35 0.31 3.02 0.83 0.03 0.37
5 0.61 0.76 4.55 0.34 2.94 0.28 0.43 4.42 1.14 0.05 0.52

Test No. P2O5 Pr2O3 ZrO2 Nd2O3 ThO2 Cr2O3 UO2 CuO PbO La2O3 Total

1 2.99 0.03 4.30 0.31 0.17 / 69.11 0.16 1.38 0.11 91.20
2 2.87 0.04 4.06 0.36 0.23 / 67.35 0.07 0.49 / 89.44
3 2.45 0.04 3.60 0.33 0.26 / 62.72 0.07 2.81 0.11 85.53
4 2.80 / 3.55 0.51 0.21 0.04 67.11 / 1.86 / 88.32
5 2.90 / 4.14 0.42 0.31 / 71.11 0.06 0.16 / 95.14
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Figure 11. Migration pattern of uranium-rich organic fluids and exudative uranium metallogenic
model of the HLJ uranium deposit. (A) The uranium-rich source rocks of the Lower Cretaceous
Jiufotang Formation. (B) The source rocks generate a large quantity of uranium-rich organic fluids
while generating and expelling hydrocarbons. (C) The upward exudation of uranium-rich reduced
fluids along the fault to the primary oxidized sediments, and the oxidized sandstones were reduced
to gray sandstones with a bead-like and lenticular shape. (D) With the decrease in temperature and
pressure, the enrichment and precipitation of uranium in gray sandstones with suitable porosity and
permeability occurs, and eventually, the uranium mineralizes. (E) Exudative uranium metallogenic
model of the HLJ uranium deposit.
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6. Conclusions

(1) The kaolinite content in gray sandstone is obviously higher than that in oxidized
sandstone, and is highest in the ore. Kaolinite, illite, and I/S alternate with one
another in gray sandstones of reduced zones.

(2) The ore-bearing sandstones of the HLJ uranium deposit have undergone at least one
transformation of acidic fluids, and the transformation of I/S to kaolinite occurred
during the uranium mineralization period.

(3) The genesis of the tabular-shaped orebody of the HLJ sandstone-type uranium deposit
is strongly related to the upward exudation of uranium-rich acidic reduced organic
fluids from deep source rocks along the deep-seated fault connecting the overlying
target layers.
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