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Abstract: The microscopic pore throat structure of shale reservoir rocks directly affects the reservoir
seepage capacity. The occurrence and flow channels of shale gas are mainly micron–nanometer pore
throats. Therefore, to clarify the microstructural characteristics and influencing factors of the deep
organic-rich shales, a study is conducted on the marine shale from the Upper Silurian to Lower
Ordovician Wufeng–Longmaxi Formation in the southern Sichuan Basin. Petrographic lithofacies
division is carried out in combination with petro-mineralogical characteristics, and a high-resolution
scanning electron microscope, low-temperature nitrogen and low-temperature carbon dioxide adsorp-
tion, and micron-computed tomography are used to characterize the mineral composition and pore
structure qualitatively and quantitatively, upon which the influencing factors of the microstructure
are further analyzed. The results show that with the increase in burial depth, the total organic carbon
content and siliceous mineral content decrease in the Wufeng formation to Long-11 subsection deep
shale, while clay mineral content increases, which corresponds to the change in sedimentary envi-
ronment from anoxic to oxidizing environment. Unexpectedly, the total pore volume of deep shale
does not decrease with the increase in burial depth but increases first and then decreases. Using total
organic carbon (TOC), siliceous mineral content showed a good correlation with total pore volume
and specific surface area, with correlation coefficients greater than 0.7, confirming the predominant
role of these two factors in controlling the pore structure of deep shales. This is mainly because the
Longmaxi shale is already in the late diagenetic stage, and organic matter pores are generated in
large quantities. Clay minerals have a negative correlation with the total pore volume of shale, and
the correlation coefficient is 0.7591. It could be that clay minerals are much more flexible and are
easily deformed to block the pores under compaction. In addition, the longitudinal heterogeneity of
the deep shale reservoir structure in southern Sichuan is also controlled by the thermal effect of the
Emei mantle plume on hydrocarbon generation of organic matter and the development of natural
microfractures promoted by multistage tectonic movement. Overall, the complex microstructure in
the deep shales of the Longmaxi Formation in the southern Sichuan Basin is jointly controlled by
multiple effects, and the results of this research provide strong support for the benefit development
of deep shale gas in southern Sichuan Basin.
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1. Introduction

As a clean fossil energy resource, the large-scale exploration and development of
shale gas contribute to the transformation of the world’s energy consumption struc-
ture and the implementation of the “carbon peaking and carbon neutrality” “strategic
goals”, which plays an important role in the adjustment and optimization of the energy
structure [1–5]. Sichuan Basin is rich in shale gas resources and is currently a major explo-
ration and development area in China, where shale gas from the Lower Silurian Longmaxi
Formation in the southern Sichuan Basin has been explored and developed on a large
scale [6]. In previous research, many scholars have studied the shales of the Longmaxi
Formation in the southern Sichuan Basin at a macroscopic level [7–10]. With the increase
in shale gas exploration and development, the important role of shale microstructure
characteristics for shale gas enrichment and seepage is gradually being recognized [11–13].

A large number of domestic and foreign scholars are currently using high-precision
and high-resolution experimental techniques to characterize and analyze the microscopic
characteristics and the main controlling factors of pore development in the shale reservoirs
from the southern Sichuan Basin [14–18]. The quantitative characterization of shale pore
structure by low-temperature gas adsorption experiment (N2 and CO2), high-pressure
mercury injection porosimetry (HMIP), and nuclear magnetic resonance (NMR) methods
shows that the marine shale in the southern Sichuan Basin is dominated by micropores
smaller than 2 nm and mesoporous pores between 2 and 50 nm. On the other hand,
optical microscopy, field emission scanning electron microscopy (FE-SEM), and micron-
and nano-computed tomography scanning directly show that organic pores, intergranular
pores, intragranular pores, and microfractures are the main pore types in marine shale from
a two-dimensional or three-dimensional perspective and that organic pores in organic-
rich shales are connected to each other, which promotes the connectivity of reservoir
space [16]. In addition, the pore fractal characteristics and their geological significance are
also discussed extensively [16–18]. Previous studies demonstrate that traditional techniques
such as gas adsorption and SEM are still important and effective means to characterize the
microstructure of shale reservoirs, but relatively little previous work has been carried out
to explore the factors affecting the microstructure [14–18].

The pore volume and pore structure of shale gas reservoirs are the bridge to establish
the relationship between the conventional parameters such as mineral composition, organic
matter content, organic matter maturity, and gas storage performance. Through this bridge,
it is possible to establish a theoretical model to evaluate the gas storage performance
using these conventional parameters so as to better analyze the formation mechanism and
enrichment law of shale gas [19]. Therefore, in this paper, the shale from the first subsection
of the Long-11 section (Long-11) is studied. X-ray diffraction (XRD) data and regional
geological background are used for dividing lithofacies and analyzing mineral composition
characteristics. The pore structure characteristics are qualitatively investigated by SEM and
are quantitatively characterized by a combined application of low-temperature nitrogen
adsorption, low-temperature carbon dioxide adsorption (LCA), and micron CT experiments.
The controlling factors of the microstructures in shale are analyzed by combining the
depositional environment, tectonic activity, hydrocarbon evolution history, and mineral
composition in order to better evaluate and develop China’s shale gas resources.

2. Regional Geological Background

The study area in the southern Sichuan Basin is located in the low steep fold zone
and low gentle tectonic zone of the Huayingshan fold belt (Figure 1a). Because of the
influence of tectonic movements during the Caledonian, Hercynian, Indosinian, Yanshanian,
and Himalayan periods, a more complex tectonic pattern is now present in the southern
Sichuan Basin [20,21]. The Silurian strata also suffered different degrees of denudation, and
strong tectonic extrusion also affected the sediment thickness of the Longmaxi Formation
shales [21].
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Figure 1. (a) Tectonic location map and (b) stratigraphic diagram of the study area [22].

The deposition of the Wufeng–Longmaxi Formation successively underwent multiple
phases of sedimentary and tectonic evolutionary cycles, forming a sequence in which
the sedimentary water body becomes shallower upward as a whole with rocks becoming
coarser in grain size and lighter in color, developing large sets of black and gray-black shales
and dark-gray siltstone [1,23]. The Longmaxi Formation Long-1 section was subdivided
into Long-11 and Long-12 subsections on the basis of lithology, logging curves, and other
characteristics (Figure 1b). Among them, the sedimentary center in the southern Sichuan
Basin is located in the Luzhou–Yibin area, which is an argillaceous semi-deep-water to
deep-water shelf sedimentary environment.

3. Sampling and Methodology
3.1. Samples

A total of 60 core samples from the wells L-1, L-2, L-3, Yang-1, Yang-2, Yang-3, and Y-3
in the southern Sichuan Basin were collected for this work. These samples were buried at a
depth of more than 3500 m, from the Upper Ordovician Wufeng formation to the Lower
Silurian Long-11 sub-section. Fourteen samples from wells L-2 were used for analysis
of mineral composition, pore structure, and organic geochemical characteristics, and the
remaining samples came from wells Y-3, Yang-1, Yang-2, Yang-3, L-1, and L-3. They are
used to support the evidence for the longitudinal variation of the lithofacies from the
Wufeng formation to the Long-11 sub-section deep shale. The samples are representative
with respect to the deep shale gas reservoir in the southern Sichuan Basin.

3.2. Experimental Approaches
3.2.1. Organic Geochemistry and Mineral Composition

The total organic carbon (TOC) contents were determined with a LECO CS-230 car-
bon analyzer after removing the carbonates with hydrochloric acid (1:9 HCl: water) at
60 ± 5 ◦C. X-ray diffraction (XRD) was conducted for the whole rock analysis by using
the Bruker D8 DISCOVER diffractometer with tube pressure 40 KV, pipe flow 200 µA, Cu
target, diffraction width DS = SS = 1◦, RS = 0.3 mm, scanning speed 2.000 (d·min−1), and
scanning range 10◦~80◦.

3.2.2. Field Emission-Scanning Electron Microscopy (FE-SEM)

Images of the pores were produced by FE-SEM with an FEI Quanta 200 F microscope,
an accelerating voltage of 20 keV, and a working distance of 8–9 mm.
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3.2.3. Low-Pressure Gas Adsorption

Five shale samples were taken from sixty shale samples for N2 and CO2 adsorption
experiments conducted via a Quantachrome auto-sorb-iq3. Prior to analysis, the shale sam-
ples were crushed into particles of 60–80 mesh size (180–250 µm), dried in an oven at 60 ◦C
for 24 h, and then degassed at high vacuum (<10 mm Hg) for 12 h. For nitrogen adsorption,
the temperature of the sample chamber was set at −196 ◦C (77 K) to obtain adsorption and
desorption analysis data. The analytical temperature used for CO2 adsorption was set at
0 ◦C, which provides the necessary kinetic energy for CO2 molecules to enter micropores.

3.2.4. High-Pressure Mercury Injection Porosimetry

As a technique widely used to analyze the pore size distribution of porous materials,
HMIP can be used to characterize macropores (>50 nm). In this study, micromeritics Auto
Pore IV 9520 was used to select 7 samples for high-pressure mercury injection experiments.
After drying and vacuuming, the prepared samples were placed in the sample chamber.
Then mercury was injected into the dilatometer, and the pressure level was gradually
increased to the atmospheric pressure.

4. Results
4.1. Mineralogical and Petrological Characteristics
4.1.1. Mineral Composition

XRD analysis of shale samples from well L-2 (Figure 2a) and other seven wells
(Figure 2b) in the Long-11 sub-section in the southern Sichuan Basin indicates that the
mineral composition of the shales in the study area is diverse, mainly quartz, followed by
clay minerals, and also including carbonate minerals such as feldspar, calcite, and dolomite,
and heavy minerals such as pyrite. The quartz content ranges from 31.29% to 56.08%, with
an average of 41%. The clay mineral content ranges from 18.88% to 45.4%, with an average
of 33.25%. The feldspar content ranges from 5.78% to 7.64%, with an average of 6.56%, and
the carbonate mineral content ranges from 8.91% to 26.07%, with an average of 15.46%.
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4.1.2. Lithofacies Division

Dividing lithofacies is of great importance for analyzing depositional environments.
Currently, mineral composition, organic matter abundance, matrix composition, and sed-
imentary tectonics are used to divide different lithofacies [24], among which the three-
terminal division scheme based on the siliceous, argillaceous, and carbonate composition
content of shale reservoirs is the most popular. In this paper, this three-terminal scheme
and TOC content are combined to divide lithofacies, and a four-terminal lithofacies di-
vision map of the Long-11 shales is plotted (Figure 3). It shows that the shales with low
organic matter content (0% < TOC < 2%) are mainly concentrated in two lithofacies: mixed
shales and calcareous shale (Figure 3a). The shales of medium organic matter content
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(2% ≤ TOC < 4%) are mainly mixed shale, calcareous shale, and siliceous shale (Figure 3b).
The shales with high organic matter content (TOC ≥ 4%) are mainly siliceous shales
(Figure 3c).
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4.2. Pore Types

A large number of micro and nanoscale pores, which act as the main storage space,
have been found in shale gas reservoirs. Because of the diverse pore types and complex
genesis, many schemes for classifying pore types in shales have been proposed by both
domestic and foreign scholars [3,25,26]. In this paper, the pores in the shales from the study
area are classified into organic matter pores, inorganic matter pores, and microfractures
by SEM observation of the shales in wells L-2 and Yang-2. The inorganic matter pores are
further classified into intergranular pores and intragranular pores.

4.2.1. Organic Matter Pores

Organic matter pores were mainly within or around organic matter particles during
the hydrocarbon generation process, and they were the main storage space for shale gas [25].
The shapes are mostly spherical and elliptical (Figure 4a,b), with nanoscale and several
micron pores dominating. Irregular-shaped organic matter pores can be observed in some
areas (Figure 4c,d), which may have been caused by the influence of compaction during the
compaction process or by external factors such as tectonic activity and sedimentary activity.
Pores are densely distributed in a honeycomb pattern in organic matter particles with a
high degree of thermal maturity (Figure 4e,f).

4.2.2. Inorganic Matter Pores

The inorganic matter pores consist of intergranular pores and intragranular pores. The
intergranular pores are mainly secondary pores formed within mineral particles or crystals,
including intercrystalline pores of pyrite, dissolution pores of feldspar and carbonate com-
ponents, and pores within clay mineral particles, usually with irregular shapes. Intercrystal
pores are prone to generate during the formation of pyrite framboids (Figure 5a), and
unstable minerals such as feldspar and carbonate components are susceptible to dissolution
with organic acids during burial to form dissolution pores (Figure 5b). Dissolution pores
are usually small in size and poorly connected, suggesting they contribute less to shale
gas storage. The conversion of clay minerals during diagenesis forms interlayer pores
within the clay minerals (Figure 5c), which are usually slit like, with large pores and good
connectivity, providing good channels for shale gas storage and seepage. Intergranular
pores are mainly developed between fragmented particles of brittle minerals such as quartz
and feldspar, between single crystals of pyrite, at the contact between mineral particles and
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clay minerals or organic matter, etc. (Figure 5d–f). The pore shape is usually irregular, and
the pore size is small.
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4.2.3. Microfractures

The microfracture genesis includes organic matter hydrocarbon generation and pres-
surization, diagenesis, and tectonics. It is mainly distributed around the rigid mineral
grains (Figure 5i,l) and clay mineral interlayer contraction joints (Figure 5g,h,j,k), mostly
flat and worm like, etc. The degree of fracture opening and extension length vary, and the
extension direction is consistent with the edge of mineral grains and clay mineral lamellae
direction. Microfractures are interconnected and can effectively communicate with other
types of pores to form a fracture network, which plays a positive role in improving the
seepage capacity of shale reservoirs [27].

4.3. Pore Size Distribution

On the basis of the physical adsorption properties and the capillary condensation
theory, the International Union of Pure and Applied Chemistry (IUPAC) proposed a pore
size classification scheme in which the pores of porous substances are classified into
micropores (pore size less than 2 nm), mesopores (pore size between 2 nm and 50 nm),
and macropores (pore size greater than 50 nm) [28]. The nitrogen adsorption method
can obtain statistical information and overall characteristics of the microstructure when
characterizing the pore structure [29]. Liquid nitrogen adsorption (LNA) experiment is
used to determine pore parameters such as pore volume, specific surface area, and pore size
distribution of mesopores and macropores, and the pore size distribution of the sample is
calculated using the Barret–Joyner–Halenda model [30]. Since CO2 gas can enter tiny pores
as small as 0.35 nm, LCA experiments can be used to calculate the pore size distribution
of micropores using the non-deterministic density functional theory of density functional
theory (DFT) [31]. HMIP analysis is a commonly used method to determine the pore throat
distribution of reservoirs [32,33]. However, mercury does not easily enter the nanoscale
pores in shales, and the high pressure can cause artificial fractures, which affects the
measurement results [33]. For these reasons, HMI is mainly used to analyze the pore size
distribution in the macropore range [32]. Considering the range of accuracy of all the above
methods, this paper uses a combination of LNA, LCA, and HMIP to realize a full pore-size
characterization of the Long-11 shales in the southern Sichuan Basin.
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4.3.1. Pore Structure from LNA

In this study, LNA is carried out on the Long-11 shale samples from well L-2 to
evaluate the pores. The nitrogen adsorption–desorption curves of the shale samples
from this well differed slightly in morphology but showed an inverse “S” shape overall,
indicating that it included three processes: monolayer adsorption, multilayer adsorption,
and capillary condensation [34,35] (Figure 6). At low relative pressure (0 < p/p 0 < 0.4), the
adsorption volume rose slowly, the adsorption isotherm curve was slightly convex upward,
and the whole adsorption process gradually converted from monolayer adsorption to
multilayer adsorption. At medium to high relative pressures (0.3 < p/p 0 < 0.8), the nitrogen
adsorption volume started to become significantly larger at a certain relative pressure, and
a hysteresis loop appeared, at which time it completely entered the multimolecular layer
adsorption stage. After that, the increased rate of nitrogen adsorption volume slowed
down with increasing relative pressure. At high relative pressure (0.8 < p/p 0 < 1), the
nitrogen adsorption increased rapidly, the curve showed a downward concave feature,
and adsorption saturation did not occur, indicating that a certain amount of mesopores or
macropores had developed in the Long-11 hale samples from well L-2, which resulted in



Minerals 2023, 13, 1347 8 of 19

capillary condensation of nitrogen on the shale surface. According to the hysteresis loop
classification criteria proposed by the International Union of Pure and Applied Chemistry
(IUPAC), the hysteresis loops of the five Long-11 shale samples are close to the H3 type and
individually share the characteristics of an H4 type [36]. All five samples have hysteresis
loops, indicating that the pores of the Long-11 shale in the southern Sichuan Basin are open,
dominated by ink bottle pores, wedge-shaped pores, parallel-plate pores with four opening
sides, and fracture-shaped pores [37]. These pores are well connected, providing good
seepage channels for shale gas. The opening degree of the pores is associated with the
rising rate of the adsorption curve. The faster it rises, the greater the openness of the pores.
In the vertical direction, the openness of the pores in the five samples decreases from deep
to shallow.
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well L-2.

The average pore size of the Long-11 shale samples in the study area ranged from
3.057 nm to 3.412 nm, with an average of 3.269 nm. With the increase in depth, the pore
volume and specific surface area both increased and then decreased (Table 1). Figure 7
shows the variation of pore volume with pore diameter. The pore volume’s rate of change
increased as the pore diameter decreased, with no obvious peak. The rate of change
varies significantly in the range of 3 nm to 30 nm, indicating that pores of this size range
contributed most of the pore volume.

Table 1. Specific surface area and pore volume of samples measured by N2 adsorption.

Well
ID Sample No. Depth (m) Formation BET Specific Surface Area

(m2/g)
Total Pore Volume

(mL/g)
Average Pore Diameter

(nm)

L-2 S-1 3831.34 Long-11 20.668 0.0220 3.408
L-2 S-2 3836.48 Long-11 29.411 0.0235 3.409
L-2 S-3 3842.42 Long-11 25.114 0.0275 3.057
L-2 S-4 3846.78 Long-11 23.001 0.0253 3.059
L-2 S-5 3847.58 WuFeng 17.351 0.0177 3.412

4.3.2. Pore Structure from LCA

The isothermal adsorption curves of CO2 in the Long-11 shale samples mainly show
microporous adsorption, and the adsorption volume is generally lower and does not reach
the fully saturated stage (Figure 8). The CO2 adsorption curve rises rapidly in the low-
pressure section and gradually becomes gentle in the medium-pressure and high-pressure
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sections, with an overall upward convex curve pattern. According to the classification by
Brunauer et al. (1940) [33] of adsorption isotherms, the adsorption curve of each sample
is close to the type I adsorption isotherm, reflecting the filling process of micropores in
shale, and the saturation adsorption value is equal to the filling volume of micropores. The
difference in the maximum adsorption volume at the highest pressure of different samples
indicates that there are some differences in the development of micropore volume in shale
samples of the Long-11 sub-section.
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With pore size varying, the pore volume’s rate of change showed a multipeak feature
(Figure 9), indicating the complexity of micropores. The pore volume’s change rate varies
from fluctuating sharply to leveling off with pore size increases, indicating the peak of the
pore size lies between 0.45 nm and 0.62 nm.

Since the CO2 saturation vapor pressure was not reached in the experiment, the
adsorption volume could not be used to calculate the micropore volume. The DFT model
is applied to investigate the micropore structure and the results of micropore analysis
obtained by the DFT model of CO2 adsorption. CO2 adsorption experiments recorded pore
sizes ranging from 0.305 nm to 1.475 nm. The pore volume of the five samples showed a
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similar change pattern to the specific surface area; that is, the pore volume first increased
and then decreased with the increase in depth (Table 2).
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Table 2. Specific surface area and pore volume measured by CO2 adsorption.

Well
ID Sample No. Depth (m) Formation DFT Specific Surface Area (m2/g) DFT Total Pore Volume (mL/g)

L-2 S-1 3831.34 Long-11 6.960 0.004
L-2 S-2 3836.48 Long-11 9.787 0.006
L-2 S-3 3842.42 Long-11 9.203 0.010
L-2 S-4 3846.78 Long-11 7.490 0.006
L-2 S-5 3847.58 WuFeng 5.192 0.005

4.3.3. Pore Structure from HMI

The HMI experiment is commonly used to quantify pores with diameters greater
than 50 nm. The mercury intrusion curve of the shale sample can be divided into three
stages [38] (Figure 10a). At the initial stage, a large amount of mercury was injected at
a higher rate. Then, the rate slowed down when the mercury injection pressure reached
1 MPa. When the mercury injection pressure was greater than 50 MPa, it entered the
high-pressure rapid-injection stage. The mercury injection–ejection curves did not overlap,
and nearly 50% of the mercury injected was still stored in the pore space of the shale
after ejection, indicating the existence of ink-bottle pore space in the shale. The pore size
distribution curve is characterized by a multipeak distribution, and the pore size peaks are
mainly concentrated in 3~200 nm and 10 µm, indicating the shales have a large number
of macropores (Figure 10b). HMI experiments recorded average pore sizes ranging from
10.30 to 15.46 nm, with an average value of 13.106 nm. The porosity ranged from 1.441%
to 1.733%, with an average of 1.549% (Table 3). In addition, the pore volume and specific
surface area of macropores have no obvious regularity in the longitudinal direction.

4.3.4. Pore Connectivity

On the basis of the difference in component density, it is shown as different gray levels
in the CT image, in which the shale with pores and fractures has the lowest density, and the
line in the image is black. Through the two-dimensional slice diagram, we can see multiple
fractures that are approximately parallel to the bedding. The pore cracks are extracted by
software, as shown in Figure 11d. There are many pores in the shale; the blue part shows
a large number of isolated pores, and the other colors show a large number of connected
pores and cracks. As the color of the pore markers gradually becomes pink, the connected
domain of the pores gradually increases, and the connected range becomes wider.
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Table 3. Pore structure parameters measured by high-pressure mercury intrusion.

Well
ID Sample No. Depth (m) Pore Volume

(mL/g)
Specific Surface Area

(m2/g)
Average Pore Diameter

(nm)
Porosity

(%)

L-2 S-1 3831.34 0.0054 1.446 14.89 1.441
L-2 S-2 3836.48 0.0066 2.460 10.78 1.733
L-2 S-3 3842.42 0.0056 1.592 14.10 1.459
L-2 S-4 3846.78 0.0064 2.487 10.30 1.641
L-2 S-5 3847.58 0.0059 1.524 15.46 1.472
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5. Discussion
5.1. Depositional Controls on the Mineral Composition

During the deposition of the Wufeng Formation–Longmaxi Formation, the southern
Sichuan Basin was generally in a semienclosed–enclosed bay environment [38,39]. Because
of the control of the sea level changing cycle, the sedimentary environment experienced an
evolution from deep-water shelf to semi-deep-water shelf to shallow-water shelf when the
Wufeng Formation and Longmaxi Formation were deposited [40].

By synthesizing previous research results, Wang et al. (2015) divided the Longmaxi For-
mation in the southern Sichuan Basin into two third-order sequences, SSQ1 and SSQ2 [41].
During the transgressive systems tract of the SSQ1 sequence, the sea level began to rise,
and the water body deepened. Meanwhile, because of the influence of tectonic movements,
the southern Sichuan Basin was surrounded by the Chuanzhong paleo-uplift, Qianzhong
paleo-uplift, and Xuefeng paleo-uplift. An anaerobic environment formed upon a still and
euxinic water condition in a deep-water shelf background, depositing organic-rich black
shale. By the time of the high systems tract, the sea level dropped, the supply of material
sources changed, and mudstones and sandy mudstones began to be deposited (Figure 12a).
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During the transgressive systems tract of the SSQ1 sequence, global warming, glacial
melting, and sea level rise led to an anaerobic–anoxic environment in a deep-water shelf
sedimentary environment. The flourishment of siliceous organisms such as radiolarians
and sponge spicules during this period resulted in the formation of organic-rich shales with
high siliceous content [41,42], which also corresponds to siliceous shale rich in siliceous
minerals and siliceous shale with TOC content higher than 4%. During the early high
systems tract of the SSQ2 sequence, the sea level began to drop, and the depositional
environment changed to an anoxic–oxic environment, dominated by a semi-deep-water
shelf environment with increased sandy and carbonate content. The sea level continued to
drop in the late high systems tract of the SSQ2 sequence, and the depositional environment
changed to an oxidizing environment, which was not conducive to the production of high
paleoproductivity organisms. Stronger bioturbation was observed, indicating the envi-
ronment changed to shallow-water shelf deposition dominated by light gray argillaceous
shale [41,42] (Figure 12b).
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In this study, the conversion in the depositional environment also corresponds to the
gradual change in shale lithofacies from siliceous shale to mixed shale to calcareous shale
as the TOC content decreases, as described earlier, and also corresponds to the trend of
increasing quartz mineral content with increasing burial depth (Figure 2a).

5.2. The Main Factors Controlling the Shale Pore Structure
5.2.1. Abundance of Organic Matter

There are many influencing factors controlling the development of pore structure in
shale reservoirs, among which rock material composition is closely related to the degree
of pore development in shale [43]. TOC content is one of the main factors affecting the
pore structure of the shale. The pore structure parameters of Longmaxi Formation shale
were obtained by LNA; the analysis of the relationship between these parameters and TOC
showed (Figure 13) that the average aperture was positively correlated with TOC within a
certain range but showed an opposite trend when TOC was higher than 3% (Figure 13a).
The specific surface area was positively correlated with TOC with a correlation coefficient
of 0.916 (Figure 13b), and the total pore volume was positively correlated with TOC with a
correlation coefficient of 0.8615 (Figure 13c), indicating that the degree of pore development
in the shale is strongly associated with TOC. As the TOC content increased, the number of
pores increased, leading to an increase in specific surface area and total pore volume. When
the TOC > 3%, the average pore size gradually decreases with increasing TOC, indicating
that the maturation process of organic matter in shale leads to a large increase in the number
of micropores during hydrocarbon generation and expulsion and that the organic matter
pores are smaller than inorganic matter pores.
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5.2.2. Mineral Composition and Content

In addition to the TOC content, the pore structure of the Longmaxi shale is also
influenced by the mineral composition. Quartz and clay are the main minerals in the
shales in the study area, so their relationships with pore structure are our focus. Figure 14
demonstrates that the average pore size has a weak positive correlation with quartz, with
a correlation coefficient of 0.3562. The specific surface area and total pore volume of
shale show a good positive correlation with quartz, and the correlation coefficients are
0.8041 and 0.7243, respectively, indicating that quartz content plays a positive role in the
development of pore space. It is believed that brittle minerals such as quartz can protect
pores from compacting by resisting pressure during the evolution of diagenesis, which is
conducive to the preservation of some intergranular pores [44]. The specific surface area
and the total pore volume are negatively correlated with clay minerals with correlation
coefficients of 0.6747 and 0.7591, respectively. Clay minerals are much more flexible and are
easily deformed to block the pores under compaction. Moreover, the shales with high clay
mineral content have a low content of brittle minerals such as quartz, which inhibits the
development of pores and leads to a smaller specific surface area and total pore volume.
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5.2.3. Evolution of Hydrocarbon Generation and Diagenesis

During the burial, the shale formation mainly undergoes thermal evolution of organic
matter and diagenesis of inorganic matter, both of which interact with each other and
synergistically control the formation of storage space in the Longmaxi shale. The Longmaxi
shale has undergone a long and complex hydrocarbon generation and diagenetic evolution
and is already in the late diagenetic stage [45] (Figure 15).

In the early diagenetic stage A, the organic matter is immature, with low paleotemper-
ature (less than 65 ◦C) and low thermal evolution stage (Ro < 0.35%). In this stage, organic
matter pores are not developed, and quartz of biogenesis is formed in large quantities.
Mechanical compaction makes the sediment weakly consolidated, and the intergranular
pores rapidly reduced. In the early diagenetic stage B, organic matter is in the semi-mature
stage, with a paleotemperature range of 65~85 ◦C and a Ro range of 0.35~0.5%. Smectite
begins to transform into mixed layers of illite/smectite under higher temperatures, forming
interlayer pores. At the same time, the primary pore space is reduced by the influence of
compaction, but the total porosity remains the same. At this stage, authigenic quartz is also
continuously generated. In the late period, the diagenetic environment gradually changes
to a weakly acidic environment, and some dissolution pores start to generate [46].

In the middle diagenetic stage A, the organic matter enters the oil window, with a
paleotemperature range of 85~140 ◦C and the Ro range of 0.5~1.3%. At this stage, the
thermal degradation of kerogen generates liquid hydrocarbons and a small number of
gaseous hydrocarbons, and the liquid hydrocarbons undergo short-range transport to
occupy adjacent inter- and intragranular pores. A large number of expelled organic acids
leads to the dissolution of unstable minerals such as feldspar. Clay minerals transform
to illite smectite and illite, and cementation of silicate minerals occurs. In the middle
diagenetic stage B, the organic matter enters a high maturity stage with a paleotemperature
range of 140 ◦C to 175 ◦C and a Ro between 1.3% and 2.0%. Wet gas is generated by kerogen
degradation and liquid hydrocarbon cracking, and organic matter pores form. In this stage,
clay minerals are mainly illite–smectite and illite, which contribute to the formation of
organic matter–clay mineral compounds and organic matter macropores.

In the late diagenetic stage, the organic matter enters the overmature stage with
paleotemperature above 175 ◦C and Ro above 2.0%. Liquid and gaseous hydrocarbons are
cracked to produce dry gas, organic matter pores are generated in large quantities, and clay
minerals are dominated by illite and illite–smectite.
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5.3. Effect of Critical Regional Geological Events on Shale Microstructure
5.3.1. Regional Thermal Event

The Permian Emeishan basaltic eruption is an important tectonothermal event on the
western margin of the Yangtze plate [47]. The basaltic eruption in Emeishan is a result of the
strongly active period of Emei rifting and an inevitable product of the Emei mantle column
activity. Continuous activity of mantle columns causes large-scale continuous crustal uplift,
thus forming a dome-like uplift on the geomorphology. Strong denudation occurs on
the top of the uplift and weakens toward the edge, which, in turn, controls the regional
sedimentary environment and lithofacies [47]. The temperature of the mantle involved in
the basaltic action of Emeishan was 1550 ◦C, and this high-temperature background in the
Paleozoic played an important role in the thermal evolution of hydrocarbon source rocks in
the Sichuan Basin. The thermal action of the mantle column provided a heat source for the
transformation of Paleozoic hydrocarbon source rocks, which is conducive to promoting
the strong transformation of organic matter [48].
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5.3.2. Effect of Tectonic Event

Natural microfractures are formed by the combined effect of multiple phases of tectonic
movements in each geological historical period. Their development and direction are
controlled by the tectonic stress field in different periods [49]. The Longmaxi Formation in
the southern Sichuan Basin has experienced three major tectonic events since its deposition.
In the middle of the Yanshan tectonic movement, the eastern section of the Daloushan
developed reverse strike-slip faults due to the extrusion of the main stress field in the near
east–west direction, which is controlled by the southeast–northwest-oriented extrusive
stress field of the Xuefeng intra land orogenic system [50]. During the late Yanshan tectonic
movement and early Himalayan tectonic movement, the Indian Ocean plate collided
and closed with the Eurasian plate to the north, resulting in the formation of tectonic
compression from northwest to southeast direction in the southern Sichuan Basin, and
the near-northeast compression-fold deformation event in Luzhou area and Changning
area [51]. In the middle of the Himalayan movement, the tectonic forces extended into
the basin because of the collision of the Indian and Eurasian plates, producing northeast–
southwest-oriented tectonic compression. The early near-east–west-trending folds in the
western part of the Sichuan Basin were also superimposed by the near-north–south-trending
fold deformation. During the late Himalayan movement, northeast–southwest-oriented
compression and deformation occurred in the western part of southern Sichuan to form
the northwest-trending tectonics, and they were superimposed on the northeast-trending
tectonics formed in the previous [50].

6. Conclusions

(1) Felsic minerals, carbonate minerals, and clay minerals are the main inorganic
matter components in the deep-buried Long-11 shales from the southern Sichuan Basin,
with quartz content increasing with burial depth. During the deposition of the Wufeng
Formation and Longmaxi Formation, the sedimentary environment evolved from a deep-
water shelf to a semi-deep-water shelf to a shallow-water shelf. As the TOC content
decreased, the shale lithofacies gradually changed from siliceous shale to mixed shale to
calcareous shale;

(2) Organic matter pores, inorganic matter pores, and microfractures are commonly
developed in the Long-11 shales of the study area. It mainly includes pores of ink-bottle,
wedge-like, and slit-like morphology, with good connectivity, which provides a good
seepage channel for shale gas. The mesopores of 3~30 nm are the main contributors to the
total pore volume;

(3) TOC content and quartz content were positively correlated with pore-specific
surface area and total pore volume. Clay mineral content was weakly positively corre-
lated with specific surface area and negatively correlated with total pore volume. The
development of microfractures was affected by multistage tectonic movements, and its
development period and direction were related to the tectonic stress of each period. At the
same time, the thermal effect of the Emeishan mantle plume provided a heat source for the
conversion of the Ro value of the source rocks in the Sichuan Basin, which was conducive
to promoting the strong conversion of organic matter.
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