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Abstract: Graphite can be artificially converted from anthracites under high temperatures; however,
the exact mechanism through which inorganic minerals contribute to the graphitization process is
still unknown. In light of this, several selected minerals in different amounts were added to deminer-
alized anthracite coal. The anthracite–mineral mixtures were subjected to artificial graphitization
experiments under temperatures ranging from 1700 to 2900 ◦C in the laboratory. The obtained series
of coal-based graphites with various levels of graphitization were characterized by X-ray diffraction
(XRD), and the derived structural parameters, such as d002 and FWHM (002), La, and Lc were used
to compare the carbon structural evolution during the high temperature treatment and mineral
catalytic graphitization. Moreover, the amorphous carbon of anthracite is eventually transformed
into the highly ordered crystalline carbon of coal-based graphite. The five added minerals show
interesting structural variation during the graphitization process, in which pyrite is decomposed
into iron (Fe), illite, quartz, and kaolinite, which can react with disordered carbon in organic matter
to form moissanite (SiC), while dolomite seems to react with sulfur to form oldhamite (CaS). At
temperatures less than 2300 ◦C, the minerals could significantly enhance the catalytic effect. There
is a clear difference in the catalytic effect of different minerals on graphitization. Kaolinite exhibits
the strongest catalytic effect. The minerals dolomite, illite, and quartz only show a certain degree
of catalysis. Pyrite, however, only has a limited effect on improving the degree of graphitization
at a temperature of 1700 ◦C. However, once the temperature exceeds 2300 ◦C, the dominant factor
controlling the graphitization of anthracite appears to be the temperature. According to the growth
pattern at microcrystalline sizes (La and Lc), the minerals’ catalytic effects can be classified into three
groups. The first group includes minerals that preferentially promote La growth, such as pyrite,
illite, and quartz. The second group includes minerals that preferentially promote Lc growth, such as
dolomite. Finally, kaolinite is in a separate group that promotes microcrystal growth in both the lateral
and vertical directions simultaneously. The mechanisms of the minerals’ catalytic graphitization are
discussed in this paper. The promotion role of minerals in the artificial graphitization process may
help to optimize the graphitization process and reduce the process cost in the future.

Keywords: coal-based graphite; minerals; catalytic graphitization; high-temperature treatment; XRD

1. Introduction

Synthetic graphite is a highly valuable material with many applications, such as metal
smelting, rechargeable batteries, steel-making carburizers, etc. Recently, coal-based artificial
graphite has been attracting extensive attention as an anode material for lithium-ion batter-
ies (LIBs) [1–9]. In the synthetic graphite industry, readily graphitized carbons are selected
as the raw materials. Currently, petroleum coke is used as the primary filler material in the
manufacturing of synthetic graphite. However, as the demand for synthetic graphite has
grown, the price of petroleum coke has risen significantly, and the performance of synthetic
graphite made from coke is unpredictable, which greatly impedes the industrialization of
petroleum coke in order to make artificial graphite materials [3,6,7,10]. Seeking low-cost
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and easily available graphitizable carbon materials as replacement for petroleum coke can
benefit the synthetic graphite industry’s sustainable development.

As a type of high-ranking coal and a natural resource with abundant reserves, an-
thracite should be considered as an attractive feedstock to produce carbon materials rather
than as a fuel [11]. First, most anthracites contain 92%–98% carbon, virtually all of which
is present as aromatic carbon molecules in large polycyclic aromatic sheets, resulting in
extraordinary properties such as a highly aromatic nature, a low proportion of aliphatic side-
chains, and a high ultra-microporosity pore volume [3,6,7,10,12,13]. Second, anthracites
are widely recognized as being more highly graphitizable than any other graphitizing
carbon investigated at heating to temperatures above 2000 ◦C [11,12,14]. Additionally, an-
thracite’s relatively low cost, compared to petroleum coke, endows it with a great economic
advantage [10].

The fact is that not all anthracites, even those of similar ranks, exhibit the same level
of graphitization when heated under the same circumstances [15]. This is mainly related to
the organic characteristics of anthracite, such as its microstructure, elemental composition,
coalification degree, etc., [6,7,10,12,13,16–26]. Coal itself is a complex geological substance,
and it also contains varying proportions of minerals in addition to the main organic matter
of the coal body. Minerals are common components in coal, yielding ash when coal is
used as fuel, thus contributing to air pollution. Nevertheless, in recent years, coal-based
minerals have gained recognition as a potentially valuable source of critical metals [27–29].
The major non-organic elements in the mineral components of coal, such as Fe, Mg, Mn,
Si, Al, and Ti, are used as catalysts for graphitization in the production of various carbon
materials [30–35].

Previous studies on the role of mineral matter during the graphitization of anthracites
have demonstrated that certain minerals have a positive impact on the graphitization of
these high-rank coals under high-temperature treatment [12,18,28,36–40]. For instance,
González et al. showed that the degree of crystalline organization attained by heat-treated
anthracites increases with the amount of mineral content included. The clay mineral illite
and iron-containing minerals such as ankerite and siderite usually show good catalytic
effects [18]. Pappano et al. further considered that anthracite is graphitizable only if
mineral matter is present, and the authors proposed that carbides aid in the graphitization
of anthracite [36]. Moreover, it was discovered by Rodrigues et al. that carbide can
not only promote the coalescence of crystallites in the La direction but also serve as a
catalyst and/or a template for the formation of graphite-like structures [28]. In addition,
Tang et al. investigated the catalytic mechanism of Fe on the graphitization of coal via
a computer simulation using the ReaxFF force field. These authors believe that catalytic
graphitization is explained by the metal–carbide formation–decomposition mechanism and
the dissolution-precipitation mechanism [31]. However, some reports have asserted that
the catalytic impact of minerals in coal is negligible and even impedes the graphitization of
organic matter. Nyathi et al. indicate that aluminum compounds found in anthracite serve
as a physical obstacle instead of as a catalyst in the graphitization process [19]. According
to Huan et al., the existence of minerals leads to many irregular pore defects in anthracite-
based graphene during the high-temperature synthesis of graphite from coal [17]. So, up to
now, there has been no unified understanding of how minerals affect the high-temperature
graphitization of coal, especially the catalytic graphitization effects of different materials at
several controlled graphitization stages.

In this paper, five kinds of minerals (quartz, kaolinite, illite, dolomite, and pyrite) that
are commonly contained in coal-bearing strata were chosen as the target minerals. Deminer-
alized anthracite samples with the addition of different amounts of the above-mentioned
minerals were heated under high temperatures ranging from 1700 to 2900 ◦C. The purposes
of this paper were to (1) evaluate the catalytic graphitization effects of different minerals
on anthracite at different temperatures and (2) uncover the catalytic graphitization reaction
process of anthracite by the selected minerals under high-temperature treatment.
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2. Samples and Analytical Methods
2.1. Sampling and Demineralizing

The samples used in this study were obtained from the underground Jinzhushan
coal mine (JZS) in the Hanpo’ao mining area, which is located in central Hunan Province,
China [41,42]. The samples were demineralized following an experimental protocol re-
ported previously [17,19,36,41–43]. Briefly, coal samples were mixed with a mixture of
concentrated hydrofluoric (HF, 40%) and hydrochloric acid (HCl, 6 mol/L) in a 1:2.5 volume
ratio, heated to 60 ◦C in a water bath, and kept at a constant temperature for 4 h, after
which the solution was washed with deionized water until it was neutral and dried in an
oven for recovery. The demineralized anthracite samples were noted as JZSD.

2.2. High Temperature Treatment

In the present study, remineralization of the JZSD samples was performed by indi-
vidually adding five types of minerals (kaolinite (K), quartz (Q), illite (I), pyrite (P), and
dolomite (D)) to the JZSD samples. Some studies have shown that mineral matter has
less of an impact on samples with a less than 2% ash yield, but samples with a high ash
yield of 17.25% have a higher degree of graphitization. Based on this, we determined the
amount of mineral matter to add. The contents of each mineral added into the deminer-
alized samples were 2%, 10%, and 20% (wt%). The graphitization of each demineralized
and remineralized sample was carried out using an ultra-high-temperature graphitization
furnace. Crucibles containing about 5 g of each powder sample and covered subsequently
with lids were fed into the furnace from the top and passed through the high-temperature
region, which was inductively heated in an inert atmosphere (Figure 1a,b). The feedstock
input and output were continuous operations. These samples were heated to 1700 ◦C,
2000 ◦C, 2300 ◦C, 2600 ◦C, and 2900 ◦C at a rising rate of 10 ◦C/min and kept for 3 h at the
set temperature. Afterward, the furnace was naturally cooled to ambient temperature. The
high-temperature-treated samples yielded the coal-based graphite products, which were
identified by a code that was JZSD plus the mineral content and an abbreviation ending
with a heat treatment temperature [17,19,27,28,33,36,44,45]. For example, the products
obtained from the demineralized sample and the remineralized sample mixed with 20%
kaolinite after heat treatment at 1700 ◦C were named JZSD-1700 ◦C and JZSD-20K-1700 ◦C,
respectively. It should be noted that no multiple independent experiments were carried out
in this paper because the graphitization equipment is not readily available. A flowchart for
this research is shown in Figure 1b.

2.3. X-ray Diffraction Analysis

XRD was carried out using a Rigaku D/MAX-2500PC fully automatic powder diffrac-
tometer equipped with a monochromatic Cu Kα X-ray source and an internal standard
of silicon power [46,47]. Ni-filtered Cu radiation (λ = 1.54056Å) produced at 40 kV and
100 mA was used for the analysis. Diffraction measurements were recorded by the con-
tinuous sweep method at a scanning rate of 2◦/min over the interval from 2.5 to 80◦ in
the 2θ range. The XRD patterns were analyzed for structural parameters using the MDI
Jade5.0 software. This experiment was completed at the China University of Mining and
Technology Beijing. The mean interlayer spacing (d002), was calculated from the location
of the (002) peak by using Bragg’s equation. The microcrystalline structural parameters
were calculated by using Scherrer’s equations: Lc = 0.9λ/β002 cos(ϕ002); La = 1.84λ/β100
cos(ϕ100), where ϕ002 and ϕ100 are the peak positions of the (002) and (100) bands, respec-
tively; β002 and β100 denote the full width at half maximum (FWHM) of the (002) and
(100) peaks, respectively. The degree of graphitization (DOG) and the average number of
layers <N> were determined by the following equations: DOG = (3.440-d002)/(3.440–3.354),
<N> = Lc/d002 [17,28,34,41,42,48–51].
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3. Results
3.1. Characterization of Raw Samples

The samples were crushed to <20-mesh for the petrographic analysis and crushed to
<60-mesh for the geochemical analysis [41]. The volatile matter yield of the raw sample
was 5.27%, the hydrogen content was 2.19%, and the mean random vitrinite reflectance
value was 4.50% (Table 1), indicating the JZS sample was a typical anthracite. According
to the textural and morphological features observed under the microscope, the maceral
composition of the JZS sample was determined to be 54.5% vitrinite and 45.2% inertinite
(Figure 2a,b, Table 1).
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Table 1. Geochemical and petrographic characters of the raw JZS anthracite.

Sample
Proximate Analysis (%) Ultimate Analysis (%) Macerals (Vol%)

Rr/%
Mad Aad VMdaf FCdaf Cdaf Hdaf Ndaf Sdaf Odaf V I

JZS 2.15 5.00 5.27 94.73 94.57 2.19 1.08 0.42 1.73 54.5 45.2 4.50

Note: FC, fixed carbon (dry, ash-free basis, daf); VM, volatile matter; M, moisture (air-dried basis, ad); A, ash yield
(dry basis, d); V, vitrinite; I, inertinite; Rr, random vitrinite reflectance (% in oil). Data were partially obtained
from Li et al. [41].
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Figure 2. Optical micrograph images and high-resolution transmission electron microscopy images
of the JZS sample. (a) Pyrofusinite (Pf); (b) vitrinite (V); (c) basic structural unit (BSU).

HRTEM can reveal the nano-scale carbon structure of coal [19,42,52–54]. In Figure 2c,
the HRTEM images of the JZS sample are shown, and the corresponding selected-area
electron diffraction (SAED) is inserted. It is possible to discern that the carbon layers that
formed the basic structural unit (BSU) were relatively few in number, short in length, rather
contorted, and randomly oriented. The electron diffraction patterns showed only one or
two diffuse rings, which is typical of the amorphous carbon structure of anthracite.

Information on the structural changes in the raw and demineralized samples were
characterized by XRD. The ash yield of the JZS raw anthracite was 5.00%, and the inorganic
composition of the raw sample consisted mainly of kaolinite, illite, and ankerite (Figure 3a,
low-temperature ashing anthracite sample). The X-ray diffractograms of the samples were
typical for anthracite, as shown in Figure 3b, and they exhibited broad 20~30◦ (002) and
40~45◦ (100) peaks. It was noticed that many of the sharp mineral peaks in the raw coal dis-
appeared after the acid treatment, suggesting that the demineralization process succeeded.
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3.2. Effect of Thermal Treatment Temperature

The X-ray diffraction patterns of the pristine demineralized anthracite and the materi-
als obtained from the demineralized anthracite treated at temperatures ranging from 1700
to 2900 ◦C are depicted in Figure 4. All the samples showed a prominent diffraction peak
located at approximately 25~26◦, and this band exhibited varied characteristics, from broad
asymmetry through sharp asymmetry to sharp symmetry, with increasing the temperature
(Figure 4a). Four distinct peaks representing the (002), (100), (004), and (110) diffraction
planes were easily detected in the XRD spectra. It is generally accepted that a gradually
strengthening (002) diffraction peak intensity and a narrowing peak width indicate that
the degree of graphitization and crystallinity increases with increasing the treatement
temperature. For the demineralized JZSD sample, its (002) band was deconvoluted into
two Gaussian peaks (γ1 and γ2 peaks) located at 18.3◦ and 25.0◦, respectively (Figure 4b).
Similarly, the (002) diffraction peak for the JZSD-2000 ◦C sample was split into two peaks,
namely the γ2 and (002) peaks, at approximately 25.2◦ and 25.8◦, respectively, as shown
in Figure 4c. The broad γ1 peak at 2θ of the 18–21◦ band was attributed to amorphous
carbon, which only contributed to the background intensity. Some researchers believe
that a γ2 peak with a 2θ of 24~25◦ can be ascribed to graphite-like structures (crystalline
carbon), reasoning that the γ2 band represents nano-scaled graphite crystallites, which
are attached by other functional groups in the coal structure [55,56]. The peak at ~26◦

was due to the (002) band of the graphite reflection [50,57–60]. This finding demonstrated
that when the temperature rose, the amount of disordered carbon (γ1) and graphite-like
carbon (γ2) progressively declined, and the amount of graphite carbon gradually rose.
Moreover, starting from a temperature of 2600 ◦C, the modulated (10) diffraction band in
the samples separated into two well-defined (100) and (101) peaks (enlarged image inserted
in Figure 4a), which were comparable to the results of natural microcrystalline graphite, as
reported previously [41,42,52–54,61,62]. Additionally, two diffraction peaks at 54.5◦ and
77.43◦ attributed to (004) and (110), respectively, became clearly visible.
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XRD parameters for the series samples were shown in Table 2. The d002 spacing gradu-
ally decreases from 0.3498 to 0.3380 nm, and the FWHM (002) of the samples progressively
reduces from 4.365 to 0.417 (◦2θ). In comparison to d002, the variation in FWHM (002) is
more regular as the temperature changes, with correlation coefficient R2 as high as 0.91,
while the R2 after linear fitting of d002 is 0.88 (Figure 5a). Therefore, the FWHM (002) seems
to more accurately reflect the graphitization degree, similar results also reported by Li et al.
for naturally graphitized coals [41]. Furthermore, we also have noticed that the evolution
process of microcrystalline sizes La and Lc over temperature accelerates at temperatures
above 2000 ◦C, both with an overall S-shaped growth (Figure 5b). The above XRD data
show that temperature is the most important factor for graphitization, as with similar
results obtained by previous reports [6,12,14,16,19,23].

Table 2. Structural parameters for demineralized samples at different temperatures and samples with
different mineral additions after treatment at 2900 ◦C.

Samples d002/nm FWHM(002)/◦2θ Lc/nm La/nm <N> DOG

JZSD 0.3498 4.365 1.85 5.41 5 —
JZSD-1700 ◦C 0.3446 2.895 2.79 8.06 8 —
JZSD-2000 ◦C 0.3452 1.748 4.62 11.89 13 —
JZSD-2300 ◦C 0.3402 0.620 13.04 25.61 38 0.437
JZSD-2600 ◦C 0.3385 0.439 18.43 55.95 54 0.643
JZSD-2900 ◦C 0.3380 0.417 19.4 65.13 57 0.702

JZSD-20K-2900 ◦C 0.3390 0.433 18.68 55.41 55 0.585
JZSD-20I-2900 ◦C 0.3382 0.345 23.45 67.92 69 0.673
JZSD-20P-2900 ◦C 0.3382 0.353 22.92 68.45 68 0.673
JZSD-20Q-2900 ◦C 0.3387 0.386 20.95 52.89 62 0.614
JZSD-20D-2900 ◦C 0.3385 0.407 19.87 58.77 59 0.643
JZSD-2K-1700 ◦C 0.3481 2.748 2.94 10.63 8 —

JZSD-10K-1700 ◦C 0.3431 2.400 3.37 9.08 10 0.108
JZSD-20K-1700 ◦C 0.3405 1.067 7.58 29.54 22 0.407
JZSD-2P-2000 ◦C 0.3449 1.644 4.92 11.16 14 —

JZSD-10P-2000 ◦C 0.3441 1.608 5.03 13.77 15 —
JZSD-20P-2000 ◦C 0.3382 0.693 11.67 33.27 35 0.673
ATOD1-2400 ◦C 0.3448 — 5.0 12.5 — —

ATO-2400 ◦C 0.3430 — 6.4 19.5 — —
ATOD4-2400 ◦C 0.3398 — 11.0 39.3 — —

Note: FWHM, full width at half maximum of (002) diffraction peak; Lc and La, crystallite size; <N>, the average
number of layers; DOG, degree of graphitization. The last three sample data are cited from previous studies [18].
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3.3. Effect of Mineral Matter Type

The XRD analysis of the series of heated samples was carried out to investigate the
effect of the different minerals on the graphitization of anthracite. Kaolinite, illite, and
quartz had a high purity, and the other two minerals (pyrite and dolomite) contained
small amounts of impurities (Figure 6a). The XRD profiles of the thermal simulation
products with the addition of different minerals after the heat treatment at 1700 ◦C are
shown in Figure 6b. Although the (002) diffraction peaks of each sample were clear and
obvious, the peak shapes showed different characteristics, among which the JZSD sample
with added kaolinite showed the sharpest and strongest (002) band and also showed
(101) and (110) peaks, indicating a three-dimensional structural order. The samples with
dolomite and illite had a relatively broader (002) peak than the JZSD-20K-1700 ◦C sample,
whereas the samples containing quartz and pyrite showed broad, weak (002) diffraction
peak intensities, as shown at the bottom of Figure 6b. The above phenomena indicated
that the addition of the different minerals affected the orderly arrangement of the organic
matter during the graphitization process, in which the minerals (especially kaolinite)
showed a prominent promotion of graphitization. In addition, the non-graphite phases
(moissanite (SiC), oldhamite (CaS), and iron) were identified by XRD in the samples treated
at 1700 ◦C, as shown in Figure 6b. For the samples treated at 2900 ◦C, there were no
significant differences in the XRD patterns of the samples with the different added minerals,
all of which showed characteristic diffraction peaks of graphite and were almost free of
impurities peaks (Figure 6c). Table 2 also shows that all the graphitized samples at 2900 ◦C
had d002 values that were only slightly greater than the well-crystallized graphite layer
spacing (0.3354 nm). However, the samples with different added minerals showed different
crystallite sizes (La and Lc) and average number of stacked layers (<N>) after graphitization
at 2900 ◦C. As a result, the degree of graphitization for anthracite was regulated by the final
heating temperature, whereas the mineral type affected the final crystallite size.
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after graphitization at different temperatures: (b) 1700 ◦C; (c) 2900 ◦C.

In Figure 7, the type of mineral matter is plotted against the d002 (nm) and FWHM (002)
values of the heat-treated materials at 1700 ◦C. It was found that the layer spacing of all
the samples with minerals added, except for pyrite, showed a decreasing trend (Figure 7a),
while the FWHM values of all the samples with different minerals added decreased in all
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cases, as shown in Figure 7b. The JZSD-20K sample displayed the sharpest (002) diffraction
peak, as shown in Figure 6b, along with noticeable (101) and (110) peaks. The JZSD-20P-
1700 ◦C sample had the largest d002 (0.3475nm) value despite having a lower FWHM (002)
value than the demineralized coal sample JZSD-1700 ◦C, indicating that the presence of
pyrite had little impact on the graphitization and even increased the interlayer spacing.
Dolomite, illite, and, lastly, quartz all had a certain degree of catalysis for graphitization
but were much less effective than kaolinite.
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The association between the mineral species and the corresponding crystallite parame-
ters (La and Lc) of the samples treated at 1700 ◦C is depicted in Figure 8. It should be noted
that the La and Lc values of the demineralized samples were the lowest values compared
to those of the samples with added minerals. This demonstrated that under the influence
of temperature, the minerals underwent phase changes and contributed to the growth of
graphite microcrystals, although each mineral did so in a unique manner. It was noted
that the microcrystal size increased significantly in the presence of kaolinite (Figure 8),
which was also evidenced by our HRTEM images of the JZSD-20K-1700 ◦C sample shown
in the Supplementary Material. This may be related to the interaction between kaolinite
and organic matter at certain temperatures, the exact reaction mechanism of which is not
currently known. Based on the relationship between the crystalline parameters and mineral
type (Figure 8), it was found that dolomite promoted development along the c (stacking)
direction over the lateral direction, whereas pyrite showed the opposite effect.

3.4. Effect of Mineral Matter Content

Figure 9a displays the XRD patterns of the heat-treated samples with added quantities
of minerals. It was observed that the (002) diffraction peaks gradually became sharp and
symmetrical with the increase in the content of kaolinite and pyrite under the same heat
treatment conditions. In particular, the XRD features of the JZSD-20K-1700 ◦C sample
had an even higher graphitization degree than those of the samples with 2% and 10%
added pyrite treated at 2000 ◦C (Figure 9a). The measured FWHM (002) value (1.067)
of the JZSD-20K-1700 ◦C sample was lower than that of the JZSD-2P-2000 ◦C (1.644)
and JZSD-20P-2000 ◦C (1.608) samples. Combined with the performance of the pyrite-
added samples at 1700 ◦C, it was demonstrated that the different minerals had different
catalytic action temperature points, and a suitably high percentage of mineral content (20%)
effectively accelerated the conversion of organic matter to graphite, which was consistent
with the conclusions obtained from a previous study [18]. For example, the degree of
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graphitization of the ATOD4 sample (ash = 19.07 wt%) was higher than that of the ATOD1
(ash = 2.07 wt%) and ATO (ash = 10.12 wt%) samples after heat treatment at 2400 ◦C, as
shown in Table 2.
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Graphite powder could be obtained under the conditions with a temperature of
2900 ◦C for all the samples with added kaolinite or pyrite contents of 2%, 10%, and 20%.
The XRD patterns used to characterize the graphite powder showed that the only phase
was graphite after being treated at 2900 ◦C (Figure 9b). The new phases formed by mineral
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decomposition or reaction with disordered carbon were not visible in the final products
or were undetectable due to their extremely low content, indicating that under ultra-
high temperature conditions, regardless of the mineral content, they eventually escaped
from the reaction system. Based on the aforementioned phenomena, it can be concluded
that the mineral content of the raw coal had a significant impact on the final product’s
microstructure but not on its degree of graphitization. A similar conclusion was also
reported by Qiu et al., who found that the crystal structure of the final graphite, either
single crystal or polycrystalline, may depend on the content of minerals in the original
anthracite [44].

When the mineral content percentages were plotted against the X-ray parameter
FWHM (002) in Figure 10, it was observed that the best-ordered materials were obtained
from the samples with 20% added kaolinite after heat treatment up to 1700 ◦C, and the
FWHM (002) of all the samples showed a regular variation with increasing the mineral
content, except for the samples with pyrite. A linear fit was performed separately for
the different minerals, as shown in Figure 10. There appeared to be little or no influence
of the content of pyrite on the structural properties of the obtained material (R2 = 0.02).
However, the samples marked with boxes in Figure 10 that had a 2% pyrite addition, in
contrast to the samples with the same quantity of other minerals added, had the smallest
FWHM (002) value after the heat treatment. This was consistent with other studies that
claimed that samples with ash contents below 2% did not exhibit a significant catalytic
effect of the mineral matter [12,28]. Additionally, it was noted that the structural order
of the obtained materials gradually improved as the content of kaolinite, dolomite, or
illite increased. There was a strong correlation between the content of these three types of
minerals and the degree of graphitization, with correlation coefficients, R2, greater than 0.9
(R2 = 0.98 for illite, R2 = 0.94 for kaolinite, and R2 = 0.92 for dolomite) being obtained.
Furthermore, the conversion of organic matter to graphite was made easier by the high
quartz content, and the formation and decomposition of silicon carbide were intimately
tied to the graphitization process [27,28,36]. Therefore, it was concluded that increasing the
concentration of the three minerals (kaolinite, dolomite, and illite) under high-temperature
conditions < 1700 ◦C could significantly speed up the graphitization process and lower the
initial graphitization temperature.
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4. Discussion

The differences in the structural and graphitization degree of the samples with different
minerals added were probably due to the composition and structural features of the
minerals. Therefore, it was necessary to investigate how the minerals affected the growth
of the microcrystals during the graphitization process. The La/Lc value can be used to
depict the priority growth along the basal plane and vertical direction during graphitization
under high-temperature treatment. Larger La/Lc values indicate that the layers tend to
extend, and smaller La/Lc values indicate that the layers tend to stack. The variations in
the La/Lc values of the demineralized samples and samples with 20% different minerals
added under high-temperature treatment are shown in Figure 11a. It was found that
when the temperature was 1700 ◦C, the La/Lc values of the set of samples were more
scattered than those at other temperatures, indicating that the minerals had different
catalytic graphitization effects at this temperature (Figure 11a). The relationship between
the La/Lc value and the mineral species at 1700 ◦C is depicted in Figure 11b. A high
La/Lc value implies that the layers tend to extend along the basal planes, whereas a low
La/Lc value suggests that the layers tend to stack vertically [63]. It was observed that the
La/Lc values of all the samples were between 2.5 and 5.5, and the La/Lc values made it
possible to group the samples into three types (Figure 11b). The first type of samples grew
preferentially along the basal plane during the graphitization, with their La/Lc values
distributed in the range from 4.5 to 5.2, including the JZSD-20P-1700 ◦C, JZSD-20Q-1700 ◦C,
and JZSD-20I-1700 ◦C samples. The second category contained only one sample, JZSD-20K-
1700 ◦C, with an La/Lc value of 3.9. The third group of samples with La/Lc values below
2.89 contained two samples, JZSD-1700 ◦C and JZSD-20D-1700 ◦C, and more preferentially
formed the microcrystalline column described by Oberlin et al. [13].
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The catalytic effect of minerals is significantly influenced by their physical and chemi-
cal properties. For instance, the temperature at which a mineral decomposes plays a crucial
role in its catalytic activity. Kaolinite decomposes at 600–650 ◦C, illite at 850 ◦C, pyrite at
520–950 ◦C, dolomite at 750 ◦C, and quartz is chemically stable with a high melting point
of about 1600 ◦C. In some cases, the complete removal of catalysts during low-temperature
graphitization at 1700 ◦C may not be possible due to certain mineral elements interacting
with carbon, leading to the formation of carbides that only break down at high tempera-
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tures. In the process of graphite formation, the role of quartz has been studied by some
scholars [44,55,56]. The research shows that molten quartz reacts with disordered carbon to
form silicon carbide with a structure similar to graphite. This generated SiC can decom-
pose into graphite and silicon under sustained high-temperature conditions. Therefore,
the formation and decomposition reactions of silicon carbide are the true mechanism for
quartz catalyzing the graphitization of anthracite. In addition, adjusting the quartz content
can affect the crystal structure of coal-based graphite products. Research on the catalytic
graphitization of anthracite with the addition of illite and kaolinite is relatively scarce and
will be detailed in the future. Below, the roles of dolomite and pyrite in the graphitization
process of anthracite are discussed in detail.

Dolomite is a binary composite carbonate of MgCO3 and CaCO3. Qian et al. re-
searched the thermal decomposition of dolomite in an Ar atmosphere and found that the
products of the thermal reaction are MgO and Ca(OH)2, which are deliquesced by CaO [64].
Subsequently, Ca(OH)2 is decomposed into CaO at a higher temperature.

CaMg (CO3)2 → CaO + MgO + 2CO2 (1)

CaO + H2O→ Ca(OH)2 (2)

Ca(OH)2 → CaO + H2O (3)

The literature shows that the presence of calcium oxide during the pyrolysis of coal
significantly increases the yield of gas, and magnesium has been used as a catalyst to
graphitize anthracite at low temperatures [30,65]. Therefore, it is speculated that the
decomposition of dolomite will destroy the C-H bonds of aromatic hydrocarbons and
accelerate the dehydrogenation in the graphitization process. Moreover, CaS was identified
in the JZSD-20D-1700 ◦C sample. Guan et al. found that Ca(OH)2 and CaO were quite
effective at capturing sulfur in the gaseous phase as CaS [66]. It can be inferred that the
organic S in anthracite is precipitated as H2S and reacts with CaO at temperatures below
1700 ◦C.

CaO + H2S→ CaS + H2O (4)

There are active cleavage sites on the inner and outer surfaces of calcium oxide, and its
polarity affects the stability of the condensed aromatic ring’s electron cloud, which may be
the reason why calcium oxide reacts with sulfur-containing functional groups. Moreover,
on the nanometer scale, it was observed that graphite nanocrystals with thick stacking
layers and three graphite single crystals with different orientations that underwent vertical
merging coexisted, as shown on the right side of Figure 12. In addition, the La/Lc value of
the JZSD-20D-1700 ◦C sample was lower than that of the JZSD-1700 ◦C sample, as shown in
Figure 11a. The above phenomena showed that the JZSD-20D-1700 ◦C sample tended to be
stacked vertically, and the vertical stacking continued until 2000 ◦C (Figure 11a). In addition,
CaS was unable to remain stable in the reaction system as the temperature was increased to
2000 ◦C, indicating that dolomite had a small catalytic effect at ultra-high temperatures.

The samples with pyrite added showed an opposite structural growth priority
(Figure 11). Pyrite is the most abundant and dominant sulfide compound in coal. It
is generally agreed that the decomposition of pyrite occurs in steps over the temperature
range 520–950 ◦C, but only 70% of pyrite is reduced to Fe at 950 ◦C [67]. Chen et al. suggest
that the hydrocarbons of coal can promote the reduction of pyrite in pyrolysis [67].

FeS2 (pyrite)→ FeS1.2 (pyrrhotite)→ FeS (5)

FeS + H2 → Fe +H2S (6)
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Srinivasan et al. investigated the effect of pyrite on free radical formation in coal by
electron spin resonance spectroscopy and concluded that the formation of free radicals in
coal is facilitated by the pyrite-to-pyrrhotite conversion mechanism and by the presence
of pyrrhotite itself [68]. In addition, this study found the presence of an iron phase in
the JZSD-20P-1700 ◦C and JZSD-20P-2000 ◦C samples (Figures 9a and 6b), but it also
found a continuous increase in the microcrystalline length La in the series of JZSD-20P
samples at temperatures of 1700–2600 ◦C (Figures 11a and 13). It was therefore presumed
that the sulfur in the pyrite spilled out as a gas rather than as sulfur incorporated into
organic matter under high temperatures and that the formation of iron continued to
promote the graphitization of the organic matter. Some related studies have shown that
amorphous carbon has a good solubility in iron, and iron can permeate through organic
matter in a liquid phase [31,38,45]. Amorphous carbon near liquid iron is consistently
dissolved and arranged in an orderly manner, and it precipitates as graphite at higher
temperatures, thus accelerating the graphitization of organic matter. Tang et al. argue
that Fe promotes the integration of irregular five- and seven-membered rings into two
regular aromatic six-membered rings and that these two processes continue in the process
of catalytic graphitization [31]. Based on the above phenomena, the authors suggest that the
mechanism of the pyrite-catalyzed graphitization of anthracite is that the decomposition of
pyrite at lower temperatures (~950 ◦C) allows sulfur to escape as H2S or SO2, while the
removal of heteroatoms from the edges of graphite microcrystals in organic matter, such
as the basic structural units (BSUs) or the molecular orientation domains (MOD), leads to
the formation of a large number of free radicals. As the temperature increases, the newly
generated iron is locally oriented by dissolving amorphous carbon or reacting with carbon
to form metal carbides, thus promoting the growth of graphite microcrystals along the La
direction in a selective manner and the lateral coalescence of a large number of carbon
radicals. Furthermore, this catalysis occurs throughout the graphitization process until
ultra-high-temperature conditions (the boiling point of iron is 2750 ◦C), at which point
the iron escapes from the system as a gas phase and the graphite microcrystals undergo
vertical stacking (Figures 11a and 13).
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5. Conclusions

In this study, a series of coal-based graphite samples synthesized from anthracite
with minerals as catalysts were mainly examined using X-ray diffractograms (XRD). The
following findings were found based on the series of single high-temperature-run samples:

(1) For the sample series without adding additional minerals (the JZSD series), the crystal-
lite sizes of these samples showed an increasing trend with the treatment temperature.
The differences in the structure of the samples treated with different minerals added
were observed from the earliest stages of graphitization (1700~2000 ◦C) and were
mainly attributed to the composition and content of the minerals. In addition, an
appropriate increase in the mineral content could effectively decrease the initial graphi-
tization temperature of organic matter and accelerate the graphitization process.

(2) The La/Lc parameters made it possible to group the samples after the heat treatment
with the addition of different minerals into three main groups: (i) the JZSD-20P-
1700 ◦C, JZSD-20I-1700 ◦C and JZSD-20Q-1700 ◦C group; (ii) the JZSD-20D-1700 ◦C
group; and (iii) the JZSD-20K-1700 ◦C group. In terms of the minerals selected
for this experiment, the dolomite favored the vertical stacking of organic aromatic
layers, while three minerals, pyrite, quartz, and illite, favored the lateral extension of
aromatic layers. The highest degree of graphitization was observed in the kaolinite,
and the kaolinite could promote microcrystal growth both in the lateral and vertical
directions simultaneously.

(3) The dolomite could accelerate the vertical stacking of graphite microcrystals, prob-
ably through dehydrogenation and sulfur fixation at temperatures ranging from
1700~2000 ◦C, but as the temperature increased, the dolomite had a diminishing effect.
The decomposition of the pyrite could aid in forming a large number of free radicals
by removing heteroatoms at the edge of the basic structural units or molecular orien-
tation domains, while the newly generated iron probably promoted the preferential
growth of graphite microcrystals along the La direction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13060749/s1, Figure S1: The HRTEM image of the JZSD-20K-
1700 ◦C sample.
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