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Abstract: Karst reservoirs have always been a key field of oil and gas exploration. However, quanti-
fying the process of meteoric transformation remains a persistent challenge that limits the accuracy
of reservoir quality prediction. To explore the controlling factors of meteoric cementation on karst
reservoirs, the Majiagou Formation of the Ordos Basin in China was selected as an example. The
petrology; carbon, oxygen, and strontium isotopes; and in situ major, trace, and rare earth elements
were used, types and origins of calcite cements were analyzed in detail. The results revealed five
types of calcite cements (Cal-1~Cal-5), four types of cathodoluminescence (CL) intensities (dull, dull
red, deep red, and bright red luminescence), and six types of rare earth element patterns (Pattern-
1~Pattern-6). These five types of calcite cements developed in three periods. Cal-1 (transition CL) and
Cal-2 (dull CL) were precipitated during the Early Pennsylvanian period, the meteoric freshwater
was clean; Cal-3 (transition CL) and Cal-4 (bright red CL) were precipitated at the end of the Late
Carboniferous period, the fluids had strong dissolution ability and were polluted by terrigenous
debris; Cal-5 (transition CL) was deposited during the burial period, the fluid was pure pore water or
groundwater. The control of the cement on the reservoir during the burial period was much weaker
than that of meteoric cements. Therefore, explorations of karst reservoirs should be focused on weak
cementation during the epigenetic period.

Keywords: meteoric cementation; in situ elements; cathodoluminescence; rare earth elements;
Majiagou Formation; Ordos Basin

1. Introduction

Karst reservoirs are a significant focus for oil and gas exploration all over the world,
and different degrees of karst transformation in carbonate reservoirs have been discov-
ered [1]. The formation mechanism and transformation process of high-quality karst reser-
voirs are critical scientific problems of scholarly concern [2,3]. Exploring variables that con-
trol meteoric dissolution and cementation difference in karst reservoirs will be conducive to
attaining a more comprehensive and profound understanding of these scientific problems.

Statistics indicate that the reservoirs of 20% to 30% of large gas fields are carbonate
karst reservoirs related to regional unconformity [4]. Interest has increased in studying karst
patterns, such as those in the layered carbonates in the Salitre Formation, São Francisco
Craton, Brazil [5–7], and their association with Brazilian presalt carbonate reservoirs [8], as
well as those from the Paleogene in the southwest of the Zagros Basin [9]. Moreover, karst
reservoirs are a key reservoir type in the marine petroliferous basins of China. There are
large gas fields related to karst reservoirs that developed in the Ordos Basin during the
Middle Ordovician, in the Tarim Basin during the middle-late Cambrian and late Ordovi-
cian, and in the Sichuan Basin during the Precambrian and the Carboniferous [10–13]. Key
characteristics of these carbonate karst reservoirs are long development time, multiple karst
periods, and complex reservoir evolution, all of which make them difficult to explore [14].
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Majiagou Formation (Majiagou Fm.) carbonate reservoirs have their own unique
attributes, because they are composed of evaporites and carbonate rock assemblages under
the influence of paleogeographical location and paleoclimate [15]. There are large-scale
micrite dolomite reservoirs containing irregular-circular gypsum mold pores that are rarely
found elsewhere [16–18]; these gypsum mold pores are filled with calcite cement or residual
gypsum minerals [19–21]. These coarse-grained secondary calcites originated from meteoric
freshwater during epigenetic diagenesis [13,22]. Therefore, to explore the evolution law of
Majiagou Fm. reservoirs, it is essential to analyze the meteoric diagenetic process.

The influence of meteoric diagenesis on karst reservoirs mainly includes the devel-
opment of dissolution pores, vugs, and fractures, or the precipitation of meteoric cements.
The geochemical characteristics of carbonate sediments contain rich geological informa-
tion [23,24]; however, different minerals and types of cements are difficult to obtain and
distinguish by bulk geochemical methods. Notably, the rise of in situ elemental experi-
ments provides a means to explore the types and precipitation environments of meteoric
calcite [25]. Meteoric cement is a high-quality proxy of restored paleoenvironmental and
paleoclimatic conditions in carbonate-dominated strata [26–28], because it equilibrates
slowly at average annual temperatures and is unaffected by biological effects that might
bias other proxy materials [29]. The potential of in situ trace element solutions in carbonate
minerals to reconstruct environmental characteristics in low-temperature (marine or diage-
netic) environments has attracted extensive attention [30,31]. Paleoredox conditions can be
inferred in part from the contents of iron and magnesium [28,32]. The characterization of in
situ rare earth elements (REE) enabled the origin of the Ordovician hydrothermal dolomite
in the Tazhong Uplift, China to be resolved [33].

The origin of the coarse-grained calcite precipitated in the Majiagou Fm. Ordos Basin
is only thought to be freshwater precipitation based on petrological characteristics and on
analysis of powder isotopes and elements; however, potential differences in environment
and fluid source have not been explored further. In a recent study, in situ U-Pb dating
technology was used to determine that the meteoric calcites are multiphase cementation
formed at 319.0~292.7 Ma in the study area [22]. In the present study, cementations in the
Middle Ordovician Majiagou Fm. carbonate reservoir in the Ordos Basin were analyzed
in detail, using cathodoluminescence (CL) characteristics and in situ elemental analysis
methods, combined with data for powder carbon, oxygen, and strontium isotopes. The
characteristics of cementation during the epigenetic period were further divided, and the
sources of different types of cement in the gypsum mold pores and associated fractures
were systematically distinguished. The findings provide a reference for the transformation
process and formation mechanism of karst reservoirs and guided natural gas exploration.

2. Geological Setting

The Ordos Basin is located in the western part of the North China Craton (NCC),
with an area of approximately 25 × 104 km2 (Figure 1a), and it can be divided into six
structural units: the Yimeng Uplift, the Weibei Uplift, the Jinxi Fault–Fold Belt, the Yishan
Slope, the Tianhuan Syncline, and the Fault–Fold Belt of the Western Margin (Figure 1b).
The Ordos Basin was near the equator during the Middle Ordovician, affected by high
temperatures, a large number of gypsum rocks were co-deposited with carbonate rocks
during regression (Figure 1c). There are three transgressions (second, fourth, and sixth
members of the Majiagou Fm., Ma2, Ma4, and Ma6) and three regressions (Ma1, Ma3, and
Ma5) in the Majiagou Fm. Ma1, Ma3, and Ma5 mainly developed sulfate and carbonate
rock assemblages; the Ma2 and Ma4 members are mainly carbonated rocks, and only some
parts of the basin still have the remaining Ma6, which is dominated by carbonate rocks [15].
The Majiagou Formation comprises carbonate rocks deposited in the main part of the Ordos
Basin and generally has deposits that are several hundred meters thick.
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Figure 1. (a) Paleogeographic reconstructions of the Ordos Basin at 300 Ma. IC, MOB, NCB, NQ,
Qm, and SCB indicate the Indochina, Mongolian, North China, North Qiangtang, Qaidam, and
South China blocks/terranes, respectively, modified from ref. [34]; (b) map showing the location of
Fuxian area in the Ordos Basin, and the specific core wells locations; (c) stratigraphic, lithology and
paleotemperature characteristics from Ordovician to Carboniferous in the study area, sea surface
temperature modified from ref. [35].

Affected by the Caledonian movement, the basin was uplifted in the Late Ordovician,
and experienced weathering up to 130 Ma; Late Ordovician to Early Carboniferous strata are
missing (Figure 1c) [36]. Until the end of the Hercynian movement, under the compression
of the North and South troughs, seawater gradually withdrew from the basin area, forming
a craton basin that was steep in the south and gentle in the north [37,38].

Carbonate platform with low terrain and uplifted periphery were in the basin from
Ma1 to Ma3, but the paleogeomorphology of Ma4 to Ma6 varied greatly because it was
affected by the high-frequency variation of the sea level [39,40]. The present study focused
on Ma5, which corresponds to the Dapingian–Darriwilian and was mostly deposited in a
limited tidal flat environment. Under the influence of high-salinity seawater, the dolomite
strata often contain gypsum-salt rocks and/or layers [41].

The Ordovician was an important geological period for the tectonic climate and
biological evolution of the early Paleozoic. In addition, the Late Paleozoic Ice Age (LPIA),
which lasted approximately 100 Ma (ca. 360–255 Ma), is a critical turning point in global
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climate change [42,43]. However, the LPIA was not a long-term continuous glaciation
but rather an overall cold glacial event separated by multiple warm events [44]. The
precipitation of calcite cement may be the result of multiple warm events in the study area
during the Late Carboniferous [45–47].

3. Samples and Methods
3.1. Samples Selected

We investigated the Ma5 member dolomite from some drilling wells (R1, R2, FG3,
XF2, XF14, and N3) in remnants, Fuxian area, Ordos Basin (Figure 1b). Cores of these
drilling wells included Majiagou Fm. karst reservoirs. A total of 23 samples were polished
as thin sections for petrological, mineralogical and morphological observations. Types
and morphology of carbonate minerals were observed by an OLYMPUS BX51 microscope.
The CL imaging were performed on polished and carbon-coated samples to characterize
the morphology of minerals. The imaging was conducted with a Quanta 450 FEG SEM
equipped with a SDD Inca X–Max 50 and a MonoCL 4 + detector (20 kV accelerating voltage
and 20 nA beam current) at the Beijing Research Institute of Uranium Geology, China.

Four representative thin sections were selected for in situ major, trace, and rare earth
element analysis. Powdered samples were selected for geochemical analyses (e.g., δ13C,
δ18O, and 87Sr/86Sr), using a micro-mill with a drilling bit diameter of 0.25 mm. To
distinguish between matrix and cement, a total of 20 samples were collected for C and O
isotope analysis, and 16 samples were collected for Sr isotope analysis.

3.2. In Situ Elemental Analysis

Concentrations of 57 major, trace, and rare earth elements were determined by per-
forming in situ elemental analysis under room temperature in the Research Branch of
Southwest Petroleum University, Key Laboratory of Carbonate Reservoirs, China National
Petroleum Corporation (CNPC). The test sample was a special sheet prepared for the
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) experiment
(thickness 0.04 mm, size 17 mm × 25 mm). Before the test, ultrasonic waves were applied
to the sample for 90 min to remove surface impurities; then, the sample was air-dried in a
fume hood. The test instrument was a Newwave 193 nm UC laser connected to an Agilent
7800 ICP-MS mass spectrometer; the laser beam spot was 80 microns in diameter, and
the frequency was 10 Hz. The standard sample was USGS MACS-3 (calcium carbonate;
United States Geological Survey), the monitoring standard sample is JCp-1. To calibrate
and calculate the measurement results, a series of reference materials were analyzed before
and after the analytical batch and were also inserted within the sequence every five sample
positions to ensure the error was less than 10%.

We normalized the REE data with Post-Archean Australian Shale (PAAS) standard
samples. Because the Eu of PAAS has a negative anomaly, a chondrite standard sample
was selected to normalize the data to avoid incorrectly evaluating the δEu, and the specific
calculation formula can be found in ref. [48]. The concavity index (CI) refers to the concavity
of the PAAS-normalized REE patterns, and a CI value of ~1 indicates a quasi-linear shale-
normalized partitioning pattern. The following equation was used to calculate the CI:

CI = GdSN/(La6
SN × Yb7

SN)
1/13

3.3. Bulk C, O, and Sr Isotopes

Approximately 10 mg of the rock powder samples was reacted with pure phosphoric
acid at 72 ◦C for 1 h. The released CO2 was collected and tested for C and O isotope
composition in a Mat 253 Mass Spectrometer. The results were calibrated and expressed as
Vienna Pee Dee Belemnite VPDB (‰); the accuracy was better than ±0.2‰. For strontium
isotopes analysis, ~100 mg powder was reacted in a Finnigan Mat Triton Tl with 6 M HCl
for 24 h at 100 ◦C. The tested 87Sr/86Sr ratios were calibrated with a standard from the



Minerals 2023, 13, 812 5 of 19

National Institute of Standards and technology (NBS-987), which has an 87Sr/86Sr ratio of
0.710273 ± 0.000012.

4. Results
4.1. Petrological Characteristics

The Majiagou Fm. mainly developed microcrystalline dolomite reservoirs, the matrix
was dolomite with a particle size of ~5 µm, and the cements were mostly developed in the
gypsum mold pores and associated fractures (Figure 2). The cement mainly consisted of
coarse-crystalline calcite, usually larger than 500 µm. Dolomite silt (Dol-1) was observed
in pores and fractures (Figure 2a). Calcite- and dolomite-embayed contacts formed by
dedolomitization which were common in the matrix (Figure 2b). Various types of calcite
cements were observed under CL; the CL intensities were dull, dull red, deep red, and bright
red luminescent (Figure 2c–h). Five types of calcite cements were present in the study area;
dull red ring-shaped calcite cements with complete crystal structure, mainly developed at
the edges of the gypsum mold pores (Cal-1) (Figure 2c,d); dull luminescent calcite cement
mainly developed within the cores with earlier precipitation (Cal-2) (Figure 2d,e); bright
red cement, mainly developed in the gypsum mold pores (Cal-4) (Figure 2f); and widely
distributed dull red and deep red calcite cement (Cal-3) developed at the transition position
between Cal-2 and Cal-4 (Figure 2e). The fluid inclusions indicated that there was a type of
calcite cement formed during the burial period (Cal-5) (Figure 2g–i). The CL intensity of
Cal-5 was between dull red and deep red luminescent, and the homogeneous temperature
was >100 ◦C (Table 1).
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Figure 2. Characteristics of reservoirs in Majiagou Formation, Ordos Basin ((a) N3-1, Ma5
1 submem-

ber, gypsum mold pores filled with dolomite silt and calcite cement; (b) R2-21-2, Ma5
1 submember,

dolomite and calcite embayed contacts formed by dedolomitization; (c,d) XF14-2, Ma5
2 submember,

the euhedral Cal-1 precipitated at the edge of the gypsum mold pore, and the dull luminescent
Cal-1 precipitated subsequently; (e) N3-17, Ma5

1+2 submember, Cal-2 was precipitated in crack asso-
ciate with gypsum mold pore; (f) N3-16, Ma51 submember, Cal-4 precipitated inner the mold pore;
(g,h) XF14-10B, Ma5

2 submember, Cal-5 precipitated in the crack associated with the gypsum mold
pores, and the CL intensity is alternating dull red and deep red c; (i) XF14-10B, Mfva5

2 submember,
fluid inclusions in Cal-5).



Minerals 2023, 13, 812 6 of 19

Table 1. Statistics of fluid inclusion microthermometry for meteoric calcites from the Majiagou
Formation, Ordos Basin.

Lithofacies Morphology Th (◦C) Tm (◦C) Salinity (wt%
NaCl)

Gypsum mold pore Strip, Quadrilateral,
Triangle, Circle

Mean 115 −20 22.3
n = 6Max 124 −19 23.0

Min 99 −21 21.7

Crack Strip, Quadrilateral,
Oval

Mean 111 −20 22.5
n = 6Max 123 −19 23

Min 96 −21 21.7

4.2. In Situ Elemental Characteristics

The in situ experiments showed that the major and trace elements of the calcite cements
varied greatly. Major elements included Al, Fe, and Mn. The Al contents in Cal-1~Cal-5 were
0.28–91 ppm, 0.21–1092 ppm, 0.02–15.4 ppm, 0.23–6 ppm, and 0.07–103 ppm, respectively;
the Fe contents were 1244–1860 ppm, 752–4420 ppm, 788–3800 ppm, 767–2190 ppm, and
894–972 ppm, respectively; the Mn contents were 4.9–205 ppm, 0.09–980 ppm, 15–1250 ppm,
0.4–3250 ppm, and 24.4–75.9 ppm, respectively. Regarding the trace elements, the contents
of Sr were 13.7–76.8 ppm, 4.79–326 ppm, 31.5–788 ppm, 11.86–520 ppm, and 95.7–367 ppm,
respectively; those of Ba were 0.06–0.99 ppm, 0.02–4.04 ppm, 0.12–1.88 ppm, 0.04–1.83 ppm,
and 0.04–0.68 ppm, respectively (Table 2). For the specific location of and data for the in
situ experiment, please refer to Figure S1.

The ∑REE was 0.6–726.9 ppm, with an average of 135.6 ppm; δCeSN was 0.03–4.65,
and the δCeSN values of Cal-1~Cal-5 were 0.77–2.55, 0.03–2.73, 0.04–4.51, 0.13–2.53, and
0.90–1.22, respectively; δEuCN was 0.53–0.81. The (La/Yb)SN ranged from 0.08 to 9.27.
The ∑REE of Cal-1 was low: all values were distributed around 10 ppm, and only one
location exceeded 30 ppm; the ∑REE of Cal-2 was 0.61–164.85 ppm; the ∑REE of Cal-3
was 17.30–637.24 ppm; the ∑REE of Cal-4 was 7.87–726.95 ppm, which was the highest
among all the cements; the ∑REE of Cal-5 was 1.53–32.29 ppm. The CIs of Cal-1~Cal-5
were 1.53–3.56, 1.16–6.49, 1.53–7.28, 2.44–5.83, and 0.96–1.85, respectively.

There were differences in the contents and the distribution patterns of REE in the
matrix and in the cement. PAAS standards were used to standardize the obtained REE,
and the distributions revealed six patterns (Pattern-1~Pattern-6). Pattern-1 was a flat type
(Figure 3a); Pattern-2 was a positive Ce anomaly (Figure 3b); Pattern-3 was a negative
Ce anomaly (Figure 3c); Pattern-4 was mid-REE (MREE) enriched (Figure 3d); Pattern-5
was heavy-REE (HREE) depleted and monotonically decreasing (Figure 3e); Pattern-6 was
positive La and Gd anomalies (Figure 3f). The patterns of the matrix were Pattern-1 and
Pattern-2, those of the calcite cements were Pattern-1~Pattern-5, and that of the dolomite
silt was Pattern-6.
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Table 2. In situ elemental characteristic of Majiagou Formation, Ordos Basin.

Location Type Al Mn Fe Sr Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

XF14-2-5

Cal-1

0.3 205.0 1860 13.7 / 1.72 5.00 0.75 3.02 1.07 0.19 1.07 0.14 0.71 0.13 0.37 0.05 0.28 0.05
XF14-2-7 21.3 124.1 1391 34.2 0.06 0.80 1.87 0.25 1.16 0.42 0.09 0.59 0.08 0.46 0.08 0.21 0.03 0.16 0.03
XF14-2-8 91.0 59.6 1381 76.8 0.66 9.30 21.9 0.93 3.48 0.75 0.17 0.65 0.07 0.34 0.05 0.13 0.02 0.11 0.02
XF14-2-9 2.4 62.8 1450 73.1 0.99 0.88 2.72 0.30 1.28 0.36 0.07 0.33 0.05 0.23 0.04 0.10 0.02 0.07 0.01

N3-16-5

Cal-2

80.0 898.0 2410 326.0 1.35 18.10 57.3 8.26 40.60 11.28 2.37 10.60 1.45 7.49 1.29 3.09 0.37 2.32 0.33
N3-16-6 1092.0 980.0 2440 192.0 4.04 10.80 34.00 4.74 21.90 5.85 1.22 5.52 0.77 4.20 0.74 1.81 0.22 1.35 0.20
N3-16-9 0.43 1.0 1630 11.5 / 1.77 0.35 1.53 8.05 2.31 0.46 2.59 0.37 2.43 0.48 1.28 0.16 0.89 0.13

N3-16-10 0.6 28 1580 14.9 0.17 0.175 0.86 0.09 0.44 0.11 0.02 0.10 0.02 0.12 0.02 0.08 0.01 0.08 0.01
N3-17-1 3.9 13.1 911 20.9 0.10 1.74 1.70 0.72 3.04 0.68 0.12 0.71 0.10 0.59 0.12 0.31 0.04 0.25 0.04

N3-17-12 0.3 26.0 761 5.7 0.02 5.10 0.39 1.84 8.40 1.63 0.33 2.02 0.26 1.63 0.35 0.88 0.10 0.55 0.08
N3-17-15 0.8 3.5 752 10.7 0.28 3.63 0.62 1.71 8.17 1.69 0.32 1.66 0.21 1.25 0.28 0.72 0.09 0.53 0.08
N3-17-18 0.4 369.0 4420 235.0 0.16 0.63 0.86 0.09 0.87 0.96 0.28 1.55 0.19 1.02 0.18 0.44 0.06 0.38 0.05
XF14-2-6 0.2 0.1 1169 5.5 0.66 0.154 0.03 0.07 0.40 0.14 0.03 0.19 0.03 0.18 0.04 0.11 0.02 0.11 0.02

XF14-2-12 1.1 / 1152 4.8 0.59 0.80 0.53 0.70 3.51 1.44 0.24 1.46 0.20 1.00 0.16 0.39 0.05 0.28 0.04
XF14-2-13 / / 1079 11.9 0.54 0.35 0.02 0.01 0.07 0.03 0.01 0.04 0.01 0.03 0.01 0.01 0.00 0.01 0.00

N3-16-3

Cal-3

1.3 547.0 2000 520.0 0.76 26.10 82.00 13.1 65.30 19.90 4.38 21.40 3.28 18.40 3.37 8.40 1.04 5.96 0.84
N3-16-4 4.0 800.0 2670 367.0 0.49 10.50 34.00 4.83 22.50 5.68 1.25 6.41 0.90 4.89 0.85 1.99 0.21 1.18 0.16
N3-16-8 0.2 783.0 1960 31.5 0.32 1.58 10.00 0.60 2.68 0.63 0.11 0.60 0.09 0.47 0.09 0.24 0.03 0.17 0.02

N3-16-13 2.2 1240.0 1530 427.0 1.44 71.50 201.00 28.30 127.00 27.50 5.00 21.60 2.70 13.50 2.34 5.61 0.71 4.24 0.61
N3-16-15 3.6 495.0 1270 412.0 1.78 16.70 53.80 8.50 41.20 12.20 2.59 12.20 1.83 10.00 1.80 4.49 0.54 3.13 0.44
N3-16-16 15.4 760.0 1870 216.0 0.59 7.10 24.10 3.25 14.60 3.58 0.70 3.35 0.44 2.24 0.40 0.90 0.11 0.69 0.10
N3-17-2 / 488.0 3800 192.0 / 3.50 19.90 4.60 29.20 11.10 2.19 9.60 1.30 7.10 1.24 2.93 0.35 2.10 0.31
N3-17-3 0.7 485.0 1880 272.5 1.88 12.15 49.40 8.21 40.50 12.04 2.54 12.30 1.93 10.69 1.86 4.60 0.58 3.74 0.55
N3-17-7 0.1 564.0 797 446.0 0.12 38.30 110.00 15.23 67.10 15.77 3.11 14.80 1.88 9.33 1.53 3.43 0.40 2.40 0.37
N3-17-8 0.4 567.0 827 650.0 0.34 11.29 46.60 7.92 38.50 13.92 3.12 15.39 2.15 11.00 1.82 4.06 0.47 3.01 0.42
N3-17-9 0.2 782.0 788 321.0 0.18 76.00 199.00 25.90 108.00 19.20 3.32 14.60 1.61 7.50 1.20 2.69 0.32 1.90 0.28

N3-17-10 0.4 775.0 835 427.0 0.16 10.10 36.70 5.91 29.60 10.74 2.49 13.20 1.83 9.59 1.61 3.76 0.45 2.97 0.46
N3-17-11 8.0 15.0 819 36.6 0.29 22.99 2.89 8.63 36.80 6.91 1.15 5.57 0.66 3.43 0.62 1.50 0.18 1.04 0.16
N3-17-14 2.4 693.0 1180 215.3 / 97.00 272.00 38.4 171.00 28.5 4.31 15.90 1.28 4.94 0.76 1.67 0.19 1.12 0.17
N3-17-16 0.3 746.0 1490 413.0 1.28 10.20 51.30 9.40 50.70 17.10 3.67 17.30 2.72 14.80 2.46 5.86 0.71 4.43 0.62
N3-17-17 3.3 437.0 3570 210.0 0.44 9.10 59.00 11.20 68.00 21.40 3.83 17.60 2.32 12.40 2.07 5.10 0.62 3.93 0.58
N3-17-19 6.5 490.0 1620 788.0 0.61 18.10 110.00 21.80 123.00 47.20 10.99 52.50 8.21 45.10 7.44 17.0 2.02 12.3 1.66
XF14-2-3 0.0 830.0 1681 34.2 0.43 14.00 95.00 3.43 11.80 2.68 0.48 2.42 0.32 1.77 0.32 0.94 0.13 0.90 0.15

XF14-2-11 / 1250.0 1983 45.7 0.41 13.19 164.00 3.82 13.90 3.38 0.53 2.64 0.33 1.71 0.31 0.86 0.13 0.83 0.14
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Table 2. Cont.

Location Type Al Mn Fe Sr Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

N3-16-1

Cal-4

6 439.0 2190 234.0 1.83 15.00 43.80 6.60 31.50 8.50 1.76 8.25 1.19 6.42 1.16 2.88 0.35 2.02 0.29
N3-16-2 0.3 2150.0 2050 390.0 0.15 94.00 244.90 34.50 158.60 29.70 5.29 22.10 2.35 11.03 1.85 4.28 0.48 2.85 0.39

N3-16-12 3 1690.0 1470 520.0 0.04 103.00 279.00 39.40 178.00 38.30 7.41 32.10 4.29 22.10 3.88 9.70 1.23 7.46 1.08
N3-17-4 0.5 1190.0 987 314.0 0.32 0.58 0.94 0.17 1.22 0.69 0.21 1.15 0.21 1.21 0.22 0.57 0.07 0.53 0.09
N3-17-5 1.9 1209.0 1260 359.0 0.45 37.00 86.00 4.93 24.70 7.78 1.72 8.14 1.07 5.32 0.88 1.94 0.24 1.56 0.22

N3-17-13 0.7 702.0 767 90.1 0.17 19.80 65.10 9.48 42.00 8.21 1.47 6.41 0.74 3.42 0.58 1.27 0.13 0.81 0.13
XF14-2-1 0.9 3250.0 1541 112.0 0.17 1.30 8.20 0.41 1.67 0.59 0.10 0.64 0.09 0.54 0.11 0.32 0.04 0.24 0.04
XF14-2-2 0.2 0.4 1208 11.9 0.04 2.49 2.80 2.99 14.30 4.67 0.74 3.52 0.39 1.99 0.35 0.85 0.10 0.66 0.10

XF14-10B-1

Cal-5

/ 67.5 972 95.7 / 1.66 2.83 0.32 1.20 0.17 0.03 0.14 0.02 0.10 0.02 0.05 0.01 0.04 0.01
XF14-10B-2 / 38.8 958 199.0 0.04 9.79 14.60 1.46 5.02 0.55 0.09 0.35 0.07 0.17 0.03 0.07 0.01 0.08 0.02
XF14-10B-3 0.3 75.7 920 103.6 / 0.68 1.08 0.11 0.45 0.10 0.02 0.15 0.02 0.12 0.03 0.06 0.01 0.06 0.01
XF14-10B-4 103.0 24.4 922 333.0 0.68 2.79 4.71 0.52 1.92 0.40 0.07 0.35 0.05 0.25 0.05 0.12 0.01 0.07 0.01
XF14-10B-5 4.3 39.8 960 226.0 0.11 1.48 2.93 0.33 1.20 0.26 0.04 0.22 0.03 0.17 0.03 0.08 0.01 0.05 0.01
XF14-10B-6 0.6 75.9 899 111.8 0.09 0.48 0.65 0.06 0.20 0.03 0.01 0.04 0.01 0.02 0.01 0.01 0.00 0.01 0.00
XF14-10B-8 0.8 44.0 908 202.0 0.15 1.58 3.17 0.36 1.385 0.28 0.05 0.21 0.03 0.16 0.03 0.07 0.01 0.06 0.01
XF14-10B-9 1.4 26.4 894 367.0 0.52 3.19 6.01 0.68 2.39 0.46 0.08 0.47 0.05 0.32 0.06 0.16 0.02 0.11 0.02

N3-16-14
Dol-1

1750.0 295.1 5420 91.0 3.78 12.70 22.90 0.69 2.26 0.62 0.14 4.90 0.16 0.40 0.07 0.18 0.02 0.12 0.02
XF14-2-10 1310.0 502.0 3050 28.8 7.40 9.60 15.60 0.80 3.05 0.70 0.16 4.90 0.20 0.77 0.16 0.45 0.06 0.36 0.05

N3-16-7

Matrix

442.0 880.0 2920 72.0 2.97 5.00 20.00 1.59 7.25 2.15 0.47 2.32 0.34 2.03 0.30 0.98 0.12 0.78 0.11
N3-16-11 518.0 967.0 1850 72.0 2.42 15.30 56.00 1.54 6.82 1.96 0.40 2.06 0.31 1.79 0.34 0.92 0.11 0.75 0.10
N3-17-6 741.0 925.0 7980 75.4 2.60 4.90 9.10 0.74 3.87 1.34 0.32 1.53 0.22 1.23 0.23 0.57 0.07 0.40 0.05

XF14-10B-7 609.0 24.5 732 70.4 1.18 1.24 1.68 0.15 0.51 0.11 0.02 0.12 0.02 0.11 0.02 0.07 0.01 0.05 0.01
XF14-2-4 425.0 151.7 3360 41.1 3.39 3.40 8.60 0.60 2.23 0.63 0.11 0.60 0.07 0.40 0.07 0.17 0.02 0.13 0.02
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(f) REE Pattern-6 of Dol-1).

4.3. Isotopic Characteristics

C and O isotopes showed variations in different lithologic samples (Table 3). Except
for one sample (N3-11, −5.2‰), the δ13C contents of the matrix were concentrated in
–2.8‰~+0.2‰, with an average of –1.0‰; and the δ18O contents were −9.8‰~−5.2‰,
with an average of −7.1‰ (the δ18O content of N3-11 was −8.3‰). The δ13C and δ18O
contents of calcite cement were −10.9‰~−2.6‰ (average −6.3‰) and −14.5‰~−9.2‰
(average −12.0‰), respectively (Figure 4). However, the characteristics of Sr isotope were
different from C and O isotopes. The 87Sr/86Sr ratio of the matrix and cement were similar
(Table 3), ranging from 0.708567 to 0.710641 (average, 0.709576) and 0.708928 to 0.712807
(average, 0.710468), respectively (Figure 5).
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Table 3. Characteristics of C/O, and Sr isotopic compositions of Majiagou Formation, Ordos Basin.

Sample Depth, m Type
C/O Isotopic Compositions, ‰ Sr isotopic Compositions

δ13CV–PDB δ18OV–PDB δ18OV–SMOW
87Sr/86Sr S.D.

N3-11 2967.34
Matrix −5.2 −8.3 22.3 0.708859 0.000015
Calcite
cement −8.7 −13.7 16.8 0.708928 0.000019

R1-21-3 2997.45
Matrix −2.8 −9.8 20.8 0.708567 0.000015
Calcite
cement −7.1 −14.5 16 0.709384 0.000018

R1-21-8 2987.7
Matrix −0.9 −6.7 24 / /
Calcite
cement −5.9 −9.2 21.4 / /

R1-21-10 2987.55
Matrix −1.8 −8.2 22.4 / /
Calcite
cement −5.7 −10.4 20.2 / /

R1-21-13 2987.38
Matrix −0.9 −8.3 22.4 / /
Calcite
cement −4 −13 17.5 / /

R2-21-3 3092.5
Matrix −0.6 −6.4 24.3 0.709917 0.000013
Calcite
cement −2.6 −11.7 18.8 0.712807 0.000012

R2-21-5 3090.56
Matrix −1.2 −6.7 24 0.709528 0.000014
Calcite
cement −3.5 −13 17.5 0.711133 0.000016

R2-21-11 3039.13
Matrix −0.9 −6.8 23.9 0.709042 0.000014
Calcite
cement −7.2 −10.3 20.3 0.710392 0.000016

R2-21-21 3024
Matrix / / / 0.710641 0.000014
Calcite
cement / / / 0.710564 0.000018

FG3-21-3 3142.2
Matrix 0.1 −5.8 24.9 0.710531 0.000013
Calcite
cement −7.4 −11.8 18.8 0.709961 0.000012

FG3-21-5 3141.58
Matrix 0.2 −5.2 25.6 0.70952 0.000019
Calcite
cement −10.9 −12.3 18.2 0.710571 0.000016
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5. Discussion
5.1. Characteristics and Origin of Cements in Karst Reservoirs
5.1.1. Evidence of Meteoric Diagenesis Transformation

Dedolomitization, the process of converting dolomite to calcite, occurs in the epigenetic
environment of gypsum-bearing carbonate formations, providing additional Ca2+ by dis-
solving gypsum minerals from atmospheric freshwater to replace Mg2+ in dolomite [53,54].
The concave–convex contact between calcite and dolomite in the matrix is a critical feature
of dedolomitization (Figure 2b), and calcite cement is a key by-product [55]. The C and O
isotopes of the calcite cements also indicated a significant presence of atmospheric fresh-
water [13]; in addition, there was a positive correlation between them (Figure 3), and the
δ18O showed an obvious negative bias. Moreover, the Sr isotopic ratio values were high
(Figure 4), which suggests meteoric cementation or dissolution of older rock with similar
varying Sr ratios [56]. However, the cores in deeper layers did not exhibit any obvious
dissolution phenomenon. The 87Sr/86Sr ratio of global runoff is 0.7119, which is similar to
our obtained values [57]; therefore, the high Sr isotopic ratios strongly suggest the presence
of meteoric cementation.

The homogenization temperature of fluid inclusions is a good method to detect the
time of cementation [58]. A type of calcite cement filled the fractures, and the homogeniza-
tion temperature of the fluid inclusions was >100 ◦C which much higher than the formation
temperature of meteoric calcite, indicated the remaining presence of some cements during
the burial period (Cal-5). The CL intensity of Cal-5 was a transition between dull red and
deep red luminescent (Figure 2h), and it was difficult to distinguish from Cal-3 solely by
lithological characteristics. The elemental compositions of Cal-5 had distinct characteristics
that were significantly different from those of other types of cement, and the elemental
concentrations were lower than those in other types of cement as well. Additionally, the
REE pattern was Pattern-5 (Figure 3e). Compared with the other calcite cements, Cal-5
had unique characteristics, the lowest CI value, low Fe and Mn contents (Figure 6a–c), and
monotonically decreasing REE distribution. In addition, there was no positive Eu anomaly,
indicating no effects from potential abnormally high temperatures or hydrothermal flu-
ids [59,60]. Combined the ∑REE content and CI, the Cal-5 should precipitate during the
burial period was unaffected by terrigenous debris and/or late diagenesis and that the
fluid source was residual pore water or pure groundwater (Figure 6d,e).
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5.1.2. Characteristics of Multi-Period Meteoric Calcite Cements

The petrographic and isotopic characteristics described above indicate that four types
of calcite cements were of meteoric origin. However, during a long-term weathering
process, the properties of meteoric freshwater in an open system can easily be changed by
factors such as weathering intensity and sea level. To further explore the origins of the
calcite cements, in situ REE and major and trace elemental analysis were used to study the
samples in detail [30,31].

According to the development positions and the CL intensity, four types of meteoric
calcite cements were present in the study area (Figure 2). The CL intensity in the weathering
crust had regular changes. The O2 contents gradually decrease from aerobic respiration to
manganese reduction in a suboxic environment, and the CL intensity changes from dull
to bright red and continues to transition to dull again [61]. The CL results for Cal-1 were
dull red ring-shaped calcite that was more euhedral and had a more complete crystalline
form than the others (Figure 2c,d); therefore, it would have precipitated slowly during
the early stage, when the pore space was the greatest. The characteristic REE pattern was
Pattern-1, the ∑REE content was low, the δCeSN values were generally >1.0, the CIs were
~3.0, and the δEuCN values were all <1.0. REEs are an effective indicator for recovering
paleoenvironments (Figure 6d–f), but they are highly susceptible to terrigenous debris
and late diagenesis [62]. In general, the mixing of terrigenous detrital materials leads
to a significant increase in the ∑REE content [63,64]. The lower ∑REE of Cal-1 could
represent a relatively pure meteoric freshwater environment. In addition, δCeSN and
δEuCN can be used to assess the redox status of fluid during precipitation as well as the
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influence of temperature [65]. Cal-1 was formed under oxidizing conditions and were
not affected by abnormal thermal events. Elemental features can effectively identify the
origin of authigenic minerals: in particular, the composition and distribution pattern of REE
can precisely identify the fluid source [62,66]. The characteristics of Cal-1 are a complete
euhedral form; a unique ring-shaped CL luminescent; Pattern-1; moderate CI, Fe, Mn, and
Ba content; and low ∑REE all suggest that the meteoric fluid may have been polluted by
few terrigenous (Figure 6; Table 2) [40,64]. Moreover, the fluid content was low; therefore,
precipitation occurred only at the pore edges and not on a large scale.

The characteristics of Cal-2 were similar to those of Cal-1, and the CL was dull
luminescent. Cal-2 first developed at the pore edges or as the central fulcrum for subsequent
precipitation (Figure 2d,e). The characteristic pattern of Cal-2 was Pattern-3, and most of
the δCeSN values were far less than 1.0 (Figure 6f). Therefore, the diagenetic fluid of Cal-2
would have been similar to that of Cal-1 except that the diagenetic fluid of Cal-2 might have
been more biased toward oxidizing conditions. In addition, the REE distribution features
were Pattern-3 and partial Pattern-1, and the significant negative Ce anomaly is typical
characteristics of meteoric cementation. The low Fe, Mn, Ba, and Al contents, low ∑REE,
and low CI value further demonstrate that the source was pure meteoric fluid during this
period and that the pollution by terrigenous debris was low (Table 2, Figure 6).

The CL of Cal-3 was a transition luminescence that exhibited changes between dull
red and deep red luminescence, and Cal-3 was more extensive than the other types of
cement (Figure 2e). The highest concentrations of Fe, Sr, and Ba were present in Cal-3 and
indicated a strong influence of terrigenous debris. Fe, Mn, Ba, Al, and Sr are key elements
for identifying the origin of calcite [64]. Fe and Mn in carbonate mostly come from early
precipitation or late metasomatism and generally enter the carbonate minerals in the form
of divalent ions to replace Ca2+ at high temperatures and under reducing conditions [13].
However, during the epigenetic and shallow burial period, the environmental conditions
are mostly low temperature and oxidizing and are not suitable for Fe2+ and Mn2+ to enter
the crystal. Therefore, the Fe and Mn contents in the meteoric calcite show a wide range,
indicating precipitation form a variety of fluid sources (Figure 6a,b). Owing to long-term
weathering, there were clear differences in the contents of terrigenous debris, which would
have been carried by different stages of fluids. Notably, Al and Ba mainly from terrigenous
sources could be used to characterize the differences in the contents of terrigenous debris
(Figure 6c). Cal-3 was widely distributed in the study area; its petrological characteristics
were not obvious, but the characteristic REE pattern was Pattern-4 (Figure 3d), it had high
∑REE contents and the highest CI, and most of the δCeSN values were distributed between
0.9 and 1.0 except for individual positions (Figure 6f). CI can effectively identify fluid
sources. Compared with the traditional HREE/LREE versus MREE/MREE* plot [67], CI is
better suited for distinguishing potential effects of seawater, pore water, and detrital signals
in authigenic minerals [66]. Therefore, Cal-3 was most affected by terrigenous debris,
consistent with the trends shown by ∑REE and other elements [66], and the environment
may have been suboxic. The reason for the enrichment of MREE in Cal-3 was the enhanced
solubility of meteoric fluids caused by weathering [68]. Oxidative weathering of pyrite
(common near regolith), other sulfides, and/or siderite often leads to the formation of
secondary iron oxides [69], whose modification of REE is focused on the depletion of LREE
and on the enrichment of MREE [70].

The CL of Cal-4 was bright red luminescent, its elemental characteristics were similar
to those of Cal-3, and the REE pattern was Pattern-1 (Figure 3a). Therefore, Cal-4 developed
in an environment similar to that of Cal-3, which was strongly affected by terrigenous
debris. Cal-4 was the last cementation to occur during the epigenetic stage. The high
contents of Mn, Fe, and ∑REE indicate that the source was not pure, given that the REE
distribution was Pattern-1 (Figure 3a), which is completely consistent with that of the
matrix. Therefore, the meteoric fluid would have had strong dissolving capability. During
this period, the fluid would have flowed through the matrix and strongly transformed the
elemental composition; this is consistent with the observation of similar 87Sr/86Sr ratios for
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the matrix and cement (Figure 5). Weathering caused an increase in the 87Sr/86Sr ratios [71],
and the meteoric fluid that contained weathering information precipitated at the residual
positions of the pores and/or cracks to form Cal-4 after modifying the matrix.

The origins of Cal-1 and Cal-2 were similar, and those of Cal-3 and Cal-4 were similar,
which suggests that the meteoric calcites were mainly precipitated in two periods in
the study area. The initial fluid was clean and was not strongly affected by terrigenous
debris. However, the subsequent fluids were mixed with terrigenous debris and had strong
dissolution capability. As the matrix was transformed, the REE distribution characteristics
were inherited by the freshwater calcite.

5.2. Evolution Process of the Karst Reservoir Affected by Meteoric Diagenesis

The paleoenvironment is a significant factor affecting the precipitation of carbonate
minerals. When the temperature increases from 5 ◦C to 70 ◦C, the precipitation rate of calcite
can be increased by 3–4 times [72]. In their experiments, Burton and Walter demonstrated
that for both aragonite and calcite, the precipitation rate was greatly increased at 35 ◦C
compared with 5 ◦C and 17 ◦C [73]. The calcite cements in the study area were mainly
precipitated at 319.0~292.7 Ma [22], which was at the low point of the paleotemperature of
the LPIA (Figure 1a). Long-term low temperatures are not favorable for the precipitation of
authigenic calcite minerals, but recent studies have determined that the LPIA was not a
long-term continuous glacial action but rather was composed of glacial events separated
by multiple warm events [44,74]. In the NCC, a set of basin-wide stable bauxite deposited
developed during the Late Carboniferous as a result of deposition in a warm and humid
climate (Figure 1c). Therefore, at 315 Ma, there would have been a long warm event in the
NCC [46]; Davydov and Cózar used C and O isotope excursions to identify a period of
global warming (c. 319 Ma) [45]; and a short-term climate warming (c. 304 Ma, Kasimovian
period) was identified, in which atmospheric CO2 partial pressure doubled [47].

Terrigenous debris is a major source of strontium in authigenic carbonate minerals [64].
Because the main period of calcite precipitation in the study area was during the Late
Carboniferous, the NCC was within a period of uplift and denudation, and seawater had
not yet re-entered the craton basin; therefore, it was difficult for seawater Sr to act as a
strontium source in the precipitation of calcite cement. The Sr contents also indicated
the weathering intensity and the amount of terrigenous debris, which showed similar
characteristics to the contents of other elements. This phenomenon might have been caused
by the influence of Benxi Formation bauxite.

Geochemical information indicated meteoric calcite cements precipitated in two pe-
riods (Figure 7), which matched with the in situ U-Pb dating reported by Zhou et al.
(2022) [22]. The iron in the calcite cement mainly came from the overlying bauxite [13],
so the period of Cal-1 and Cal-2 precipitation would have been earlier than that of the
Moscovian bauxite and would have occurred within the warming event that occurred
at c. 319 Ma. Correspondingly, the Fe and Mn contents of Cal-3 and Cal-4 were higher
than in other stages. These large amounts of Fe and Mn suggest that the fluid was more
contaminated by terrigenous debris than the other calcites [75], and the terrigenous debris
might have originated from bauxite that was deposited simultaneously or earlier. The
CL intensity showed transitions and bright red luminescence (Figure 2e), indicating that
the fluid environment had changed from the strongly oxidizing conditions of the original
meteoric fluid. Regarding manganese reduction, Mn4+ underwent a reduction reaction
and became divalent before it could enter the interior of the calcite lattice [61]. A suboxic
environment was favorable for a positive δCeSN (Pattern-2) value and for a CL transition
and bright red luminescence. The period of Cal-3 and Cal-4 precipitation would have
been within the climate warming event during the Kasimovian (Figure 1c). During the
Permian–Triassic, the Ordos Basin experienced multiple thermal events and the geothermal
temperature of the Majiagou Fm. gradually evolved to 100 ◦C (Figure 7). The acidity
of the formation fluid may have been weakened because of the transformation of clay
minerals, resulting in the precipitation of Cal-5 (Figure 3e). However, owing to formation
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fluid low content, the late calcite cement (Cal-5) precipitated during the burial period had
a weaker effect on the stimulation of reservoirs and on hydrocarbon accumulation than
meteoric calcite.
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6. Conclusions

(1) The dolomite reservoirs in the Majiagou Formation of the Ordos Basin were formed
through a long-term karst process, resulting in high-quality reservoirs. However, the
presence of simultaneously precipitated meteoric calcite cement (Cal-1~Cal-4) and
burial cementation (Cal-5) has caused reservoir damage.

(2) Cal-1 had a rhombohedral habit, and the REE pattern was flat. Cal-2 had dull lumi-
nescence, and had the lowest Fe, Mn, Al, and ∑REE contents; the REE pattern had
a negative Ce anomaly. The REE pattern of Cal-3 showed MREE enrichment. Cal-4
had bright red luminescence and the highest contents of Fe, Mn, Al, and ∑REE. In
addition, the REE pattern of Cal-5 decreased monotonically.

(3) Cal-1 and Cal-2 formed during the Bashkirian period (c. 319 Ma), while Cal-3 and Cal-
4 precipitated during the Kasimovian period (c. 304 Ma) after bauxite precipitation.
These meteoric cementation events were influenced by specific geological conditions.

(4) The cementation by meteoric calcite (Cal-1~Cal-4) occurred prior to the oil and gas
charging period, causing significant damage to the karst reservoirs compared to Cal-
5. Among them, Cal-3 had the most detrimental impact. Therefore, for oil and gas
exploration and development in the study region, areas with higher paleogeographical
locations during the critical period (Late Carboniferous) should be prioritized.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/min13060812/s1, Figure S1: Special location of in situ
elemental analysis (a–d are XF14-2; e–f are N3-16; g–h are XF14-10B; and i–l are N3-17).
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