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Abstract: Tailings disposal in the form of diluted slurries has a tendency for particle size segregation,
where coarse particles settle near the discharge point, and finer particles are carried by the water flux
to more distant regions. This causes a loss of reservoir capacity due to voids between the coarser
particles and increased water content in the deposit. This work aimed to evaluate the feasibility of
reaching non-segregable high-density slurries with fine tailings from the niobium oreflotation process
and measure its disposal parameters. The innovation is to achieve increased solids percentage in the
settled deposit and to avoid particle size segregation along the slurry path with niobium tailings. The
study involved physical, chemical, and mineralogical characterization and semi-pilot thickening tests
to produce enough volume of underflow with different bed heights and solids flux rates. Slump,
rheology, and flume tests were performed to evaluate underflow disposal characteristics. The results
indicated that the thickener bed height did not significantly influence the underflow solids content,
yield stress, or slump. The solids flux rate, on the other side, had a greater influence—the higher it
was, the lower the solids content, yield stress, and disposal angle, along with a higher slump. In flume
tests, a high density of non-segregable tailings slurry was achieved with 1.96 t/m3, corresponding to
an underflow with 66.8% solids, 43.9 Pa of yield stress with 0.5 (t/h)/m2, and 0.5 m of bed height.

Keywords: tailings disposal; non-segregable slurries; thickening

1. Introduction

The challenges associated with tailings disposal have become more evident for mining
companies in recent years. The disasters involving tailing dams have led to increased
studies about safer disposal forms. Among the alternatives, the use of paste and thickened
tailings disposal or high-density slurries [1], cemented tailings as backfill [2], and dry
stacking [3] have been proposed. The use of new technologies for dewatering tailings has
contributed to facing challenges and achieving sustainable development for their disposal.
Therefore, tailings should be handled and disposed of so that they remain stable for long
periods [4].

An issue with diluted slurries in dams, especially for fine and ultrafine tailings, is that
they can remain in suspension, without settling, for long periods, as in the case of the “fluid
fine tailings” Canadian bentonite sands that—with around 30% solids content—remain in
the same state for centuries according to Wang et al. [5]. Florida phosphate tailings are a
classic example, as well as bauxite tailings in Brazil. Slurries with low solids content usually
have the coarser particles settled near the deposition point and the finer ones carried by the
water flow, decreasing the in situ bulk density [6]. Thickening pre-treatment of tailings may
create a higher density, non-segregable slurry, configuring a condition in which the coarser
particles are arranged amongst the finer ones, filling the voids and preventing regions with
ultrafine particle predominance, as seen in Figure 1. In the upper circles, what happens in
conventional dams with low solids content slurries is presented. The inferior circles show
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what happens with high density slurries. The increased solids content led to an absence
of size segregation along the deposit. These are innovations of this procedure, but it is
important to evaluate each material characteristic and the solid liquid equipment necessary
to achieve this characteristic of non-segregation.
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Figure 1. Comparison of particle behavior for diluted and high-density slurries.

Achieving high density or thickened tailings was made possible due to the develop-
ment of high compression and high-rate thickeners, as shown in Figure 2 [7]. The different
types of thickener produced different characteristics of slurries, starting with diluted slur-
ries on the left, which were not previously dewatered (unthickened) and in which particles
settled as free-settling particles. Then, going to pastes on the right, highly compacted beds
that settled under compression and channeling, we saw an increase in the yield stress of
such slurries, leading to a non-segregating behavior. It could be achieved with ultra-high-
density thickeners. Depending on the material, it may be necessary to have high bed levels
and low solids flux rates to achieve this consistency or consider different equipment. In
Figure 2, it is possible to observe that the increased solids percentage increases the yield
stress of the settled deposit, what can contribute to its safety in geotechnical terms.
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According to Chaves [9], different thickening mechanisms can occur depending on
the type of thickener. Conventional thickener presents a free settling mechanism with no
interference of other particles. The use of flocculant and development of high-rate and
high-density thickeners change the settling mechanism to phase thickening, and, with
higher side walls thickeners to increase the bed height, there is also an effect of compression
in settled slurry, breaking the flocs and delivering the contained water (“channeling”).

Cooling [10], Kam et al. [11], Fourie [1], Mcphail et al. [12], and Mudd and Boger [13]
reported the high-density slurry advantages, such as reduced dam construction and de-
commissioning costs, reduce risks of failure, increased in situ density, higher yield stress,
lower infiltration and leaching issues, and better water process recovery, avoiding losses
with evaporation and possibilities due to the reclaim process reagents.

Studies have demonstrated the potential for increasing in situ bulk density with a
higher solids content in slurry and the non-segregation of particles [1,12]. Solids content
necessary to achieve this consistency can be different according to the material, particle
size distribution, presence of clays, pH, use of chemicals such as flocculants, and type of
water, which can affect the rheological behavior of mineral tailings [14,15].

This study aimed to evaluate the feasibility of producing high-density non-segregable
slurries with fine- and ultrafine-niobium ore tailings and investigate their disposal charac-
teristics. In addition to the relevance of the topic from an environmental and safety point
of view, there is a scarcity of bibliographical references for the dewatering and disposal of
niobium ore flotation tailings.

2. Materials and Methods

A sample was collected in the fine- and ultrafine-tailing stream of the niobium flotation
plant; it was characterized and used for thickening and rheology, slump, and flume tests.

2.1. Solids Characterization

The characterization is essential to understand the material’s behavior; therefore, a
size distribution analysis was conducted using a laser diffraction granulometer BetterSizer
S3 Plus (Bettersize, Dandong, China) and tetrabasic sodium pyrophosphate as a dispersant.
The solid specific weight was measured by water pycnometry. The chemical composi-
tion analysis was obtained using X-ray fluorescence with the equipment Axios (Malvern
Panalytical, Almelo, The Netherlands) using molten pastilles and mineralogy with X-ray
diffraction using the equipment D8 Advance (Bruker, Billerica, MA, USA) with a Cu tube,
rotation speed 15 rpm, analyses between 10◦ and 70◦, and a 0.02◦ increment.

2.2. Thickening Tests

The bench scale thickening test is widely used to identify the characteristics in the
thickener underflow, even if approximately, but it is still recommended to carry out tests on
a larger scale for a better approximation [16]. Barrera and Engels [17] also highlighted the
limitations of bench scale tests with high density slurries and the importance of pilot tests.

Based on optimized parameters obtained previously through bench-scale thickening
tests, used in the semi-pilot thickening scale was 5% feed solids content, a flocculant
concentration of 0.05%, 60 g/t of flocculant Magnafloc® 1011, and a pH of around 5.5.

The thickener used is shown in Figure 3. It was 2 m high with 0.14 m of internal
diameter; inside, there were rakes that—according to Chaves [9]—were responsible for
directing the dense material to the exit point to release water from the settled material as it
rearranged the settled particles by a shearing action, removing water bubbles.

Semi-pilot scale thickening tests were performed with different bed heights (0.5, 1.0,
and 1.5 m). Chen et al. [18] observed that the bed height, which was the level of the solid
liquid interface in the bottom of the thickener, could have an effect on underflow solids
content. It was observed with CT scanning tests and 3D images that the solids content in
the underflow increased with a higher bed height.
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The solids flux rates of 0.3, 0.5, 0.7, and 0.9 (t/h)/m2 were also evaluated. The
solids flux rate was the dry solid rate (t/h) per unit of thickener area (m2). According to
Schoenbrunn et al. [19], the main thickener types are conventional, high rate, high density,
and paste or deep cone; they have different solids flux rates and bed heights and generated
different underflow characteristics. Thus, both variables were important to evaluate. Tests
were performed with industrial process water at room temperature.

The flocculant was prepared with a 1.0% (w/v) concentration at 250 rpm for 1 h,
then it was diluted to 0.05% (w/v). The diluted flocculant was added into the slurry line
using a peristaltic pump before the thickener feedwell. To produce enough underflow,
tests were conducted dynamically with continuous slurry feed. When the settled slurry
reached the defined bed level, it initiated the underflow pumping adjusting the volumetric
flow to stabilize the level. After 2 h of stabilization, the underflow solids content was
measured by drying it, and the overflow turbidity was measured with a Hach 2100 (Hach,
Loveland, CO, USA). The pH was verified with a Mettler Toledo Seven2Go portable pH
meter (Mettler-Toledo, Schwerzenbach, Switzerland).

2.3. Underflow Disposal Characteristics

The slurry behavior in the disposal was correlated with the characteristics of the
thickener underflow. To characterize a high-density slurry, it was important to measure its
yield stress, consistency, slump, solids content, disposal angle, and particle segregation. It
could be evaluated with rheology, slump, and flume tests [20].

2.3.1. Rheology

Rheology studies have been widely used to evaluate thickened tailings and slurries to
size the transport system and for the operation itself [21]. The rheology measurements were
carried out using a Brookfield viscometer, model DV3T. After 2 h of stabilization in the
dynamic thickener, the slurry generated in the underflow was collected with a peristaltic
pump and placed in a 0.5 L beaker; the yield stress of the flocculated slurry was immediately
measured in the viscometer with 0.1 rpm of speed and vane spindle V-73, which had a
yield stress range from 0 to 100 Pa.



Minerals 2023, 13, 820 5 of 17

2.3.2. Slump Test

Slump tests were performed to evaluate the material’s stability and consistency. The
sample was taken after 2 h of testing. The slump test was carried out by placing the sample
inside a PVC cylinder immediately after removal from the semi-pilot thickener. Then, the
cylinder was removed, and the final height of the sample was measured. The initial height
was considered the total height of the cylinder, which had 0.10 m of height and diameter.
The slump was calculated using the difference between the initial and final height divided
by the initial height.

2.3.3. Flume Test

To investigate the effect of the solids content on particle segregation and the disposal
angle in the tailings dam, flume tests were conducted to simulate tailings disposal. For the
semi-pilot-scale tests, an acrylic vat (0.62 m high × 0.31 m wide × 1.65 m long; Figure 4)
was used. In the center of the smaller sides at the top, the tailings slurry was fed with the
flow controlled through a peristaltic pump with a frequency inverter.

Minerals 2023, 13, x FOR PEER REVIEW 5 of 18 
 

 

were carried out using a Brookfield viscometer, model DV3T. After 2 h of stabilization in 
the dynamic thickener, the slurry generated in the underflow was collected with a peri-
staltic pump and placed in a 0.5 L beaker; the yield stress of the flocculated slurry was 
immediately measured in the viscometer with 0.1 rpm of speed and vane spindle V-73, 
which had a yield stress range from 0 to 100 Pa. 

2.3.2. Slump Test 
Slump tests were performed to evaluate the material’s stability and consistency. The 

sample was taken after 2 h of testing. The slump test was carried out by placing the sample 
inside a PVC cylinder immediately after removal from the semi-pilot thickener. Then, the 
cylinder was removed, and the final height of the sample was measured. The initial height 
was considered the total height of the cylinder, which had 0.10 m of height and diameter. 
The slump was calculated using the difference between the initial and final height divided 
by the initial height. 

2.3.3. Flume Test 
To investigate the effect of the solids content on particle segregation and the disposal 

angle in the tailings dam, flume tests were conducted to simulate tailings disposal. For the 
semi-pilot-scale tests, an acrylic vat (0.62 m high × 0.31 m wide × 1.65 m long; Figure 4) 
was used. In the center of the smaller sides at the top, the tailings slurry was fed with the 
flow controlled through a peristaltic pump with a frequency inverter. 

 
Figure 4. Acrylic vat used for flume tests. 

In Figure 5, the scheme used for the tests is presented. The sample was agitated in a 
1.5 m3 stirred tank and pumped with a peristaltic pump Bredel Pump SPX 25 (Watson-
Marlow, Germany) to the pilot thickener. In the line between the pump and the thickener, 
the flocculant was added with a concentration of 0.05% (m/v) using a Qdos30 metering 
peristaltic pump (Watson-Marlow, Falmouth, UK). The flocculated slurry was fed the 
thickener, and, when the thickened material reached the bed height defined in the test, it 
started to pump the underflow with a peristaltic pump 520S (Watson-Marlow, Falmouth, 
UK), using a 10 mm internal diameter tube until the bed height was stable. After stabili-
zation, it started to dispose in the flume. The disposal velocity was low between 0.02 and 
0.05 m/s, to not interfere in the influence of the solids concentration in the disposition. 

Figure 4. Acrylic vat used for flume tests.

In Figure 5, the scheme used for the tests is presented. The sample was agitated in
a 1.5 m3 stirred tank and pumped with a peristaltic pump Bredel Pump SPX 25 (Watson-
Marlow, Germany) to the pilot thickener. In the line between the pump and the thickener,
the flocculant was added with a concentration of 0.05% (m/v) using a Qdos30 metering
peristaltic pump (Watson-Marlow, Falmouth, UK). The flocculated slurry was fed the thick-
ener, and, when the thickened material reached the bed height defined in the test, it started
to pump the underflow with a peristaltic pump 520S (Watson-Marlow, Falmouth, UK),
using a 10 mm internal diameter tube until the bed height was stable. After stabilization, it
started to dispose in the flume. The disposal velocity was low between 0.02 and 0.05 m/s,
to not interfere in the influence of the solids concentration in the disposition.

The test began with the thickener underflow pumping and ended when the slurry
deposit reached 1.10–1.20 m long. The deposited material formed a beach, simulating the
behavior of the tailings in a dam reservoir. The water flowed over the rest of the flume
length and was collected on the opposite side. The final height and length of the material
were measured to calculate the disposal angle. Once the flume test started, the material
began a settling regime.

After 24 h, five samples were collected using a 0.22 m diameter PVC tube inserted top
down in the center of the flume along the disposed tailings, each 0.28 m apart, beginning in
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the discharger side extremity. The samples were forwarded to measure the particle size
distribution using a laser diffraction granulometer.
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3. Results and Discussion
3.1. Solids Characterization

The feed was a tailing from the pyrochlore flotation process. It had a fine particle size
distribution (Figure 6) with a d95 of 68.7 µm and a fraction of 13.7% of the material below 1 µm.
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The specific weight of the solid was 3.72 t/m3. Chemical analysis of the material found
51.3% Fe2O3, 8.9% BaO, and 9.0% SiO2. Mineralogical analysis indicated that the primary
minerals identified were 53.0% goethite, 11.5% gorceixite, 11.0% hematite, 7.0% barite, and
6.4% quartz.

3.2. Thickening Tests

In a continuous thickening test, the bed height is an important operational parameter
and cannot be properly evaluated in bench scale tests. Semi-pilot thickening tests were
conducted to evaluate the effect of different bed heights on underflow solids content and
overflow turbidity (Figure 7).
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The semi-pilot thickener, with a height of two meters, played a crucial role in achieving
a high concentration of solids in the underflow. It was verified that the bed height variation
had a minor influence on the underflow solids content. In Usher and Scales’ study [22],
an algorithm was developed to predict the flux rate versus the underflow solids content.
They observed that the bed height had less influence on the underflow solids content at
solids flux rates between 0.1 and 3 (t/h)/m2. According to the authors, there was not
enough time to transmit compressive forces on the material bed at these flux rates; the
thickener operation was called permeability limited. In this condition, the underflow solids
concentration depended on the solids flux alone. On the other hand, when lower flux rates
were used, e.g., <0.1 (t/h)/m2, the thickener operation was called compressibility limited,
the bed height had a greater influence, and the compressive forces would be transmitted by
the network structure of the material bed.

In Figure 8, the results of solids in underflow and overflow turbidity with different solids
flux rates are presented. Lower flux rates resulted in higher underflow solids contents, and
higher rates did not increase the overflow turbidity. Furthermore, according to Usher and
Scales [22], in the evaluated flux rate range, higher concentrations of solids were found in the
underflow as the rate was reduced. The velocity of the slurry was directly proportional to the
flux rate. With higher solids flux rates, there was less time for the solids to settle, the residence
time was reduced, and there was more probability to have solids in the overflow due to the
rise rate. Lower flux rates could proportionate more residence times, better settlings, and
higher solids contents in the underflow but also will require higher thickener areas.
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The underflow from the semi-pilot thickener was used to investigate disposal charac-
teristics with the different feed rates and bed heights.

3.3. Underflow Disposal Characteristics

To verify the underflow behavior with different thickening variables (bed height and
solids flux rate), rheology, slump, and flume tests were performed. With rheology tests,
it was possible to verify the effect of bed height variation on yield stress (Table 1). As
previously noted, the variation in solids between the 0.5 m and 1.5 m bed height was low
and reflected in low yield stress variations. As expected, higher underflow solids content
led to higher yield stress.

Table 1. Yield stress results with bed height variation.

Bed Height (m) Underflow Solids Content (%) Yield Stress (Pa)

0.5 66.8 43.9
1.0 66.9 46.8
1.5 65.8 39.5

In Table 2, the effect of the solids flux rate on the yield stress is presented, which follows
the variation in the percentage of solids. Higher solids flux rates led to a lower percentage
of solids in the underflow and, consequently, lower yield stress. We also observed a greater
variation in yield stress at a higher percentage of solids, even with minor changes, due to
the exponential behavior in the curve of solids percentage versus yield stress (Figure 9).

Table 2. Yield stress results with solids flux rate variation.

Solids Flux Rate (t/h)/m2 Underflow Solids Content (%) Yield Stress (Pa)

0.3 69.2 59
0.5 66.8 43.9
0.7 59.7 13.8
0.9 57.8 10.7
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the yield stress is presented, with an increase in yield stress with higher values of underflow
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solids content. The higher the solids content was, the greater the water reduction in the
disposal. The present tailings were disposed of in a diluted form with around 18% solids
content and 4.5 m3 of water per ton of solids, with the underflow solids content obtained
in the tests. Figure 9 also shows the water volume reduction for each ton of dry tailings.
The yield stress is an important parameter to thickened tailings facilities because it would
influence the pumping system; higher yield stress would require positive displacement
pumps, for example. Additionally, there is a relation with reservoir safety because higher
yield stresses meant that higher stress to start the movement of a slurry would be required,
which affects the deposit’s stability.

According to Boger [23], there is a wide range of references about what yield stress is
considered a paste, which goes from 10 Pa to 1000 Pa. Therefore, it is important to evaluate
other parameters as well. In Table 3, the slump tests conducted and the final aspect of the
material with different bed heights are presented. Here, there was little difference in slump
measurements, similar to underflow solids content and yield stress.

Table 3. Slump results with variations in bed height.

Bed Height (m) Slump (%) Image

0.5 72.2
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Table 4 shows the relation of slump values with the solids flux rate variations in
thickening tests. At lower solids flux rates, the percentage of solids and yield stress were
higher. Consequently, there was a lower slump. As the rate increased, the percentage of
solids tended to reduce, as well as the yield stress, and a higher slump was observed since
the sample became more fluid with less consistency. The slump test had a variation from
66.4 to 90.5%.

In both cases, the tendency was for a reduction in slump with an increase in the percent-
age of solids in the underflow (Figure 10), which was also evidenced by Panchal et al. [24]
and Yang et al. [25], who obtained linear and polynomial relationships, respectively.
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Table 4. Slump results with variations in bed height.

Solids Flux Rate (t/h)/m2 Slump (%) Image

0.3 66.4
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Flume tests were performed to evaluate disposal angle and particle segregation. In
Figure 11, the thickener in operation and the slurry disposal in the flume are presented.
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The elevation and disposal angle with bed height variation are shown in Figure 12 and
Table 5. It was observed that higher values of bed height resulted in higher disposal angles.
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Table 5. Relationship between bed height and disposal angle.

Bed Height (m) Disposal Angle (◦) Inclination (%)

0.5 6.0 10.7
1.0 7.1 12.5
1.5 7.2 12.7

The elevation and angle of disposition obtained with the variations in the flux rate in
the thickening tests are shown in Figure 13 and Table 6. The higher the solids flux rates
were, the lower the disposal angles obtained, and it was observed that the solids flux rates
had greater influences than the bed heights.
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Table 6. Relationship between solids flux rate and disposal angle.

Solids Flux Rate (t/h)/m2 Disposal Angle (◦) Inclination (%)

0.3 8.8 15.5
0.5 6.0 10.7
0.7 5.2 9.2
0.9 4.6 8.0

In Figure 14, the flume test after 24 h with 0.9 (t/h)/m2 solids flux rate with a higher
disposal angle, as indicated in Table 6, is presented.
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Fitton [26] showed that there was a tendency to increase the disposal angle as the
concentration of solids increased. Similar results were observed with iron ore tailings by
Hernández [27], in which flume tests were performed from 58 to 65% of solids without
base inclination and resulted in angles between 3.23◦ and 8.38◦, similar to this work.

Li et al. [28] found that the slope ranged from 1.5 to 4.0% on average for the solids content
used in this work (58 to 68%) in mines surveyed from different tailings, reaching a maximum
of 5.7%. These values were lower than those obtained in this work, which oscillated between
8.0 and 15.5%; however, the difference was reported by Fourie and Gawu [29]. The authors
highlighted the difficulty in having exact values of the disposal angle in flume tests because
of the side wall friction of the flume resulting in steeper values than those obtained in practice.
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High values of disposal angle may require adjustments in the disposal system to spread the
tailings inside the dam, for example, using more disposal points along the dam.

The particle size distribution curves to analyze segregation were conducted with the
samples collected at five different points along the length of each flume deposition. In
Figure 15, the results with bed height variations are presented, showing no size segregation
since the curves were very close.
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Figure 16 shows the results of the particle size analysis from the flume tests with the
underflow of the thickening varying the solids flux rate. No granulometric segregation was
identified in the evaluated conditions.

The results show characteristics of a high-density slurry since it was no longer possible
to verify significant particle size segregation in the disposal. We did not verify the paste
consistency because the measured yield stress was low for paste (<100 Pa), and verifying
water release in the material was still possible.

We also observed that the bulk density as a diluted slurry—how it was disposed of
by the company—increased from 1.15 t/m3 after dewatering the material to 1.96 t/m3,
corresponding to an underflow with 0.5 (t/h)/m2 and 0.5 m of bed height.
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4. Conclusions

This work contributes to addressing the scarcity of references on dewatering and the
disposal of niobium flotation tailings by verifying the possibility to achieve non-segregable
high-density slurries through the implementation of a thickener assisted by flocculant
addition and with low turbidity water. Semi-pilot thickening tests were performed with
previously optimized parameters on a bench scale (pH, percentage of solids in the feed,
flocculant, and dosage) and variations in thickened material bed heights and solids flux
rates. As for the disposal characteristics, the slump, consistency, and angle of disposition
were evaluated in addition to rheology measurements.

The semi-pilot thickener made it possible to obtain more realistic underflow char-
acteristics and to obtain high density slurries, which were not possible in glass cylinder
thickening tests. The thickener underflow was used to evaluate the disposal characteristics
with rheology, flume, and slump tests. The results indicated that bed height had a lower
influence compared to the solids flux rates’ influences. With solids flux rate variations,
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it was possible to verify that higher flux rates led to lower underflow solids contents,
yield stresses, and disposal angles with higher slumps; visually, the underflow had less
consistency and was more fluid.

In all conditions, it was possible to obtain a settled slurry without particle segregation
from 57.8 to 60.2% solids. The thickener could operate with low bed height because this
parameter had a lower influence on disposal characteristics.

Although the solids flux rate conditions did not show particle segregation, the higher
flux of 0.7 and 0.9 (t/h)/m2 generated low yield stress and low consistency slurries that
did not correspond to a high-density slurry. On the other hand, very low flux rates could
result in a thickener with a very high area. Therefore, non-segregable niobium ore tailings
could be achieved with thickeners from a 0.5 (t/h)/m2 flux rate and a 0.5 m bed height,
which generated an underflow with a 66.8% solids content, a yield stress higher than 40 Pa,
a 67.1% slump, and a 6◦ disposal angle. The results corresponded to the expectations, and
the scale up can be performed directly with the thickener flux rate, yield stress and slump
tests. The disposal angle obtained by the flume test could have a geometrical difference
due to the friction of side walls, showing steeper values, as mentioned.

One notable benefit of implementing high-density tailings disposal is the optimized
utilization of dam reservoir volume. In this study, the condition of disposal with the
non-segregable slurry increased the bulk density by 70%, from 1.15 to 1.96 t/m3, allowing
a longer useful life of the disposal structure. High water recovery was obtained with an
89% reduction in water forwarded to the dam with its implementation.
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